Estimation of extreme sea levels from altimetry and tide gauges at the coast

Xiaoli Deng⁽¹⁾, Ole B. Andersen⁽²⁾, Yongcun Cheng⁽²⁾, Mark G. Stewart⁽¹⁾ and Zahra Gharineiat⁽¹⁾

- (1) School of Engineering, The University of Newcastle, Australia
- (2) Danish National Space Centre, Technical University of Denmark

Introduction

- Sea-level rise will lead to more extreme sea level events
 - hence an increased likelihood of coastal flooding and erosion.

- Off the south-east coast of Australia, infrequently, the sea-level variations are associated with the East Coast Low (ECL) formed and intensified in a maritime environment near the coast.
 - The ECL is referred to a low-pressure system with closed cyclonic circulation at sea level
 - 5 times in June 2007

Introduction

- In the northern coast of Australia, sea-level rise has been found much faster up to 2.5 times than the global sea-level rise.
- Much of the coastline is more frequently affected by Tropical Cyclones. The region has cyclone frequency with averages 1-2 a year and period up to 7.7 days per season when a cyclone exists.

Objectives

- To map coastal sea level through integrating altimetry and tide-gauge sea level measurements for monitoring of extreme sea levels associated with sea level rise.
- To capture high frequency sea-level variations within periods of 10 days.

Data and Areas

- The data used are sea level measurements (1992-2010) from both satellite altimetry and tide gauges
 - along the south-east Australian coastline (latitudes 43°S-24°S and longitudes 144°E-156°E), and
 - in the northern Australian coastal area (latitudes -24°S-2°S and longitudes 108°E-162°E).
- The along-track SSHs from multi-satellite altimeter missions (TOPEX/Poseidon, Jason-1 and Jason-2) are obtained from the RADS.
 - http://rads.tudelft.nl/rads/rads.shtml.
- The hourly tide-gauge sea level records are obtained from the University of Hawaii Sea Level Centre at 12 stations.
 - (<u>http://uhslc.soest.hawaii.edu/home</u>)

Data and Areas

The Method

 Sea level time series at each point along-altimetry tracks is described by a multivariate regression model using sea level records from all tide gauges.

$$y = X b + \varepsilon \atop n \times n m \times 1 n \times 1$$

- The solution of the multivariate regression provides predictions at the time of interests, which can be used to monitoring extreme sea levels.
- Performance of the model is measured by the RMS of regression and hintcast skill (ie. R²)

$$R^{2} = \frac{\sum (y_{i} - \bar{y})^{2} - \sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Results – Temporal Correlation

Distributions of temporal correlation coefficients between tide gauge and altimeter sea level measurements at four stations off the east coast of Australia.

Results – Multiple Regression Coefficients

Results – RMS of Multiple Regression

Results – Multiple Regression Coefficients and RMS

The hindcast skills (left) and RMS of regression off south-east Australia. Background contours are the mean surface height field of the area from the CNES-CLS09 Mean Dynamic Topography.

Measures of Regression Model Performance

Coast	Measure	min	max	mean
South-east	R^2	0.01	0.80	0.24
North	R^2	0.03	0.96	0.40
South-east	RMS (cm)	4	35	16
North	RMS (cm)	4	21	8

Conclusions

- The multiple regression model can in generally explain >40% and >24% of sea level variations in the northern coast and south-east coast of Australia, respectively.
 - >60% of R² near the coastline
- Off the south-east coast, the model performs well only along the coastline within in a narrow strip (~60 km), due to the effect of EAC system.
- The results, especially in the northern coast, suggest that integrated mapping and predicting of the coastal sea level is a possibility, which opens the way for further research into monitoring of extreme sea level events.
- The validation of the multiple regression model is continuing.

www.newcastle.edu.au

Thanks and Questions

A presentation to the 6rd Coastal Altimetry Workshop, 20 – 21 September 2012, Riva del Garda, Italy