

Applications of Airborne Laser Scanning for Water Surface Altimetry on Lake Balaton

→ 8th COASTAL ALTIMETRY WORKSHOP

23-24 October 2014 | Lake Constance | Germany

András Zlinszky, Zsófia Koma, Robert Weber, Christian **Briese, Norbert Pfeifer**

Zlinszky.andras@okologia.mta.hu

Teaser slide :~)

If someone would offer you

- 500 km² of water surface altimetry data
- 1 meter horizontal resolution
- 2 cm vertical precision
- In 1 measurement day

What would you do with it?

Some frequent questions of coastal

altimetry (a non-experts impression)

- I have a new processing method, how to verify whether it is better than the state of the art?
- We need to understand coastal sea surface height better in high resolution (tides, currents, effect of shore topography)
- How to bridge the gap between single-point reference measurements (buoys, pressure sensors, tide gauges) and satellite altimetry (resolutions at km scale, difficult near shore)
- · We have a number of coastal applications where high spatial resolution without compromising accuracy is essential and regional (non-global) data coverage is OK

Introduction and objectives

How can Airborne Laser Scanning (ALS) be of use in coastal altimetry?

Laser ranging already in use: ICESAT GLAS; Harvest platform static LIDAR (Haines 2003); ALS for Internal Solitary Waves (Magalhaes 2013 GRL)

- Can ALS be used to measure water surface heights?
- What can we observe in ALS measurements?
- To what extent can a shallow and large lake resemble a gravity isosurface?

Strip adjustment for improved georeferencing

Height differences in overlapping ALS strips

Height differences in overlapping ALS strips Before strip adjustment correction

After strip adjustment correction

- Lake Balaton has well-studied seiche and setup effects due to wind, but hardly any wind during studied period
- Dynamic water surface height changes were observed from water gauges with 15 min frequency
- Differences with respect to Local Mean Lake Level (LMLL, over 4 days) was within ± 5 cm in all but 1 station
- During measurement flights, deviations were within ± 4 cm, flight strip height was corrected based on nearest gauge

- ALS-measured ellipsoidal water surface heights closely follow quasi-geoid height
- R²= 0.906 when LIDAR heights resampled to quasi-geoid model resolution

However, in part of the lake, there is considerable difference between the quasi-geoid model and the measured lake surface height!

Graph shows point count for each ellipsoidal water height/quasi-geoid height interval of 1.25 × 1.25 cm. Bilinear interpolation of quasi-geoid height raster to ALS resolution was used for the scatterplot, crosses show ALS heights resampled to quasi-geoid resolution

Summary

- Airborne Laser Scanning of a water surface, combined with strip adjustment, can produce accuracies comparable to satellite altimetry
- Spatial resolution of ALS on the scale of meters, height differences in cm range can be resolved

• The surface of a large lake under favourable weather conditions is relatively close to a gravity potential isosurface.

Airborne LIDAR vs. Satellite altimetry

 No comparison tried yet, but data available and synced with ENVISAT overpasses, so theoretically possible

- Applications: Satellite altimetry cal/val
- Linking tide gauges to satellite altimetry
- Resolving spatial patterns observed by satellite altimetry with higher resolution

Availability of ALS data in Europe (2013)

Conclusions and open questions

- ALS can deliver sufficient accuracies and resolutions for application in coastal altimetry
- Data is available for many European lakes and shores

- Can ALS be used to study dynamic water surface topography?
- How does ALS compare to satellite data?

D-CALM

Zlinszky, A., Timár, G., Weber, R., Székely, B., Briese, C., Ressl, C., and Pfeifer, N.: Observation of a local gravity potential isosurface by airborne LIDAR of Lake Balaton, Hungary, Solid Earth, 5, 355-369, doi:10.5194/se-5-355-2014, 2014.

Estimated error budget

	Estimated error budget, individual height sources in cm				
		Standard deviation	Median	spatial distribution of error	source of value
Airborne LIDAR system	Absolute point vertical accuracy	8	0	systematic point error within each strip	Leica Geosystems (2006)
	Point accuracy after strip adjustment	5	0	mainly random except for strips with georeferencing artefacts	Measured for strip adjustment quality control
Water surface height effects	Waves (in 40% of the strips, no waves in the rest)	9	0	periodic systematic systematic	Estimated from LIDAR quality control
	Total impact of waves on full dataset	4	0		
	Specular reflection (influencing ca. 10% strip area in 30% of the strips surveyed	5	15		
	Total impact of specular reflection on full dataset	0.15	0.45		
	Smile artefact (influencing ca. 20% strip area in 30% of the strips	2.5	-7		ted fro
	Total impact of smile artefact on full dataset	0.15	-0.35		Estimat
	Dynamic water topography	3	0		
	1.7	/ /		\	
	estimated error budget, total effect of height error sources on data [cm]				
	1	Standard deviation	Median		
	Total impact of water as target surface	5	0		
	Total estimated height error budget	7.1	0		
	True total error budget (from measurement data, Fig 2.b)	5.6	-2.2		