

Corsica: a Cal/Val experiment to link offshore and coastal altimetry

→ 8th COASTAL ALTIMETRY WORKSHOP

23-24 October 2014 | Lake Constance | Germany

P. Bonnefond⁽¹⁾, P. Exertier⁽¹⁾, O. Lauráin⁽¹⁾, A. Guillot⁽²⁾, T. Guinle⁽²⁾, N. Picot⁽²⁾, P. Féménias⁽³⁾ ⁽¹⁾OCA/Geoazur, Sophia-Antipolis, France ⁽²⁾CNES, Toulouse, France ⁽³⁾ESA/ESRIN, Frascati, Italy

2 Methods to compute SSH bias:

- Indirect: need to correct from geoid slope and potential ocean dynamics effects between in situ and altimetric measurements

- Direct: in situ instrument needs to be as close as possible from altimetric measurement to avoid any geoid slope and potential ocean dynamics effects

2 independent instruments to compute SSH bias:

- From tide gauge:

- (0) SSH from altimetry needs to be corrected for geoid

- From GPS measurement (GPS aboard a zodiac located under the track, CALENV):

- (1) Using geoid correction to average all the altimetric SSH (noted GPS-mean)

- (2) Computation at the Point of Closest Approach = no need to correct from geoid (noted GPS-PCA)

&

R

8th Coastal Altimetry Workshop, 23-24 October 2014 Constance, Germany

Several maneuvers were needed to reach the nominal ground track, it can be divided into 3 parts:

1- cycle 1 to 4: ground track located in the western part
=> contamination from "Sanguinaires islands"
2- cycle 5 to 7: ground track located in the eastern part
=> contamination from "Capu di muro"
3- from cycle 8: ground track located in the center part
=> no a priori contamination except very close to the coast in the northern part

Impact on the averaged SSH bias: 48 mm

(SSH bias cycles 1-7 compared to cycles 8-17) **Better stability since cycle 8: 20 mm rms** (31 mm rms on the whole set) CALENV

.6 km Capu di Muro

R

Κ

М

Corsica M1 (AJA) Absolute Altimeters Calibration **CALENV** Α km 0 Capu di Muro Ν G Т R Averaged ground track since Α cycle 8 (~500m eastward С from Envisat nominal track) Κ

This plot shows the average SSH bias in function of the distance to the coast:

Even if the land contamination is much smaller than for the Envisat (RA2) altimeter, it is estimated P to be at the level of 20 mm in vicinity of the "Sanguinaires islands" and "Capu di Muro": the theoretical Α AltiKa footprint radius is 4 km, so AltiKa should not been theoretically impacted... However, even by selected data from cycle 8, the structures identified in the above figure remain.

Μ

С Т

- @ Tide gauge location, a clear instrumental bias has been identified from the 2 instruments √-23 mm (after tide gauge replacement in september 2009).
 - ✓-30 mm since the SARAL/AltiKa launch (very stable, only 5 mm rms).
- \Rightarrow This bias remains unsolved:
- AJAC antenna change should not have impact (taken into consideration in the processing)
- Comparisons with the same GPS-zodiac @ Senetosa site do not exhibit any bias

8th Coastal Altimetry Workshop, 23-24 October 2014 Constance, Germany

E

Absolute SSH biases from tide gauge since cycle 8:

- OGDR-T: -103 ±7 mm (9 cycles)
- IGDR-T: -86 ±7 mm (9 cycles)
- **GDR-T:** -83 ±6 mm (7 cycles)

Corsica Absolute Altimeters Calibration

С

CL

U

S

0

Ν

Comparison between tide gauges and GPS-zodiac (IGDR-T):

- -86 ±7 mm (indirect method)
- GPS (mean): GPS (PCA):

Tide gauge:

- -53 ±12 mm (semi-indirect method)
- -60 ±9 mm (direct method)
- \Rightarrow 26 mm difference between tide gauge and GPS (PCA) methods/instruments
 - ✓ 30 mm comes from instrumental differences (comparisons @ tide gauge location): this remains unsolved
 - Other effects: ocean dynamics? A high resolution model is in development o to estimate the impact but it should be small

SWH monitoring using GPS:

Altimeter SWH higher by ~7 cm

Radiometer monitoring using GPS:

Radiometer dryer by ~10mm (mainly land contamination)

Rain impact:

- ✓ No major impact on the SSH bias even during the
 - Cleopatra storm (2013/11/18) but radiometer is wetter by ~50 mm

SARAL ALTIKA - Cycle : 6 - Pass : 130

SARAL/AltiKa ground track shifted by ~2.5 km across-track toward east after the maneuvers performed end of July 2013

=> Use of real ground track prediction to plan the GPS-zodiac deployment

8th Coastal Altimetry Workshop, 23-24 October 2014 Constance, Germany

11

8th Coastal Altimetry Workshop, 23-24 October 2014 Constance, Germany

8th Coastal Altimetry Workshop, 23-24 October 2014 Constance, Germany

Using **GPS data from permanent receiver** (AJAC) and pressure from Ajaccio weather station, the **wet tropospheric correction** is computed and compared to radiometer (no GPS data for cycle 1):

- Cycle 8 clearly departs from the series: heavy rain during the <u>Cleopatra storm</u>

- Without cycle 8, Correlation: 91% (slope = 0.85 / bias at origin = -4 mm)

- Without cycle 8 radiometer exhibits a -10mm bias (dryer) compared to GPS; relatively strong standard deviation (~24 mm) compared to Jason-2 AMR (14 mm) but the number of cycle is small

G

S

Corsica Absolute Altimeters Calibration

G

S

B

0 Y

F

0

R

S W H

AJAC (GPS_Marker)

GPS buoy measurements also provide the sea height variations due to waves. The standard deviation on the GPS buoy sea height residuals (σ_{shr}) is the root square sum of σ_{gps} and σ_{wave} where σ_{wave} is the standard deviation of GPS buoy measurements due to waves and σ_{gps} the internal error of GPS buoy measurements; the GPS buoy internal error was estimated by processing kinematically a quasi-static session and is at the level of 2.6 cm (σ_{ops}).

$$\sigma_{shr}^2 = \sigma_{gps}^2 + \sigma_{wave}^2$$
; so, $\sigma_{wave} = \sqrt{(\sigma_{shr}^2 - \sigma_{gps}^2)^2}$

SWH (or H1/3) is then deduced from the formula below (Stewart, 2008): SWH_{buoy} = $4.\sigma_{wave}$

SWH monitoring using GPS (±5min at overflight time):

Differences (GPS-altimeter): -7 cm SWH bias (12 cm standard deviation) Correlation: 99% (slope = 1.11 / bias at origin = 0 cm)

With such a correlation, the GPS-buoy that was primarily dedicated to measure the absolute sea surface height bias appears to be also an interesting solution to validate SWH from altimeters with enough precision.

