

The Near-Specular Altimeter Waveforms of Small Inland Water Bodies

R. Abileah¹, S. Vignudelli², Andrea Scozzari³

¹ jOmegak, San Carlos CA, USA
² CNR-IBF, Pisa, Italy
³ CNR-ISTI, Pisa, Italy

8th COASTAL ALTIMETRY WORKSHOP

The Near-Specular Altimeter Waveforms of Small Inland Water Bodies

R. Abileah¹, S. Vignudelli², Andrea Scozzari³

¹ jOmegak, San Carlos CA, USA
² CNR-IBF, Pisa, Italy
³ CNR-ISTI, Pisa, Italy

8th COASTAL ALTIMETRY WORKSHOP

Outline

- Some inland waters look like single scatterers (specular)
- Five distinguishing characteristics of specular water targets
- *"Zero*-Doppler" processing and retracking
- Rethinking
 - PRF
 - Inland applications for radar altimeters

8th COASTAL ALTIMETRY WORKSHOP

This investigation based entirely on ENVISAT Individual Echoes (IE)

Worldwide distribution of 1-second IE records (Nov 2007) 1-second record vicinity of Rio Tigre, Peru; Amplitude in dB re noise

C OSU AUNIVERSITY COCSA

8th COASTAL ALTIMETRY WORKSHOP

23-24 October 2014 | Lake Constance | Germany

Peak power superimposed on LANDSAT image

8th COASTAL ALTIMETRY WORKSHOP

23-24 October 2014 | Lake Constance | Germany

Five ways to characterize specular echoes

- Power
- Range waveform
- Along-track lobing
- Coherence
- Doppler

Following slides illustrate these characteristics with crossing No. 3

C ISU AUNIVERSITY of New Hampshire Cesa

Model for complex specular echoes

8th COASTAL ALTIMETRY WORKSHOP

23-24 October 2014 | Lake Constance | Germany

OSU

University of New Hampshire

·eesa

Coherence (2/3)

1-lag auto-coherence

Coherence with respect to model M

8th COASTAL ALTIMETRY WORKSHOP

23-24 October 2014 | Lake Constance | Germany

 $|\gamma|^{2} = \frac{\left|\sum_{n}^{n} C(n)C^{*}(n+1)\right|^{2}}{\sum_{n}^{n} |C(n)|^{2} \sum_{n}^{n} |C(n+1)|^{2}}$

 $\left|\gamma\right|^{2} = \frac{\left|\sum_{n} C(n)M^{*}(n)\right|^{2}}{N\sum_{n} \left|C(n)\right|^{2}}$

Coherence (3/3) (In a moving 21-echo window)

8th COASTAL ALTIMETRY WORKSHOP

23-24 October 2014 | Lake Constance | Germany

C ISU A UNIVERSITY of New Hampshire Cesa

(Doppler after VertVel adjustment)

Doppler = O when river is at nadir (assuming spherical Earth)

C ISU AUNIVERSITY of New Hampshire Cesa

8th COASTAL ALTIMETRY WORKSHOP

Summary

- Five characteristics of specular echoes were shown
 - Power ~70-80 dB re noise
 - Waveform agrees with Garcia et al., 2014
 - Along track lobing partially explained with rectangular plate RCS model
 - Coherence ~1
 - Doppler = 0 when water is at nadir

Next: Combine the above into a retracking algorithm

Doppler Processing - Retracking

$$P_{n,r} = \left| \sum_{n'} C(n-n',r) M^{*}(n') \right|^{2}$$

Phase despin according to model M Cost function (L² metric) minimization

$$\min \sum_{r} \left| P(n, r') - P_n \exp^{-(\tau(r'-r_n))^2/2\sigma_p^2} \right|^2$$

8th COASTAL ALTIMETRY WORKSHOP

Range without coherent averaging

8th COASTAL ALTIMETRY WORKSHOP

23-24 October 2014 | Lake Constance | Germany

Range with coherent summing on a moving 11 echo window

8th COASTAL ALTIMETRY WORKSHOP

23–24 October 2014 | Lake Constance | Germany

C ISU AUNIVERSITY CCCSA

Tonle Sap Floodplain, Cambodia

Track superimposed on DigitalGlobe, January 7,2012 image (Dry season – month of lowest water level)

8th COASTAL ALTIMETRY WORKSHOP

Francois Peron National Park Shark Bay AU

8th COASTAL ALTIMETRY WORKSHOP

Conclusions

- Altimetry over specular surfaces is fundamentally different than conventional ocean altimetry
 - Walsh theorem does not apply
 - Low PRF sufficient (e.g., ENVISAT 2 KHz)
 - Full interleaving desired
 - No 'land interference'
 - *zero-Doppler* replaces *delayed-Doppler*
 - SARvatore stacking with 0-Doppler is conceptually the same

Specular waveform most useful for rivers & floodplains

Further details presented in a companion poster

- Algorithm walkthrough with Rio Tigre
- Post Monsoon Granges River basin

8th COASTAL ALTIMETRY WORKSHOP

Acknowledgments

- ESA provided IE data
- Walter Smith made valuable comments on early draft

8th COASTAL ALTIMETRY WORKSHOP

