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Radiometric measurements

• Strongly contaminated by land: the same way as the other 

radiometers (SSM/I, TMI, AMSU…)

• Land emissivity nearly twice sea emissivity + more variable in space 

and time 

• For a surface temperature of 300K, a 10% land contamination in the 

sea pixel will increase the TB by more than 10K � several 
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Outline

sea pixel will increase the TB by more than 10K � several 

centimeters !

• Classical retrieval algorithms developed assuming sea surface 

emissivity modeling are no more valid

• BUT only radiometer products can provide the required resolution to 

detect short scales SSH signals in coastal areas

• Alone or combined with other products

(Mercier 2007, J. Fernandes 2011)



Existing methods
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of the L2 ocean retrieval algorithm : Desportes et al, 2006

• Applied on Jason2/AMR for the Pistach products

TBland

TBsea

TB_corr(f)=TB(f)- corr(p,f)
corr ( p , f ) = [TBland( f ) – TBsea ( f )] × p ( f )
f: frequency of the 3 channels (18.7, 23.8 and 34 GHz for Jason 1-2)

p(f): proportion of land in the footprint taking into account the antenna patterns

TBland: closest TB with 100% of land

TBsea: closest TB with 100% of sea

Desportes, 2008



Existing methods
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• Land proportion used as external parameter in 

the L2 retrieval algorithm : Brown 2010 et al

• Applied in Jason2/AMR operational products

Brown, 2010



Existing methods
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Combined MWR – ECMWF –GNSS wet tropo. corr

through COASTALT ESA initiative (http://www.coastalaltimetry.org/)

Fernandes, 2010Fernandes, 2010



Proposed methodology for RA2-MWR

• RA-MWR : bi-frequency nadir radiometer : 23.8 GHz/36.5GHz

• What do we need ? [adapted from Brown 2010]

– Measured brightness temperatures (mixed Land/Ocean)

– Measured altimeter backscattering coefficient in Ku band (to 

take into account surface roughness)

– Land proportion in the pixel at both frequencies
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– Land proportion in the pixel at both frequencies

dh = NN (TB23.8, TB36.5, σ0_Ku, land_prop23.8, land_prop36.4)

Coastal Neural Net algorithm 

• Algorithm formulation

- Building of the learning database

- Learning of the neural net
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Building of the learning database

dh =NN (TB23.8, TB36.5, σ0_Ku, land_prop23.8, land_prop36.5)

land proportion

� Weighted mean of a 1/30° land sea mask 

by a sampling of Envisat MWR true antenna by a sampling of Envisat MWR true antenna 

pattern

*



Land proportion
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Building of the learning database

dh =NN (TB23.8, TB36.5, σ0_Ku, land_prop23.8, land_prop36.4)

dh1rst STEP : simulation of Ocean TBs

�A set of ECMWF analyses  over sea with 

wet tropospheric correction, and other 

TB23.8

wet tropospheric correction, and other 

needed geophysical parameters: surface 

temperature and pressure, temperature 

and humidity profiles, surface wind speed

� Simulation over sea of brightness 

temperatures at 23.8 and 36.5 GHz thanks 

to a radiative transfer model
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Building of the learning database

dh =NN (TB23.8, TB36.5, σ0_Ku, land_prop23.8, land_prop36.4)

2nd STEP : simulation of Mixed TBs

TB_mixed = (1-LP)*TB_Ocean + LP*TB_Land

TB23.8

January

TB_mixed = (1-LP)*TB_Ocean + LP*TB_Land

• LP randomnly chosen in a realistic

distribution (obtained from one data cycle)

• TB_Ocean simulated by the radiative 

transfer model

•TB_Land : real measurement randomly

picked up in a 10°latitude band

TB36.5

July
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Building of the learning database

dh =NN (TB23.8, TB36.5, σ0_Ku, land_prop23.8, land_prop36.4)

Simulated with the radiative transfer model assuming 

a sea surface, smaller resolution



Algorithm formulation
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• Neural Net formalism to estimate weights and 

biases that minimize the differences (bias and rms) 

between estimated and reference dh

• Architecture with 1 hidden layer of 8 neurons

� allows an optimal regression taking into account 

non linearities
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CNN vs ECMWF estimation



SLA variance difference vs ECMWF

ENV: CNN-ECMWF

-5

ENV: GPD - ECMWF

J2: GDRD-ECMWF

-5
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-4
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CNN SLA when approaching the coast



SLA variance difference vs GDR
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J2 GDR-D coastal dh

SALP, Philipps et al, 2012



• Future altimetry missions defined to increase resolution and accuracy in 

altimetry measurements (S3/SRAL, SARAL/AltiKa, SWOT/Karin, …) => will 

allow a better characterization of SSH coastal variability

• A global, high resolution and accurate wet tropospheric correction will 

be needed to take advantage of these new instruments

Conclusions & Perspectives

• Only the radiometer estimation, alone or combined with other products 

(models, GPS) will allow to reach this goal, models presenting insufficient 

spatial resolution and poor temporal sampling

• We developed a new algorithm derived from previous studies 

(Desportes, Brown) to improve the coastal wet tropospheric correction

• NN are used to easily and accurately take into account the required 

additional geophysical parameters



• First results show a significant reduction of SLA variance with respect to 

the model and reduction of standard deviation of SSH at cross-overs

• For future altimetry missions, other aspects of processing and design of 

the radiometers should be analyzed and possibly improved:

– Quality of the side-lobe correction (L1 processing)

Conclusions & Perspectives

– Quality of the side-lobe correction (L1 processing)

– Potential of the “original” measurements of the instrument (7 Hz for 

Envisat)

– Review of the interpolation processing between radiometer and 

altimeter measurement

– Enhancement of the radiometer resolution either through better 

antenna or innovative algorithm (currently used in imagery)

– Potential of high frequency radiometers (higher spatial resolution, 

much smaller land impact)


