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Abstract

The experimental basis and theoretical background of non-Fourier heat conduction

is shortly reviewed from the point of view of non-equilibrium thermodynamics. The per-

formance of different theories is compared in case of heat pulse experiments.
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1. Introduction

There are several extensive reviews of heat conduction beyond Fourier
[1–6]. When non-equilibrium thermodynamics is concerned, usually Ex-
tended Thermodynamics is in the focus of surveys in this subject. In this
short paper heat conduction phenomena is reviewed from a broader per-
spective of non-equilibrium thermodynamics. The performance of different
theories is compared on the example of heat pulse experiments.

There are two preliminary remarks to underline the particular point of
view of this work. The first remark concerns the so called heat conduction
paradox of the infinite speed of signal propagation in Fourier theory. Infi-
nite propagation speeds are frequently mentioned as a disadvantage [7,8]
and this is a main motivation for looking symmetric hyperbolic evolution
equations in general [9]. However

c© 2016 Péter Ván, licensee De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

mailto: van.peter@wigner.mta.hu
http://www.ams.org/mathscinet/msc/msc2010.html
http://creativecommons.org/licenses/by-nc-nd/3.0/


A short non-Fourier review

– the relativistic formulation of heat conduction is a different matter
and parabolic equations may be compatible with relativity [10–12].

– The finite characteristic speeds of hyperbolic equations are deter-
mined by material parameters. Therefore, in principle, in nonrela-
tivistic spacetime they can be larger than the speed of light.

– In case of parabolic equations the speed of real signal propagation
is finite, e.g. because the validity condition of a continuum theory
determines a propagation speed. Moreover, the sensitivity of the
experimental devices is finite, therefore they can measure only finite
speeds [10,13–15].

Our second remark is about the role of non-equilibrium thermodynam-
ics as a frame theory of several physical disciplines. Here the fundamental
assumption is the validity of the second law of thermodynamics in the form
of an entropy balance with nonnegative production. If microscopic or meso-
scopic theories do not want to violate macroscopic second law, they must
suit the requirements derived from the macroscopic phenomenological con-
ditions. This is the extension of the classical universality of the absolute
temperature. The second law is a weak assumption from a physical point of
view but introduces remarkably strict restrictions for the evolution equa-
tions.

According to these arguments it is not unreasonable to look for parabolic
or at least non-hyperbolic extensions of the Fourier equation of heat con-
duction that fulfill basic principles of continuum physics.

In the following section we survey the most important experimental ob-
servations of non-Fourier heat conduction. Then the relevant kinetic and
thermodynamic theories are surveyed from the point of view of their perfor-
mance in modelling ballistic and diffusive heat propagation. Their assump-
tions, properties and modeling capabilities are compared on the example of
heat pulse experiments.

2. Experiments

2.1. Helium II

The first experimental observation of non-Fourier heat conduction was
the measurement of wave like propagation of heat in liquid Helium II by
Peshkov [16]. The experiment was motivated by two-fluid theories of Tisza
[17] and Landau [18]. Landau suggested that wave like propagation is a
property of phonon gas and introduced the terminology ”second sound”.
The works of Cattaneo, Morse-Feshbach and Vernotte [7,19,20] indicated
that the related phenomena may be more general, there is an ”inertia of
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heat”.

2.2. Low temperature solids

Phonon gas theory predicted the existence of second sound in solids.
The key aspects of the observation were the modeling of phonon scattering
by kinetic theory [21–23] and the application of heat pulses. The derivation
of a dissipative extension of the Maxwell-Cattaneo-Vernotte equation from
kinetic theory, the Guyer-Krumhansl equation [22], provided the ”window
condition”, where dissipation is minimal. A careful preparation of crystals
with particular properties resulted in observation of second sound in solid
3He, 4He, NaF and Bi crystals [24–27]. In some experiments second sound
and ballistic propagation – heat pulses propagating with the speed of sound
– were observed together [28]. At lower temperatures ballistic propagation
appears without second sound.

