The Sentinel-3 Mission

C. Donlon, B. Berruti, J. Nieke, P. Goryl, P. Femenias, C. Mavrocordatos, H. Rebhan, B. Seitz, and U. Klein

Securit

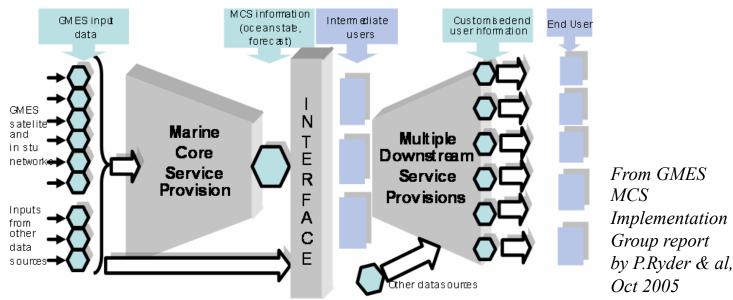
and

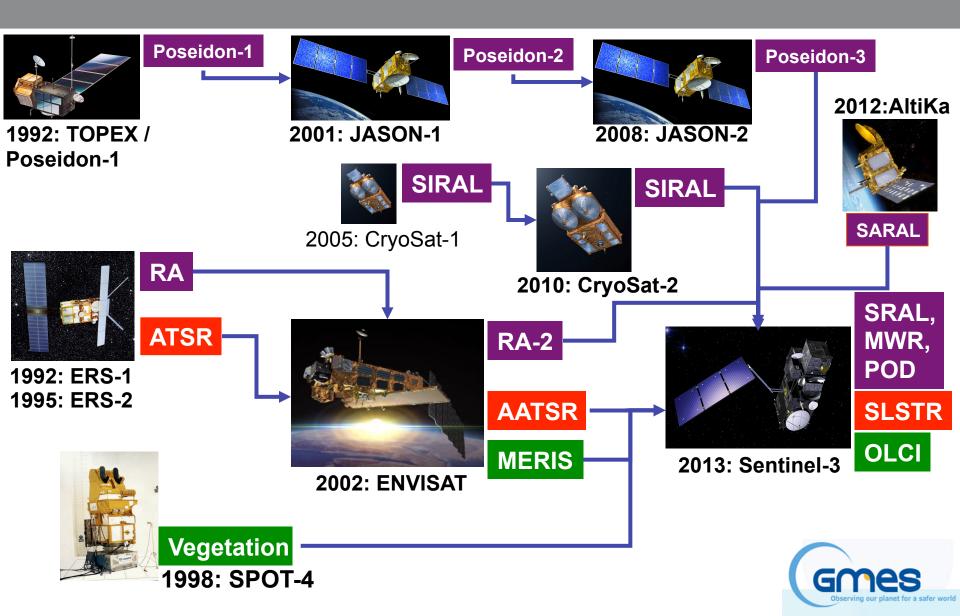
nment

<u> slobal Mor</u>

S3 Background: Aim

- The <u>aim</u> of Sentinel-3 Mission:
 - To provide continuity of ENVISAT type Optical and Topography measurement capabilities with high availability, high accuracy, with timely delivery and, in a sustained operational manner for GMES

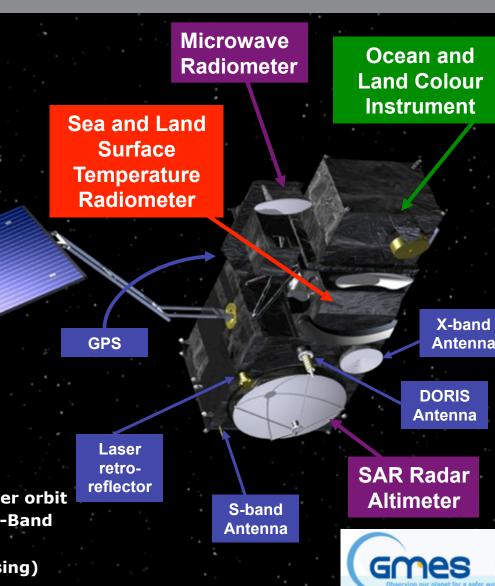




users.

