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High performance piezoelectrics are lead-based solid-solutions that exhibit a so-called 

morphotropic phase boundary (MPB), which separates two competing phases as a function 

of chemical composition; as a consequence, an intermediate low-symmetry phase with a 

strong piezoelectric effect arises. In search for environmentally sustainable lead-free 

alternatives that exhibit analogous characteristics, we use a network of competing domains 

to create similar conditions across thermal inter-ferroelectric transitions in simple, lead-free 

ferroelectrics such as BaTiO3 and KNbO3. Here, we report the experimental observation of 

thermotropic phase boundaries (TPBs) in these classic ferroelectrics, through direct imaging 

of low-symmetry intermediate phases that exhibit large enhancements in the existing 

nonlinear optical and piezoelectric property coefficients. Furthermore, the symmetry 
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lowering in these phases allows for new property coefficients that exceed all the existing 

coefficients in both parent phases. Discovering the thermotropic nature of thermal phase 

transitions in simple ferroelectrics thus presents unique opportunities for the design of ‘green’ 

high-performance materials.  
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High-performance piezoelectric materials are pivotal to modern day ‘smart’ technologies that 

integrate ultra-sensitive sensing and high-precision actuation functions in biomedical devices, 

telecommunications and scientific research1,2. Typically, such smart materials are complex lead-

based solid solutions that exhibit a so-called morphotropic phase boundary (MPB); a 

compositional region separating two competing ferroelectric phases, where an intermediate phase 

with strongly enhanced functional properties arises3-6. To develop viable alternatives to lead-based 

piezoelectrics, systems that mimic the principal characteristics5-8 of morphotropic phase 

boundaries (MPBs) have been pursued by means of composition9,10, pressure11, epitaxial strain12,13, 

multilayering14,15 and domain microstructure16-18.  In classic lead-free materials such as BaTiO3 

and KNbO3 for example, creating frustrated ferroelectric domains by external fields has been 

shown to substantially enhance piezoelectric response16,17. However, the exact mechanism of this 

phenomenon has been the subject of extensive debate in recent years19-27; the possible existence of 

a monoclinic phase in BaTiO3 single crystals has been reported25,28-29, but it has never been directly 

imaged on a microscopic level. As a result, the important question of whether the observed phase 

is of intrinsic monoclinic symmetry, or in fact corresponds to a symmetry-adaptive superlattice of 

nano-domains21,30-37 (such as those observed in MPBs) remains open. Here we use the mutual 

interactions inherent to a network of competing domains to create MPB-like conditions across 

thermal ferroelectric transitions in simple, lead-free ferroelectrics. We provide direct experimental 

evidence of the resulting intermediate phases of intrinsic monoclinic symmetry using several 

complementary imaging techniques, while simultaneously mapping their enhanced nonlinear 

optical and piezoelectric properties on the nanoscale. Thus, we reveal the thermotropic character 

of thermal ferroelectric phase transitions in classic ferroelectrics. The rationale for this terminology 

is two-fold. On the one hand it draws the analogy to MPBs while emphasizing that here we 
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consider thermal (‘thermo-’) instead of compositional (‘morpho-’) phase boundaries. On the other 

hand it underlines the similarity to the physics of thermotropic liquid crystals, which exhibit 

different types of liquid-like orientational order (‘-tropos’)  in a certain temperature range38. In the 

following, we focus on the well-known BaTiO3 and KNbO3 as representative examples of simple, 

lead-free ferroelectrics.  

 

Results 

Thermotropic phase boundaries. In the bulk, single domain case, both these perovskite systems 

undergo a series of first-order ferroelectric transitions upon heating, sequentially adopting 

rhombohedral (R), orthorhombic (O) and tetragonal (T) ferroelectric phases before reverting to the 

cubic parent phase (C). In multi-domain configurations however, phase-field simulations predict 

the emergence of an intermediate phase if sufficient competing mechanical and dipolar interactions 

between domains exist. Figure 1a shows the temporal evolution of the phase fractions in an 

orthogonally domain-twinned BaTiO3 system as it is heated through its O-T phase boundary, 

calculated using phase-field simulations (see Materials and Methods). As can be seen, these 

simulations predict the emergence of a kinetically intermediate phase of monoclinic (MC) 

symmetry39 which is defined by a spontaneous ferroelectric polarization (Ps) that significantly 

deviates (>5) from the corresponding T and O directions. Moreover, as shown in Figure 1b, this 