The correct modeling of the observed parallel ballistic, wave like and
diffusive propagation of heat in a uniform theoretical framework is the most
important benchmark of the theories.

2.3. Heterogeneous materials at room temperature

The low temperature heat pulse measurements in dielectric crystals ex-
ploit well understood microscopic mechanisms. At room temperature vari-
ous dissipative processes suppress these effects. However, some experiments
with heterogeneous materials indicated the possibility of non-Fourier heat
conduction at room temperature, too [29,30]. These experiments were not
confirmed, more properly the attempts of exact reproduction of these ex-
periments are contradictory [31–34].

2.4. Small size

Nano heat conduction is a popular research field with interesting new
observations [35]. Non-Fourier effects are in principle enhanced by reducing
the size of the samples and the speed of the phenomena [36–38]. Guyer-
Krumhansl equation is extensively analyzed in this respect [39,40].

2.5. Relativistic experiments

Relativistic fluid effects became experimentally available in quark-gluon
plasma. Experiments in RHIC and LHC confirmed the existence of a dissi-
pative relativistic fluid [41]. In relativistic theories the inertial effects cannot
be neglected, viable theories incorporate wave like heat propagation, due to
stability problems [42–44]. However, in case of ultrarelativistic speeds the
flow is energy dominated, therefore it is reasonable to use Landau-Lifshitz
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flow-frame, where propagation of energy defines the flow. This choice elimi-
nates the possibility of heat conduction and only viscous dissipation is pos-
sible. According to thermodynamic arguments, the choice of flow-frames is
not arbitrary and in case of lower speeds heat conduction may be separated
from viscous dissipation [45].

3. Kinetic theory

As it was already mentioned, kinetic theory played an important pre-
dictive role in understanding and designing proper experiments with the
help of identified microscopic heat propagation mechanisms. In particular
the relation of pure kinetic and continuum approaches is important in this
respect. Kinetic theory introduces a hierarchical structure of macroscopic
field quantities with coupled balance form evolution equations. In this bal-
ance structure current density at a given level is a source density at the next
level. The tensorial order of the n-th variable is n. For phonons with the
Callaway collision integral one may obtain the following system of equations
in one spatial dimension ( [9] p. 349):

(1) ∂tun +
n2

4n2 − 1
c∂xun−1 + c∂xun+1 =


0 n = 0,
− 1
τR
u1 n = 1,

−
(

1
τR

+ 1
τN

)
un n ≥ 2.

Here ∂t and ∂x are the time and space derivatives, un is related to
the nth momentum of the one particle probability distribution function by
constant multipliers, τR and τN are relaxation times, c is the Debye speed.
A truncated hierarchy at the third moment, un = 0 of n ≥ 3, results in the
following set of equations:

∂tu0 + c∂xu1 = 0,(2)

∂tu1 +
1

3
c∂xu0 + c∂xu2 = − 1

τR
u1,(3)

∂tu2 +
4

15
c∂xu1 = −

(
1

τR
+

1

τN

)
u2.(4)

The macroscopic fields are introduced by the following definitions: the
energy density e = ~cu0, heat flux q = ~c2u1 and the moment of the
heat flux Q = ~cu2. One may apply the (approximate) caloric equation of
state e = ρĉT with constant density ρ and specific heat ĉ. Moreover, it is
convenient to redefine the coefficients by introducing the q-relaxation time
τq = τR, the Q-relaxation time τQ = τRτN

τR+τN
, the Fourier heat conduction
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coefficient λ = ρĉτRc
2/3 and two additional phenomenological coefficients

k21 = τRc
2 and k12 = 4τ/15. Then the previous equations may be written

as:

∂te+ ∂xq = 0,(5)

τq∂tq + λ∂xT + κ21∂xQ = −q,(6)

τQ∂tQ+ κ12∂xq = −Q.(7)

If τQ = 0, one obtains the Guyer-Krumhansl equation eliminating Q
from (6)-(7). If the termκ21 is negligible in Eq. (6) then the Maxwell-
Cattaneo-Vernotte equation is obtained.