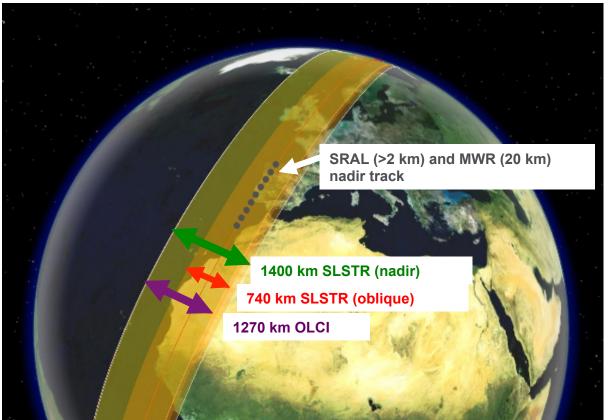
Sentinel-3 Mission Heritage

Sentinel-3: Continuity of ENVISAT Ocean Observation

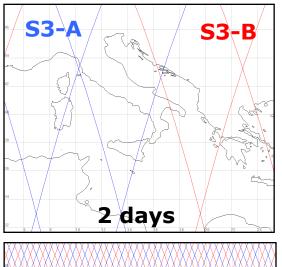


- 1250 kg maximal mass
- Volume in 3.89 m x 2.202 m x 2.207 m
- Average power consumption of 1100 W
- 7.5 years lifetime (fuel for 5 add. years)
- Large cold face for optical instruments
 thermal control
- Modular accommodation for a simplified
 management of industrial interfaces
- Launch S3A April 2014
- Launch S3B later

Observation Data Management:


- 21.25 Gb (170 Gbit) of observation data per orbit
- Space to ground data rate 2 x 280 Mbps X-Band
- 1 ground contact per orbit
- 3h delivery timeliness (from satellite sensing)

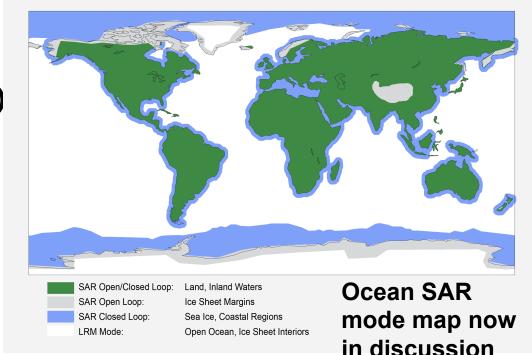
Sentinel-3: Instrument Swath and Satellite Orbit



Instrument Swath Patterns

Orbit type	Repeating frozen SSO			
Repeat cycle	27 days (14 + 7/27 orbits/day)			
LTDN	10:00			
Average altitude	815 km			
Inclination	98.65 deg			

Ground Track Patterns



S3: Topography Mission

S3 Topography mission Mode mask

Topography package:

- 1. Dual frequency Synthetic Aperture Radar Altimeter (SRAL)
- 2. Microwave Radiometer (MWR)
- 3. Precise Orbit Determination (POD)

Key Improvements:

SAR & LRM mode Better POD Better open & closed Loop tracking Polar Ocean

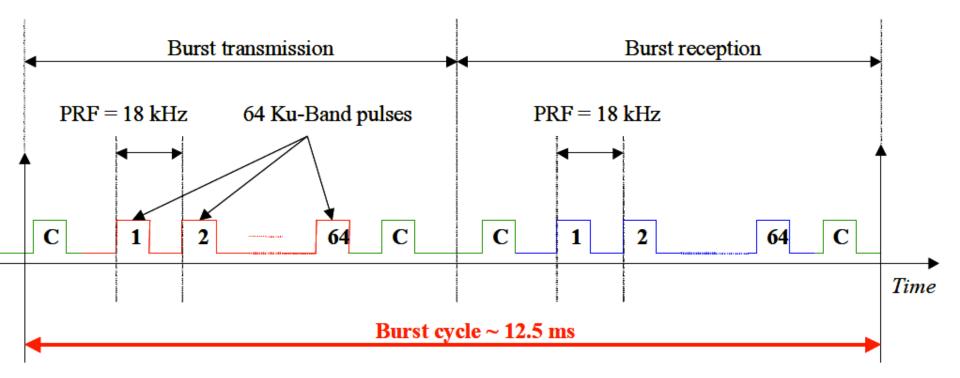
Observed surfaces

- Open ocean, coastal ocean
- Ice sheets (interiors and margins)
- Sea ice
- In-land water (rivers & lakes)