MC phase is thermodynamically stabilized in significant volume fractions (20-60%) over a wide 

temperature range of over 100 K. This intriguing reduction of the polar anisotropy40 is illustrated 

by the domain structure in Figure 1c, which reveals a persistent network of bulk MC regions at 

room temperature (298 K). The thermotropic character of the ferroelectric phase boundary 

originates from the in-plane shear stress ( 23 ) and transverse electric field (E2
) components that 
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are inherently generated by the orthogonal in-plane domain twins (see Supplementary Discussion 

1 and Supplementary Figure 1). 

To experimentally confirm the thermotropic nature of ferroelectric phase boundaries, we 

investigate the local symmetry, microscopic structure and properties of these intermediate phases 

through a variety of complementary nanoscale imaging techniques.  

 

Symmetry and nonlinear optical properties. Considering that both ferroelectricity and 

piezoelectricity only occur in materials that lack a structural center of inversion, we employ 

nonlinear optical Second Harmonic Generation (SHG) — a second order process that requires the 

same lack of inversion symmetry41,42 — to image and assess the local symmetry in these systems. 

Figure 2 compares scanning SHG microscopy images of a BaTiO3 single crystal in selected areas 

with and without orthogonal domain twinning. The domain structure in Figure 2a, comprised of 

only a single set of parallel 90 twin walls, exhibits the typical bright-dark SHG contrast 

corresponding to in-plane tetragonal a and b domains. As confirmed using spatially resolved SHG 

polarimetry, their SHG signature seems to adhere perfectly to the nominal tetragonal symmetry of 

point group 4mm (Supplementary Figure 2). In contrast, the competition between the two sets of 

orthogonal twin domains in Figure 2b induces the anticipated intermediate MC phase, which is 

characterized by a ‘staircase’ pattern and meandering ripples of strongly enhanced SHG intensity. 

Local symmetry analysis through SHG polarimetry, Figure 2c, shows that the point group 

symmetry in this phase is indeed monoclinic (point group m), as expected for an MC phase. 

Independently, this is also confirmed using complementary spatially resolved micro-Raman 

microscopy (see Supplementary Figure 3). Since the only symmetry element in this point group—

the m mirror plane—is parallel to the surface of the crystal, the ferroelectric polarization in the MC 
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phase is symmetry-allowed to continuously rotate in-plane3,4,7,11,43. In this sense, the bridging MC 

phase can be regarded as an analogue of a ‘viscous’ two-dimensional polar liquid, with the 

rotational degree of freedom illustrated by meandering polarization directions. 

 This same degree of freedom is responsible for the observed enhancement of the nonlinear 

optical coefficients. Depending on the experimental configuration, the SHG scans nominally probe 

the 32d  and 33d  components of the nonlinear optical tensor of tetragonal BaTiO3 (see Fig. 2d). By 

comparison, in the MC phase, the SHG intensity is found to reach relative values of up to 1,760%, 

and effective coefficient enhancements of up to 4.2 and 4.4 are seen for 32d  (to ≈ 89 pm V-1) 

and 33d  (to ≈ 32 pm V-1), respectively (see Materials and Methods). Moreover, as illustrated in 

Figure 2, the symmetry lowering to point group m results in additional large nonzero nonlinear 

optical coefficients (Fig. 2d), which are neither expected nor observed in tetragonal domains: 22d  

≈ 18 pm V-1  and 23d  ≈ 22 pm V-1. 