In Rational Extended Thermodynamics (RET) the coefficients of the
above set of field equations are calculated exactly as it was shown above.
Remarkably one needs only three parameters here, the Debye speed and
the R and N process related relaxation times [6,9,46].

Extended Irreversible Thermodynamics (EIT) is a related but different
approach, where the structure of the equations is important, but the values
of the coefficients are considered mostly undetermined, therefore e.g. in (5)-
(7) the number of parameters is higher [8,46,47]. In RET the microstructure
is unavoidable in EIT the microstructure is flexible. In RET the coefficients
are to be calculated from a microscopic model, in EIT some coefficients
are to be measured. RET is a local theory by construction, EIT may be
weakly nonlocal. RET is strictly compatible with kinetic theory, EIT is
weakly compatible with kinetic theory. In EIT the derivation of the Guyer-
Krumhansl equation either refers to the momentum hierarchy [47] or weakly
nonlocal extensions in a pure non-equilibrium thermodynamic framework
[40,48].

The experimental results of heat conduction of mixed ballistic-wavy-
diffusive propagation can be modeled in this framework. However, with the
restriction of using only 3 parameters RET requires about 30 (!) moments in
order to obtain correct propagation speeds both for ballistic heat propaga-
tion and second sound [9,49]. In EIT, considering some coefficients as phe-
nomenological parameters, in principle it is possible to incorporate correct
propagation speeds for the second sound and also for the ballistic phonons
with the above set of equations. However, in this case one cannot stop at the
level of the Guyer-Krumhansl equation, and, most importantly, more than
3 parameters are required. A hierarchical phenomenological background
theory is necessary to justify these assumptions.
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4. Non-equilibrium thermodynamics

Irreversible thermodynamics as field theory was established by Eckart,
with the assumption of local equilibrium [50–53]. Maxwell-Cattaneo-
Vernotte type extensions require a deviation from local equilibrium. In
this paper non-equilibrium thermodynamics is a collective nomination of
thermodynamic theories based on the direct exploitation of the entropy in-
equality with or without the requirement of local equilibrium. Classical Ir-
reversible Thermodynamics, Extended Thermodynamics, Thermodynamics
with Internal Variables are special theories of non-equilibrium thermody-
namics [46].

The first basic assumption extending non-equilibrium thermodynam-
ics beyond local equilibrium is that the thermodynamic fluxes of Classical
Irreversible Thermodynamics are state variables. Then Maxwell-Cattaneo-
Vernotte equation is a consequence of the second law by thermodynamical
flux-force linearization. This idea was first proposed by Müller [54]. One
of Müller’s argument was the compatibility with kinetic theory. An other
independent way is based on the seminal treatment of discrete systems by
Machlup and Onsager, who introduced kinetic energy of thermodynamic
state variables [55]. The continuum generalization of Gyarmati is based
on variational considerations and therefore used thermodynamic fluxes as
independent variables instead of time derivatives [56]. Later on this idea
was further generalized by arbitrary internal variables for the same pur-
pose [57,58].

As it was mentioned previously, thermodynamic fluxes as state vari-
ables may lead to the Maxwell-Cattaneo-Vernotte equation, but to obtain
the Guyer-Krumhansl equation requires further assumptions. The modifi-
cation of the entropy flux is a straightforward idea in this respect. The idea,
that the entropy current density is not always the heat flux divided by the
temperature is natural in mixtures and also in Extended Thermodynam-
ics [59], but may be natural in other generalizations, too [60–62]. To obtain
the non-equilibrium thermodynamic counterpart of (6)-(7) it is reasonable
to assume that the additional fields are the heat flux vector q and a second
order tensorial internal variable Q and use the Nýıri form generalization of
the entropy flux [63,64].