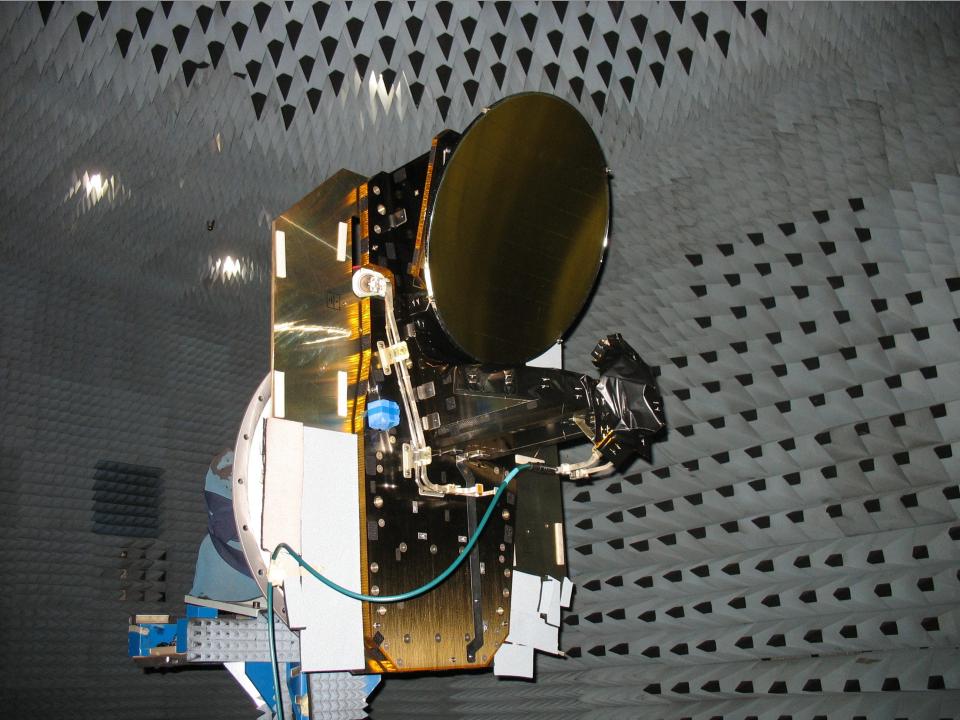
S3 SAR RADAR Altimeter

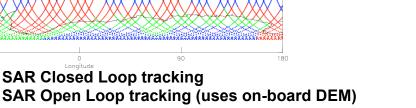
Dual frequency Ku/C band Radar Altimeter

- CryoSat and Jason heritage
- High horizontal resolution (~300m in SAR mode)
- SRAL Radar features:
 - Ku-Band (13.575 GHz) : main frequency
 - C-Band (5.41 GHz) : ionosphere corrections
 - Fully redundant electronics
- Measurement modes:
- 2 radar modes:
 - Low Resolution Mode (LRM) and
 - High Resolution SAR mode
- 2 tracking modes:
 - Closed-loop (traditional) and
 - Open-loop tracking modes over rough surfaces
- Any radar mode can be combined to any tracking mode


Objective: To retrieve orbit altitude information with an end-to-end accuracy of 3 cm (Ocean)

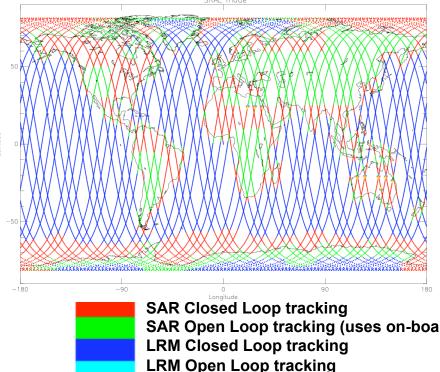
Supported by MWR, GPS, LRR and DORIS


SRAL Chronograms



SAR burst pattern

200 60


JASON-2 altimeter tracking is less efficient in sloping terrain - potentially worse for S3 SAR mode as we have less echoes