We have reproducibly observed the MC phase at room temperature in various BaTiO3 single 

crystals from different sources, both before and after annealing at 1150 K and before and after 

thermal cycling through the O-T phase boundary. Empirically, it is readily observed whenever 

orthogonally twinned domain structures are present. Furthermore, an analogous monoclinic phase 

exhibiting similar SHG enhancements is observed in strongly twinned KNbO3 single crystals at 

room temperature (Supplementary Figure 4), which underscores the generality of the concept of 

thermotropic phase boundaries in ferroelectrics. In contrast to tetragonal BaTiO3, KNbO3 is 

nominally orthorhombic at ambient temperatures, where it is situated closest to the R-O phase 

boundary.  

 

Structure. There are prior reports of an intermediate MC phase near the thermal O-T phase 



 

7 

 

boundary of BaTiO3. Cao et al. reported on a MC phase at 265 K, discovered after cooling BaTiO3 

single crystals through the T-O transition under an applied electric field28. Recently, Eisenschmidt 

et al. observed monoclinic MC-type short range order while slowly cooling BaTiO3 single crystals 

through the same transition29. However, both these works employed conventional x-ray diffraction 

techniques, wherein many ferroelectric domains are probed simultaneously due to the large size of 

the x-ray beam. As a result, neither work could experimentally determine whether the observed 

low-symmetry stems from an intrinsically monoclinic structure, or from a domain-averaged 

adaptive superlattice consisting of nanotwinned parent-phase domains21,30-37 (Supplementary 

Discussion 2.1). Here we experimentally demonstrate the natural occurrence of a bulk, long-range 

ordered MC phase in unpoled BaTiO3 at room temperature; at considerable distance from the 

thermal O-T phase boundary. Moreover, by employing a state-of-the-art focused beam diffraction 

technique, Scanning X-ray Diffraction Microscopy (nano-SXDM44,45), we show below that the 

observed MC phase is an intrinsically monoclinic structure, as opposed to a consequence of 

hypothetical nanoscale domain twinning. 

Nanoscale SXDM measurements reveal that the (220) diffraction corresponding to the MC 

structure appears as a newly observed peak close to the (220) diffraction peak of tetragonal b 

domains (Fig. 3a-c). Due to the intentional shadowing of the focused beam center in SXDM, each 

Bragg diffraction peak typically appears as two vertically separated lobes, whose angular center 

of mass (COM) reflects the corresponding (  ,2 ) coordinate (Supplementary Figure 5)44,45. The 

extended area diffraction image in Figure 3a demonstrates that the observed MC diffraction cannot 

be due to conventional diffraction from coarse tetragonal or orthorhombic domain twins, as any 

such reflection would fall well outside of the experimental zoom-in window used throughout our 

imaging experiments (see also Supplementary Discussion 2.2). Moreover, a possible nanotwinning 
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origin can be ruled out as unphysical, as the position of the MC diffraction peak violates both the 

reciprocal space lever rule35-37 (Figure 3d and Supplementary Figures 6-8) as well as the general 

invariance conditions31-33 of any potential adaptive phase. In addition, both theory46,47 and 

experiment48-53 demonstrate that the crucial requirement for adaptive phase formation, an 

extremely low domain wall energy31,32,54, does not apply in BaTiO3 at 298 K (Supplementary 

Figures 9-10). For an in-depth discussion on the exclusion of nanotwinned adaptive phases, see 

Supplementary Discussion 2.3.  

Instead, the (220) MC diffraction is consistent with a simple shear distortion of the tetragonal 

unit cell that reduces the symmetry to point group m (inset Fig. 3d). An SXDM rocking curve 

analysis determines the typical shear angle M  to be 0.018, clearly identifying the MC structure 

as an intermediate phase that bridges the purely tetragonal ( T  0) and orthorhombic ( O  

0.075) structures29 (see Supplementary Discussion 3 and Supplementary Figures 11-12). 

Comparing a spatial map of the integrated intensity of the MC peak (Fig. 3e) to the complementary 

scanning SHG image in the same area (Fig. 3f) clearly shows their close correspondence, 

consolidating the monoclinic origin of the MC diffraction. Furthermore, the micron-scale spatial 

variation of its 2  position (shown in Figure 3g and Supplementary Figure 12c) indicates micron-

scale continuous changes of the magnitude and sign of the shear angle δM within the MC staircase 

pattern, most likely related to the meandering bright-dark SHG ripples observed in Figure 2. We 

note that M  does not directly correspond to the rotation of the ferroelectric polarization, which 

can lie anywhere within the sheared mirror plane. 