In this paper we restrict ourselves to rigid heat conductors in one di-
mension, therefore the time derivatives are partial and the space derivatives
are one directional. For a more complete treatment see [65]. Our starting
point is the balance of entropy, which results in nonnegative production
when constrained by the balance of internal energy (5):

(8) ∂ts+ ∂xJ ≥ 0.
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Here s is the entropy density and J is the entropy current density.
Deviation from local equilibrium will be characterized by two basic con-

stitutive hypotheses:

– We assume that the entropy density depends quadratically on the
additional fields q and Q:

(9) s(e, q,Q) = seq(e)−
m1

2
q2 − m2

2
Q2,

where m1 and m2 are constant, nonnegative material coefficients.
The derivative of the local equilibrium part of the entropy function
seq by the internal energy is the reciprocal temperature:

dseq
de

=
1

T
.

The quadratic form is introduced for the sake of simplicity and may
be considered as a first approximation. The coefficients m1 and m2

are nonnegative because of the concavity of the entropy function,
that is, thermodynamic stability.

– We assume that the entropy flux is zero if q = 0 and Q = 0. There-
fore it is convenient to writte it in the following form:

(10) J = bq +BQ.

Here b is originated from a second order tensorial constitutive func-
tion and B from a third order one. They are the current multipli-
ers [63].

Now the basic fields are T, q and Q, the constitutive functions are b and
B. The entropy production can be calculated accordingly:

∂ts+ ∂xJ = − 1

T
∂xq −m1q∂tq −m2Q∂tQ+ b∂xq +

q∂xb+B∂xQ+Q∂xB

=

(
b− 1

T

)
q + (∂xb−m1∂tq) q − (∂xB −m2∂tQ)Q+B∂xQ ≥ 0.(11)

In the last row the first and third terms are products of second order tensors,
the second term is a product of vectors and the last term is of third order
ones. It is not apparent in our one dimensional simple notation. The time
derivatives of the state variables q and Q represent their evolution equa-
tions, which are considered as constitutive quantities together with the cur-
rent multipliers b and B. Therefore, one can identify four thermodynamic
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forces and currents in the above expression and assume linear relationship
between them in order to obtain the solution of the entropy inequality. In
case of isotropic materials only the second order tensors can show cross
effects, the vectorial and third order tensorial terms are independent.

The linear relations between the thermodynamic fluxes and forces result
in the following transport equations:

m1∂tq − ∂xb = −l1q,(12)

m2∂tQ− ∂xB = −k1Q+ k12∂xq,(13)

b− 1

T
= −k21Q+ k2∂xq,(14)

B = n∂xQ.(15)

The l1, k1, k2, n coefficients are nonnegative and also K = k1k2−k12k21 ≥ 0,
because of the entropy inequality (11). The constitutive equations (12)-
(15) together with the energy balance (5) and the caloric equation of state
e = ρĉT form a solvable set of equations. Moreover, in case of constant
coefficients one can easily eliminate the current multipliers by substituting
them from (14)-(15) into (12)-(13) and obtain:

m1∂tq + l1q − k2∂2xq = ∂x
1

T
− k21∂xQ,(16)

m2∂tQ+ k1Q− n∂2xQ = k12∂xq.(17)

Here ∂2x denotes the second partial derivative by x. (16)-(17) is identical
to (6)-(7) of the previous section introducing τq = m1/l1, λ = (l1T

2)−1,
κ21 = k21/l1, τQ = m2/k1 and κ12 = k12/k1. If we assume that the coeffi-
cients k2 and n are zero we obtain exactly (6)-(7). For the correct sign of
the coefficients there one cannot assume reciprocity here. Guyer-Krumhansl
equation is a special case when n = 0, m2 = 0 and Maxwell-Cattaneo-
Vernotte is obtained if k2 = 0 and either k12 = 0 of k21 = 0 in addition.
Several other heat conduction equations are obtained in this framework.
Jeffreys type is included if n = 0, m1 = 0, k2 = 0 and either k12 = 0
of k21 = 0. A Cahn-Hilliard type equation is derived if n = 0, m1 = 0
and m2 = 0 [66]. With suitable constitutive assumptions several nonlin-
ear equations fit in this general framework like the thermomass transport
equation [67], the nonlinear Maxwell-Cattaneo-Vernotte equation derived
in [39] and also the nonlinear Guyer-Krumhansl equation derived in [68].