Baseline Mission:

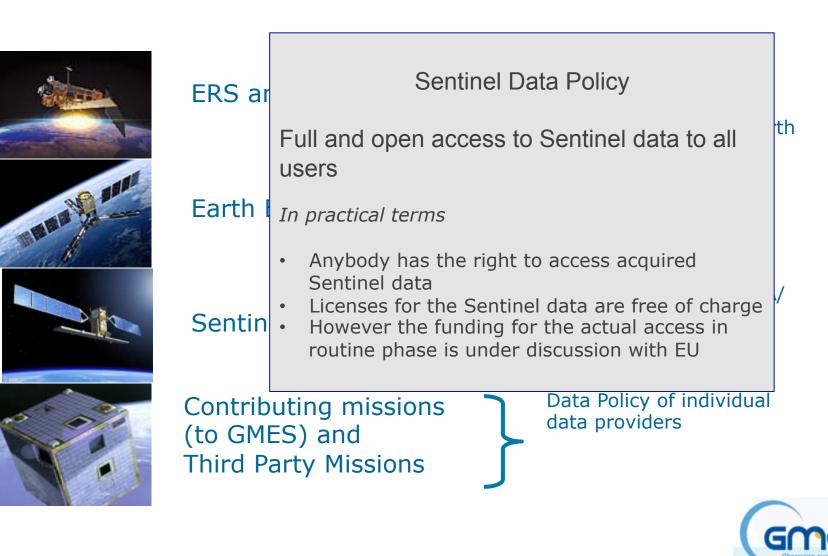
SAR mode in coastal zones and EU Seas only

SRAL Mode Mask

- LRM over open ocean
- Maximizes the use of SAR capability over the Land surface (unproven)
- This is the Operational Baseline

Jason-2

S3 PDGS Data volume (uncompressed)



	Level 0 GB/Orbit	Level 1 GB/ Orbit	Level 2 Marine GB/Orbit	Level 2 Land GB/ Orbit
OLCI	9.5	29.6	35.5	7.8
SLSTR	4.8	45.6	5.8	2.8
SYN (OLCI +SLTSR)		55.8		31.2
SRAL + MWR	5.8	0.12	0.09	0.07
Total (GB/ orbit)	20.1	131.12	41.39	41.87

	Level 0		Level 1		Level 2 Marine		Level 2 Land					
	GB/Orbit	GB/Day	TB/Year	GB/Orbit	GB/Day	TB/Year	GB/Orbit	GB/Day	TB/Year	GB/Orbit	GB/Day	TB/Year
OLCI	9.47	134.98	48.11	29.60	422.07	150.45	35.50	506.20	180.43	7.82	111.51	39.75
SLSTR	4.80	68.40	24.38	45.60	650.22	231.77	5.80	82.65	29.46	2.81	40.11	14.30
SYN (OLCI+SLSTR)	0	0	0	55.80	795.67	283.61	0	C	0	31.21	452.70	161.64
SRAL	5.82	82.98	29.58	0.12	1.65	0.59	0.09	1.31	0.47	0.07	1.00	0.36
MWR	0.003	0.039	0.014	0.003	0.039	0.014	0	0	0	0	0	0
GNSS/DORIS	0.03	0.39	0.14	0	0	0	0	0	0	0	0	0
NavAtt	0.001	0.010	0.004	0	0	0	0	0	0	0	0	0
нктм	0.044	0.631	0.225	0	0	0	0	C	0	0	0	0
TOTAL	20.16	287.43	102.45	131.12	1,869.65	666.43	41.39	590.16	210.36	41.91	605.32	216.04
	GB/Orbit	GB/Day	TB/Year	GB/Orbit	GB/Day	TB/Year	GB/Orbit	GB/Day	TB/Year	GB/Orbit	GB/Day	TB/Year

ESA's Earth Observation data *Respective data policies*

- Two Sentinel-3 satellites are being built now to provide operational data streams required by EC GMES Services.
- S3A will launch in April 2014 (earliest) and S3B ~18 months later.
- SRAL provides both SAR and LRM capability
- The baseline SRAL operational mode mask has been defined based on user requirements
 - LRM over the open ocean
 - SAR mode in the 300km coastal zone and inland seas
- The mask definition was derived to fulfill requirements and minimize the number of operational SRAL Mode switches.

