Seamless transition from ocean to coastal retracking algorithms

Graham Quartly, Paolo Cipollini (NOC)

& Pierre Thibaut (CLS)

Homogeneity

Matching TOPEX and Poseidon data

Continuity of T/P, Jason-1, Jason-2 etc

New instrumental techniques (delay-Doppler, AltiKa, WSOA,)

So what's so difficult about linking COASTAL and OPEN OCEAN?

"Brown Model" PLUS

Tackling individual waveforms

Processing multiple waveforms

Hyperbolic pre-tracker (Quartly CAW-5)

Singular Value Decomposition (Thibaut CAW-5)

Bayesian Retracking / Linear Bayes techniques (tentative)

Hyperbolic features are relatively common

In cycle 49, bright target due to wave sheltering in NW bay (Golfo della Botte)

J. Gómez-Enri et al., IEEE GRSL 2010

Hyperbolic features are relatively common

Hyperbolic *pre-tracker*, then Brown fitting

Brown with Asymmetric Gauss. Peak

(BAGP)

Page 12

$$\tilde{s}_k = s_k + p_k$$

with

$$p_k = \mathbf{A} \exp \left[\frac{-1}{2\sigma^2} \left(kT_s - \mathbf{T} \right)^2 \right] \left\{ 1 + \operatorname{erf} \left[\mathbf{\gamma} \frac{\left(kT_s - \mathbf{T} \right)}{\sqrt{2}} \right] \right\}$$

where γ is the asymmetry coefficient of the peak

Generalization of the Brown and BGP models

- ▶ BAGP reduces to the Brown model for A = 0
- ▶ BAGP reduces to the BGP model for $\gamma = 0$
- It should work in many coastal cases, and yield continuous values of parameters
- Should we use it as a reference for other coastal retrackers?!

Why not use coastal tracker everywhere?

Brown: 3 (or 4) params

Reduced: 3

Regression with MLE3 on normal WFs

Sometimes, no peaks are fitted

Sometimes, small peaks are fitted

- → No regression with respect to MLE3
- → Very important to assure the continuity between retrackings when approaching the coasts (assures also the continuity of the SSB correction)

Minimize effect of switching retrackers

Distance from coast

Open Ocean retracker

At what distance does its variability increase?

Coastal retracker

- How variable in open ocean?
- Is it biased relative to open ocean tracker?
- How variable is the offset?
- Is distance from coast the best independent variable to use? (alternative is coastal proximity parameter, developed for SL CCI, see poster at CAW-5)

Example from Pistach

Standard (MLE-4)

Oce3

Red3

Ice3

Ice

Note ice retrackers are intended for hydrology applications, not open ocean or coastal; simply included here to show diversity of behaviour

Bias and variability of ice3 rel. to MLE-4

Offset between trackers is f (Hs, σ^0) — effectively an adjustment to SSB

Bias and variability of red3 rel. to MLE-4

Inverse example

Minor rain event (~1 dB of attenuation)

Both SWH and SSHA affected (useful for studies of wave extremes and storm surges)

Not all trackers respond the same — need to know which is better

Requirement on relative range bias is less strict

Region to switch trackers is not fixed

Further random thoughts

Summary / Points for discussion

Need for specialist retrackers, BAGP might be good as reference

Mean offset can be removed; need to minimize variability of offset Model offset as f (Hs, σ^0)

Characterise r.m.s. of tracker change 20 Hz??, 5 Hz??, Spectral description

Transition — how near to coast? Sharp or fade?

Non-oceanic returns in open ocean

- storms, slicks & sea-ice