 

Piezoelectric properties. Since the piezoelectric properties near the thermotropic phase 

boundaries are of specific interest, we measure the local piezoresponse of the MC phase in 
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orthogonally twinned BaTiO3 (Fig. 4)55. As anticipated, both the amplitude (Fig. 4a) and phase 

(Fig. 4b) of the piezoresponse in the MC phase are clearly distinct from those in tetragonal BaTiO3, 

which is evident from a comparison with the corresponding scanning SHG image (Fig. 4c). Due 

to the in-plane domain geometry, the measured vertical piezoresponse corresponds to the voltage-

induced in-plane displacement of the sample surface (Supplementary Discussion 4). As illustrated 

by the inset in Fig 4a, a large piezoelectric displacement is induced in the a-domains of the MC 

phase, which is entirely absent in the adjacent tetragonal a-domains. This is in excellent agreement 

with combined phase-field and finite element modeling, which show that this effective 

displacement arises from a combination of newly induced 16d   and 22d   coefficients 

(Supplementary Figure 13). As shown in Figure 4d, all the piezoelectric ijd   coefficients are 

strongly dependent on the ferroelectric polarization angle,   . For example, by combining 

experimental and simulation data, we estimate a monoclinic polarization angle of   ≈ 17 in 

position 1 of the experimentally observed MC phase, with corresponding values of 16d  ≈ 69 pm V-

1 and 22d  ≈ 500 pm V-1 (Supplementary Figure 13d). For optimum polarization angles in the MC 

phase (    ≈ 25), the piezoelectric 22d  coefficient is predicted to peak at ≈ 840 pm V-1, which 

exceeds all existing piezoelectric coefficients of both parent phases.  

 

Discussion 

Our findings reveal that phase transitions in ferroelectrics are intimately coupled to the underlying 

domain microstructure. Even in lead-free BaTiO3 and KNbO3, classic materials that have been 

known and studied for over sixty years, we have discovered that domains can lend a thermotropic 

character to their otherwise well-known phase transitions. This leads to the emergence of 
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intermediate monoclinic phases in a wide temperature range around the conventional ferroelectric 

transitions. As this phenomenon arises due to the mechanical and dipolar interactions between 

competing ferroelectric-ferroelastic domains in a complex domain microstructure, advanced 

nanoscale-resolved multi-technique measurements in the same spatial location, such as those 

presented here, are required to properly reveal the underlying physics on a microscopic level. We 

show that in the stabilized intermediate phases, both the piezoelectric and the nonlinear optical 

properties can be strongly enhanced, and even newly induced. Since the mechanism of symmetry 

lowering through stresses and fields is in principle universal to non-triclinic ferroelectric crystal 

systems, these results suggests a host of possibilities for the design of high-performance phases. A 

fourfold (4x) enhancement in functional coefficients from a simple shear strain on the order of 10-4 

indicates that controlled symmetry lowering can indeed be a powerful tool for property 

enhancement and tuning, and does not necessarily require large strains. In this study, a random 

domain microstructure is shown to inherently generate such strains, thus stabilizing the monoclinic 

phase. Theory however shows that similar shear stresses and fields, when applied externally to a 

single domain system, can also generate such monoclinic phases, along with the concomitant 

property enhancements. Moreover, since symmetry allows the ferroelectric polarization to lie 

anywhere within the monoclinic mirror plane, m, it is easy to reorient the local polarizations in a 

polydomain monoclinic system with external fields to achieve a “poled” monoclinic domain 

microstructure. In addition, the piezoelectric tensor of the monoclinic phase enables shear modes 

that are particularly suitable for shear mode piezoelectric devices56,57. Capturing these phenomena 

using phase field theory opens the door to predictive modeling of enhanced material properties, 

and enables the optimization of relevant extrinsic factors such as domain distribution, impurity 

content, and external fields. The fundamental insights presented here will allow for further 
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exploration of strategies to reliably and reproducibly create these high-performance phases through 