Thank you - any questions?

For more information http://www.esa.int

See Donlon et al (2012) The GMES Sentinel-3 Mission, *Remote Sensing of Environment*, <u>http://dx.doi.org/10.1016/j.rse.2011.07.024</u>

and the Mission Requirements Traceability Document (MRTD) at http://download.esa.int/docs/EarthObservation/GMES_Sentinel-3_MRTD_Iss-1_Rev-0-issued-signed.pdf

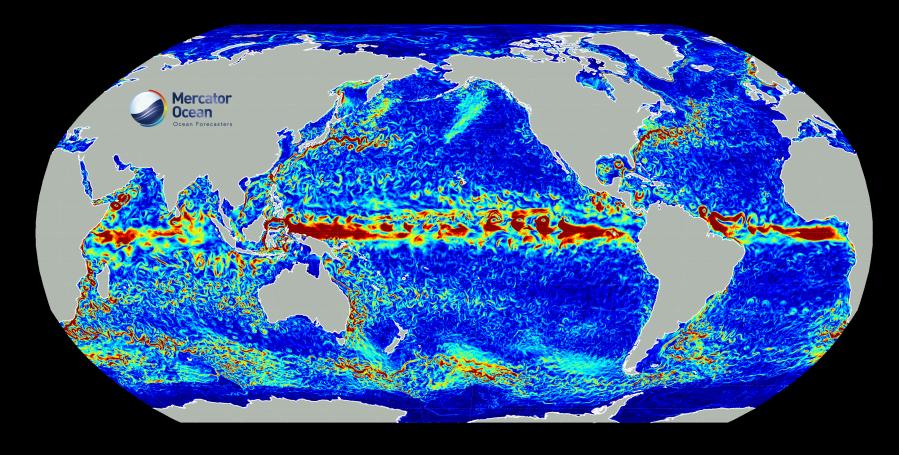
Contact: craig.donlon@esa.int

http://www.sen3symposium.org/

Background

The European Space Agency, together with Eumetsat, is organising the 3rd MERIS/(A)ATSR and OCLI-SLSTR (Sentinel-3) Preparatory Workshop, which will be hosted in ESA-ESRIN, Frascati, Italy, from 15 to 19 October 2012.

Participation

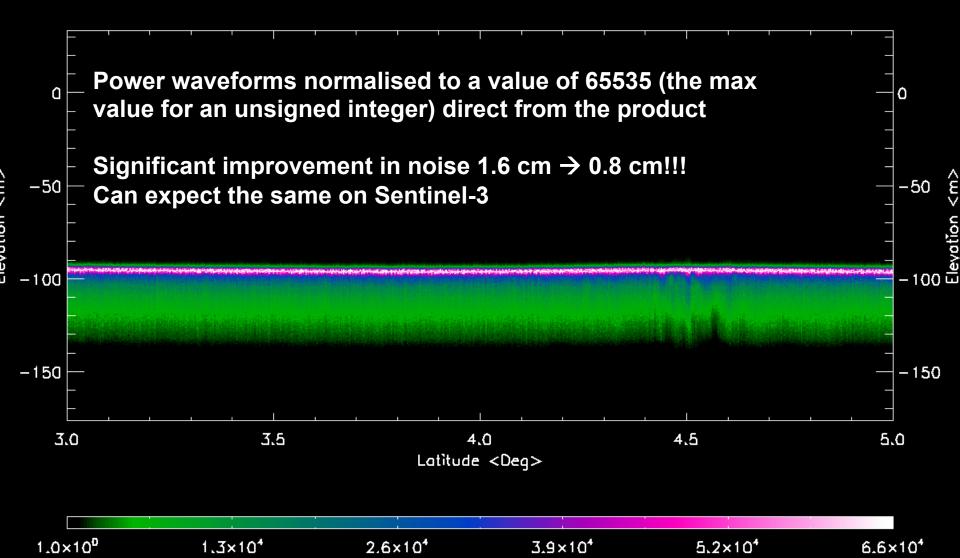

The workshop is open to ESA Principle Investigators and co-investigators, scientists and students using MERIS/(A)ATSR data, future follow-on Sentinel-3 OLCI/SLSTR data users, representatives from GMES services, national, European and international space agencies and value adding industries.

