

Coastal and Arctic Marine Gravity from CryoSat-2 and Jason-1 Geodetic Mission Altimetry

Ole B. Andersen and David Sandwell

oa@space.dtu.dk; dsandwell@ucsd.edu

 $f(x + \Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)}{i!}$

DTU Space National Space Institute

Two approaches: Use ssh heights (DTU) or ss slopes (Sandwell)

321.400 obs	Mean	Std Dev.	Max Dev	Note
KMS02	0.44	5.15	49.38	
DNSC08	0.39	3.91	36.91	Double Retrack
DTU10	0.39	3.82	36.89	
DTU12	0.39	3.79	36.81	Cryosat-2
SS V12.1	0.62	5.79	82.20	
NTU01	0.79	6.10	92.10	
SS V16.1	0.59	4.88	45.29	Retracked ERS1+GSA
SS V18.1	0.41	3.96	36.99	
SSV19.1	0.39	3.92	36.31	Cryosat-2

Many reasons for requiring More accurate GRAVITY

Many reasons for requiring More accurate BATHYMETRY

assumes 1.4 better range precision with 3 years of C-2 and 409 days of Jason-1

Status: 2 years of CryoSat-2 and 4 month of Jason-1

⁴ DTU Space, Technical University of Denmark

CryoSat-2

- LRM -- conventional mode
- SAR -- synthetic aperture radar provide 2-4 times better range precision.
- SARIN uses two receiving antennas
- SAR or SARin Used in many coastal regions

source: Jensen and Raney.

b DIU Space, Technical University of Denmark

C2 Retracking:

DTU

Focused on Leading Edge Rtrk

- Only retrack SAR and SAR-in
- LE COG and LE Treshold.
- USE ESA L2 LRM data.

Sandwell

• SAR

Focused on 3 Parameters retracking

• Retrack LRM and SAR using different functions.

• LRM
$$M(A,t_o,\sigma) = \frac{A}{2} \{1 + erf(\eta)\};$$
 $\eta = \frac{t_o}{\sqrt{2}\sigma}$

$$M(A,t_o,\sigma) = \frac{A}{2} \exp\left(-\frac{1}{4}z^2\right) D_{-1/2}(z); \qquad z = \frac{t_o}{\sigma}$$

DTU

Canadian Arctic - C2 SAR

cryosatsarap

10 **DTU Space, Technical University of Denmark**

DTU Space

National Space Institute

DTU Space National Space Institute

Canadian Arctic - C2 SAR

cryosatsinap

ESA Coastal Altimeter Workshop Riva del Garda, September 2012

DTU

Canadian Arctic

Ship Gravity

Canadian Arctic

Geosat, ERS-1 (old)

Canadian Arctic

Geosat, ERS-1 (old) + CryoSat, Envisat (new)

Canadian Arctic SCICEX data

- Not very accurate marine data
- 4-6 mGal error
- Only data up to 86N used .

41459 obs	Max	Std
EGM2008	77	12,11
DTU10	67	10,89
ESA L2 SAR	64	8,89
Entire WF retrack OCOG Treshold	56 52	7.72 7.39
Lead Edge retrack OCOG Treshold	51 51	7.28 7.22

135°

First evaluation of J1 geodetic mission data.

Standard deviation of **Retrieved height in** Each 1 hz data bin.

ESA L2 CryoSat

17

assumes 1.4 better range precision with 3 years of CryoSat and 409 days of Jason

DTU Space

National Space Institute Conclusions / Outlook

- CryoSat has provided the first dense "geodetic data" since 1996.
- Mode and "processing" switch is a HUGE problem->All C2 must be > retracked and each mode calibrated individually. Slopes are simpler
- Two-pass retracking of LRM waveforms provides 1.4 times better slope > accuracy than Geosat and ERS-1 because of the 2X higher PRF.
- C-2 "640" Hz sampling increase noise by factor 1.8 (rel to 2000 Hz)
- Leading Edge retracking of SAR and SARIN waveforms provides > higher accuracy in Coastal and Polar areas than ESA L2 data.
- > We have not (yet) achieved the LRM range precision by retracking SAR and SARIN waveforms.
- More investigation on C-2 SAR high resolution Coastal gravity is next. >
- If CryoSat-2 survives for more than 4 years the marine gravity accuracy will improve by more than 2 times.
- Jason-1 will provide particular high resolution at low latitudes. >
- Improved gravity will have major payoffs in marine geophysics, petroleum exploration, physical oceanography/climate etc etc......
 - **DTU Space, Technical University of Denmark** 19

BACKUP

20 DTU Space, Technical University of Denmark

Outlook / Summary

Conventional altimetry at cross-road Need new GM/NERM missions and/or DD instrument

DEPTH ISSUE

Bathymetry versus sea surface height (limited bandwith signal) (Upward continuation is a problems – will never get all sea mounts)

Simulations yielded optimum recovery of geophysical features at 5 Hz and 2 mGal resolution

Will be able to recover 5-10 fold of the number of sea mounts (1-2 km range) known today using CRYOSAT-II altimetry.

Defining a seamount as a undersea mountain larger than 1 km means that there is 15 TIMES as many unknown/uncharted sea mounts as charted seamounts today.

Upward continuation