It is remarkable that the Green-Naghdi model III and II cannot be
obtained here, however it is a valid special case if a general vectorial internal
variable is introduced instead of the heat flux [69]).
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5. Rational thermomechanics and some other theories

The common property of this group is the lack of compatibility with
kinetic theory. The rational approaches are rigorous from mathematical
point of view, require Noll type material frame indifference and insist that
entropy flux is heat flux divided by temperature.

5.1. Second viscosity

Both ballistic propagation and second sound can be reasonably modeled
with the help of second viscosity [70–72]. Second viscosity may have an
imaginary part and its origin looks like essentially a kind of internal variable
theory developed on the basis of thermostatics before the advent of non-
equilibrium thermodynamics. The idea and the method is originally from
Mandelstam and Leontovitch [73] and is well described in [74].

5.2. Jeffreys type equation

Jeffreys type equation was first suggested by Joseph and Preziosi [1]
assuming a delayed transport in heat conduction. Later on this constitu-
tive equation become very popular, because it improves the properties of
Maxwell-Cattaneo-Vernotte equation from many point of view and because
it can be obtained from simple (but sometimes unacceptable) assump-
tions [38,75,76]. For one dimensional heat pulse experiments the Jeffreys
type equation is identical with the Guyer-Krumhansl equation.

5.3. Green-Naghdi equations

Green and Naghdi derived a particular constitutive equation for the heat
flux. They have introduced an internal variable, called thermal displacement
rate, with the particular interpretation being the time derivative of the
temperature [77]. The corresponding equations coupled to the momentum
balance are modeling well ballistic propagation and second sound [78–81].
A particular case of the model of Green and Naghdi is the existence of heat
conduction without dissipation.

5.4. Semi-empirical temperature of Cimmelli and Kośınski

The semi-empirical temperature is a scalar internal variable, in the
framework of a weakly nonlocal theory [5,82,83]. Coupled to mechanics it
reproduces ballistic-wave like-diffusive propagation of heat [84]. However, in
this theory the constitutive theory (both the evolution of internal variable
and the heat flux – temperature relation) is postulated directly.

158



A short non-Fourier review

5.5. Rational thermomechanics

There are many attempts to incorporate Maxwell-Cattaneo-Vernotte
type heat conduction in the framework of rational thermomechanics [1,2,4].
It is remarkable that a nonlinear version of Maxwell-Cattaneo-Vernotte
equation seems to fail the test of proper modeling the experiment, because of
the lack of a certain type of dissipation, characteristic in Guyer-Krumhansl
or Jeffreys type models [49,85]. The theory could not meet the challenge
obtaining compatibility with kinetic theory without the modification of the
classical entropy current (or the kinetic theory).

5.6. Other approaches

There are many more methods of extending thermodynamics beyond lo-
cal equilibrium. The test of these ideas usually starts with heat conduction.
One may introduce the time derivatives of the state variables as additional
state variables. However, time derivatives are frame dependent, they are
many of them and it is not clear which one is to be used. Rigorous exploita-
tion methods of the entropy principle do not help in this respect [86,87].
Recently Serdyukov applied this idea for heat conduction, too [88,89]. The
ballistic-diffusive equation of Chen is a particular mixture of phenomeno-
logical and kinetic considerations [90,91], the thermomass theory of Guo
and Hou seemingly rediscovers the role of inertia in heat conduction [67].

An important class of heat conduction equations is nonlinear by con-
struction [39,67,68,85]. Possible experimental verifications require their reli-
able numerical solution. Analytical results are crucial in this respect [92,93].

These approaches are partially consistent with either kinetic theory or
continuum mechanics. They may use or avoid the usage of rigorous en-
tropy principle exploitation. Some of them, like the delayed differential
equations of dual phase lag theory [94] failed to fulfill important thermo-
dynamic expectations [95,96]. None of them were tested with experiments
of ballistic-wave like-diffusive propagation.