Sentinel-3 Applications

G Mercator Global 1/12 Nov 2011 (6 day forecast) Surface Velocity m/s

Sentinel-3 Optical Revisit time and coverage

Optical missions: Short Revisit times for optical payload, even with 1 single satellite					
		Revisit atRevisit forEquatorlatitude > 30°		Requ.	
Ocean Colour (Sun-glint free, day only)	1 Satellite	< 3.8 days	< 2.8 days		
	2 Satellites	< 1.9 days	< 1.4 days	< 2 days	
Land reflectance (day only)	1 Satellite	< 2.2 days	< 1.8 days	< 2 days	
	2 Satellites	< 1.1 day	< 0.9 day		
SLSTR dual view	1 Satellite	< 1.9 days	< 1.5 days		
(day and night)	2 Satellites	< 0.9 day	< 0.8 day	< 4 days	


- Data delivery timeliness:
- Near-Real Time (< 3 hr) availability of the L2 products
- Slow Time Critical (STC) (1 to 2 days) delivery of higher quality products for assimilation in models (e.g. SSH, SST)

European Space Agency

Altimeter SAR Mode (help form CryoSat in Equatorial Indian Ocean)

SAR Ocean 8th June 2010

S3: Precise Orbit Determination (POD)

8 channel GPS receiver (~3m NRT, 2-3cm on ground)

- Satellite Navigation AOCS (on-board permanent function)
- Datation of scientific telemetry (on-board permanent function)
- Control of SRAL open-loop tracking (on-board commanded function)
- POD (on ground)
- USO frequency monitoring (on-ground)

DORIS Navigation receiver (~1 cm)

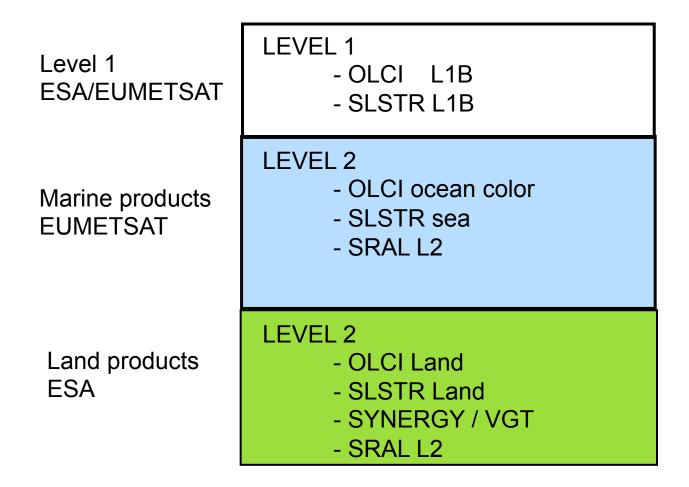
- Provide USO frequency to SRAL (on-board permanent function)
- Control of SRAL open-loop tracking (on-board commanded function)
- POD (on ground)
- USO frequency monitoring (on-ground)

Laser Retro-Reflector (<2 cm)

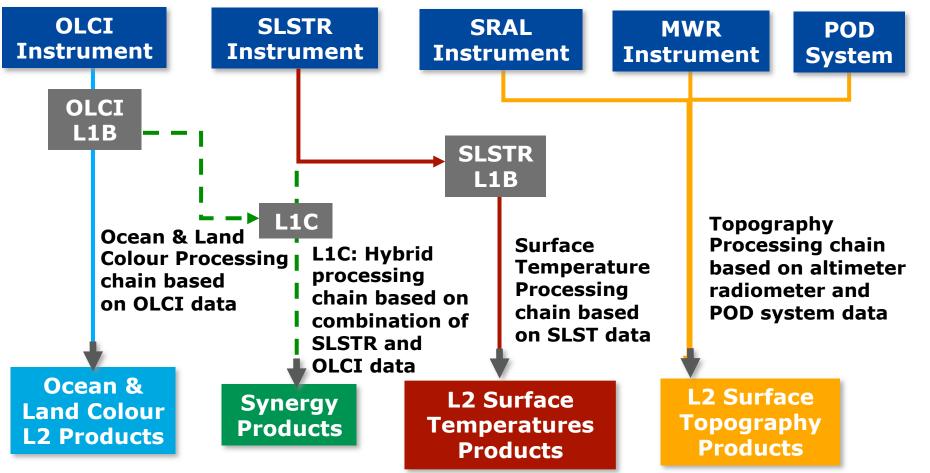
Contribution to POD, validation of POD solution

POD radial accuracy requirements (rms)

- Near Real Time (NRT < 3h): 10 cm (8 cm goal)
- Short Time Critical (STC < 48h): 4 cm (3 cm goal)
- Non Time Critical (NTC < 1 month): 3 cm (2 cm goal)



Sentinel – 3 Core GS User Products list



NB: Validated Level 2 products are swiftly available through commissioning and GIO Phase

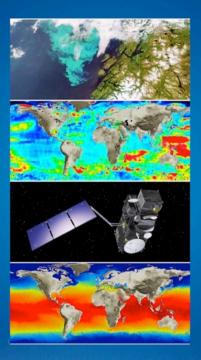
S3: Data processing chains

Product delivery timeliness:

- Near-Real Time (< 3 hr) availability of L2 products (and L1b)
- 1 to 2 days delivery of higher quality topography products for assimilation in models

Sentinel-3 Core PDGS Optical geophysical parameters list

Geophysical Product	Application Domain	Spatial Resolution	Continuity	Measurement Source	
Normalised Water Surface Reflectances		300 m , 1.2 km	Envisat	OLCI	
Chlorophyll Concentration for open ocean waters		300 m , 1.2 km	Envisat	OLCI	
Chlorophyll Concentration for Coastal waters		300 m , 1.2 km	Envisat	OLCI	
Total suspended Matter	**	300 m , 1.2 km	Envisat	OLCI	
Diffuse attenuation coefficient		300 m , 1.2 km	GCM* (e.g. Modis)	OLCI	
Coloured Detrital and Dissolved Material	***	300 m , 1.2 km	Envisat	OLCI	
Photosynthetically active radiation		300 m , 1.2 km	Envisat	OLCI	
Aerosol Optical Depth over water		300 m , 1.2 km	Envisat	OLCI	
Aerosol Angstrom exponent over water		300 m , 1.2 km	Envisat	OLCI	
Integrated Water Vapour Column		300 m , 1.2 km	Envisat	OLCI	
Sea Surface Temperature	***	1 km	Envisat	SLSTR	
Land Surface Temperature		1 km	Envisat	SLSTR	
Fraction of Absorbed PAR		300 m , 1.2 km	Envisat	OLCI	
Terrestrial Chlorophyll Index		300 m , 1.2 km	Envisat	OLCI	
Surface Reflectances over Land		300 m	Envisat	OLCI+SLSTR	
Aerosol Optical Depth over Land		300 m	Envisat	OLCI+SLSTR	
Aerosol Angstrom exponent over Land		300 m	Envisat	OLCI+SLSTR	
Vegetation-like Surface Reflectances 1 day Synthesis		1 km	Vegetation	OLCI+SLSTR	
Vegetation-like Surface Reflectances 10 days Synthesis		1 km	Vegetation	OLCI+SLSTR	
Vegetation Normalised Difference of Vegetation Index		1 km	Vegetation	OLCI+SLSTR	