6. Discussion

In his mind provoking article Muschik writes that the reason of so many
schools of thermodynamics is, that one may go beyond local equilibrium
with different ways. The extension to nonlocal-nonequilibrium is not unique
[97]. In this short survey we argued that the different extensions are not
equivalent regarding their performance of modeling experimental results,
neither regarding their theoretical consistency and scope.

The challenge of non-Fourier heat conduction is to develop a theory that
is compatible both with kinetic theory and mechanical principles (includ-
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ing material frame indifference), passes the tests of existing experiments
on parallel ballistic, wave like and diffusive propagation of heat and, there-
fore and most importantly, predictive in foretelling new observations and
phenomena.

This pointed review is far from being complete and the author apologizes
of not mentioning relevant works. This is partially because of his special
point of view, beyond his limited knowledge.
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REFERENCES

1. D. D. Joseph and L. Preziosi, Heat waves, Reviews of Modern Physics,
vol. 61, pp. 41–73, 1989.

2. D. D. Joseph and L. Preziosi, Addendum to the paper ”heat waves”,
Reviews of Modern Physics, vol. 62, pp. 375–391, 1990.

3. D. S. Chandrasekharaiah, Hyperbolic thermoelasticity: A review of re-
cent literature, Applied Mechanics Reviews, vol. 51, no. 12, pp. 705–729,
1998.

4. B. Straughan, Heat waves. New York: Springer, 2011.

5. V. A. Cimmelli, Different thermodynamic theories and different heat
conduction laws, Journal of Non-Equilibrium Thermodynamics, vol. 34,
no. 4, pp. 299–332, 2009.

6. G. Lebon, Heat conduction at micro and nanoscales: A review through
the prism of extended irreversible thermodynamics, Journal of Non-
Equilibrium Thermodynamics, vol. 39, no. 1, pp. 35–59, 2014.

7. C. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ.
Modena, vol. 3, pp. 83–101, 1948.

8. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended irreversible thermo-
dynamics. Springer, 1996.

9. I. Müller and T. Ruggeri, Rational extended thermodynamics, vol. 37.
Springer Science & Business Media, 2013.
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45. P. Ván and T. S. Biró, First order and generic stable relativistic dissi-
pative hydrodynamics, Physics Letters B, vol. 709, no. 1-2, pp. 106–110,
2012.

46. V. A. Cimmelli, D. Jou, T. Ruggeri, and P. Ván, Entropy principle and
recent results in non-equilibrium theories, Entropy, vol. 16, pp. 1756–
1807, 2014.

47. G. Lebon, D. Jou, and J. Casas-Vázquez, Understanding non-
equilibrium thermodynamics. Berlin: Springer, 2008.

48. G. Lebon, D. Jou, J. Casas-Vázquez, and W. Muschik, Weakly nonlocal
and nonlinear heat transport in rigid solids, Journal of Non-Equilibrium
Thermodynamics, vol. 23, pp. 176–191, 1998.

49. W. Dreyer and H. Struchtrup, Heat pulse experiments revisited, Con-
tinuum Mechanics and Thermodynamics, vol. 5, pp. 3–50, 1993.

50. C. Eckart, The thermodynamics of irreversible processes, I. The simple
fluid, Physical Review, vol. 58, pp. 267–269, 1940.

51. C. Eckart, The thermodynamics of irreversible processes, II. Fluid mix-
tures, Physical Review, vol. 58, pp. 269–275, 1940.

52. C. Eckart, The thermodynamics of irreversible processes, III. Relativis-
tic theory of the simple fluid, Physical Review, vol. 58, pp. 919–924,
1940.

53. C. Eckart, The thermodynamics of irreversible processes. IV. The theory
of elasticity and anelasticity, Physical Review, vol. 73, no. 4, pp. 373–
382, 1948.

54. I. Müller, Zur paradoxon der Wärmeleitungstheorie, Zeitschrift für
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