EUMETSAT S3 Validation Team

esa

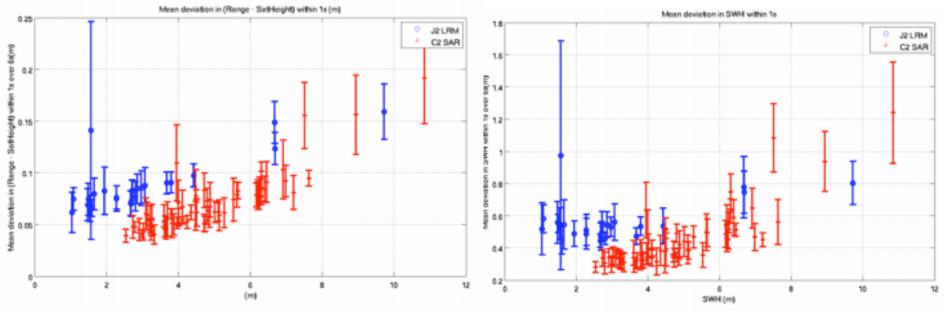
cesa

- A Sentinel-3 Validation team will be convened (S3-VT) in the next few months building on the outcomes of the S3 Cal/Val Planning workshop in March 2012
- The S3-VT will have several thematic sub-groups
- An S3-VT call will be initiated in the next few months
- Collaborative G/S Collaboration agreements will be used to formalise the operational relationship with the Agencies
- Privileged access to operational data over target sites will be an initial focus (ramped up with PDGS and MPC capability)
- Expect a first S3-VT meeting in the last quarter 2012

→ SENTINEL-3 CALIBRATION AND VALIDATION PLANNING MEETING

20-22 March 2012 | ESA-ESRIN | Frascati (Rome), Italy

Sentinel-3: Status summary

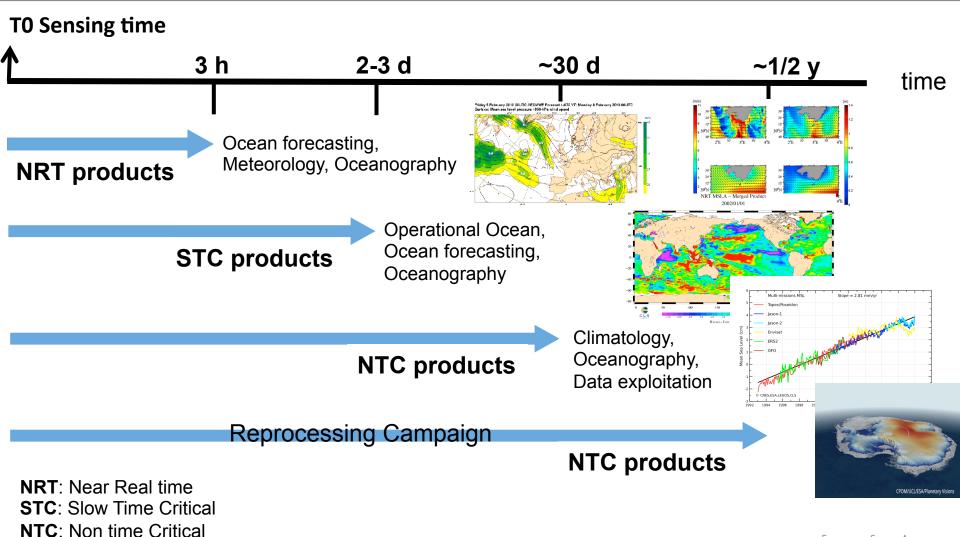

- Sentinel-3 A & B units are under development
- S3 satellite CDR close-out in Nov-2011
- OLCI EM testing partly on-going, FM production started
- Cal/Val and in-orbit verification plans for commissioning phase defined
- ESA coordinating with EUMETSAT the development of the ground segment
- Current approved funding includes:
 - Development of the Sentinel-3A & 3B satellites until their Final Acceptance Review
 - Development of the associated Ground Segment facilities and tools
 - Launch and Commissioning Phase (approx. 5 months) of Sentinel-3A
 - ESA coordinating with EUMETSAT the development of the ground segment
 - S3 Validation team call expected in late 2012 International call
- Launch of the Sentinel-3A currently foreseen for Apr 2014
- Launch of the Sentinel-3B expected ~18 months later
 - EUMETSAT in charge of the operation of the marine Mission
 - ESA will be the operator of the land Mission

SAR vs LRM...

ESA SAMOSA <u>http://www.satoc.eu/projects/samosa/</u>

Retrieval accuracy at 20Hz

Absolute range anomaly vs Hs


Jason-2 LRM (blue) and Cryosat-2 SAR (red)

Data in a small region of the Norwegian Sea between July 2010 and March 2011. The Cryosat-2 SAR data were re-tracked with the SAMOSA1 Extended model.

Sentinel-3 STM: Products Timeliness

European Space Agency