‘domain-engineering-by-design’. 
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FIGURE LEGENDS 

 

Figure 1. Phase-field simulations showing how multi-domain structures can induce a 

thermotropic phase boundary in BaTiO3. a, Volume fractions of orthorhombic (O, open blue 

triangles), tetragonal (T, open orange circles) and monoclinic (MC, open red diamonds) phases in 

an orthogonally twinned domain structure, upon quench-heating from 240 to 298 K. The phase 

classification in terms of discrete ferroelectric polarization (Ps) orientation ranges is shown in the 

legend in panel c. b, Stable volume phase fractions in the orthogonally twinned domain structure 

as a function of temperature. c, Selected area of the thermodynamically stabilized domain structure 

at 298 K. The legend indicates the color coding of the different ferroelectric phases, as well as 

their definition in terms of discrete polarization orientation ranges. Inset: zoom-in vector plot of a 

selected region showing local Ps orientations.  

 

Figure 2. Local symmetry imaging and analysis by optical Second Harmonic Generation. a, 

Scanning SHG microscopy image (
2

XI with 

XE ) of an in-plane a,b-domain structure in a BaTiO3 

single crystal without orthogonal twinning. The nonlinear optical tensor coefficients probed in the 

different domains for this experimental configuration are indicated, and corresponding 

ferroelectric polarization (Ps) axes are marked by double-headed white arrows. The scale bar 

corresponds to 8 m. b, Scanning SHG microscopy image (
2

YI with 

YE ) of an in-plane a,b-

domain structure in a BaTiO3 single crystal with orthogonal twinning. Also for this configuration, 

the polarization axes and active tensor coefficients are indicated. The scale bar corresponds to 12 

m. c, SHG intensity polar plots of 
2

XI  and 
2

YI  components (radius) versus fundamental 

polarization angle (azimuth angle ) corresponding to the MC phase. Data points correspond to 
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experiment, and the solid lines correspond to theory based on a monoclinic m point group 

symmetry. d, Voigt notation form of both the second order nonlinear optical tensor and the 

piezoelectric tensor, which have the same symmetry attributes42. For tetragonal domains (4mm 

symmetry), only the tensor coefficients without superscript (in black) are nonzero, with 24d = 15d  

and 31d = 32d . For monoclinic m symmetry (m in-plane), the tensor coefficients with superscript m 

(in red) also become nonzero.  

 

Figure 3. Intrinsic shear distortion of the monoclinic MC unit cell probed by nanoscale 

SXDM. a, Extended 2D diffraction image of the (220) reflection ( 220T ) from tetragonal b-domains 

in an orthogonally twinned BaTiO3 crystal. The corresponding diffraction positions of coarse 

tetragonal a-domain twins (T1

202
 = (∆2θ, χ)T1 = (3.955, 9.163) and 

202

2T  = (∆2θ, χ)T2 = (21.74, 

9.163)), or orthorhombic twins (see Supplementary Discussion 2.2) fall far outside the 

experimental zoom-in window used in our SXDM imaging (dashed white area). Panels b and c 

depict background-subtracted, normalized 2D (220) diffraction images corresponding to positions 

2 and 3, respectively (see Fig. 3g). d, Reciprocal space map comparing diffraction peak positions 

(kl-plane projections around h = 2.000) of experimentally observed tetragonal (T) and monoclinic 

(M) domains to those of hypothetical tetragonal (T1, T2) and orthorhombic (O3,O4) coarse twins. 

Solid lines ∆Ki indicate the lever rules for the diffraction peak positions of potential nanotwinned 

adaptive phases. Axes are scaled by the reciprocal lattice unit (1.566 Å-1) of cubic (C) BaTiO3 at 

450 K28. The inset schematically depicts the MC shear distortion (sheared m mirror plane shaded 

in red). e, Aspect-ratio corrected spatial map of the (220) MC peak intensity in the orthogonally 

twinned BaTiO3 structure. Scale bar: 10 m. f, Corresponding composite scanning SHG image (

 22

YX IaI   with 

XE , where a is scaled to match the SHG intensity in tetragonal domains). 
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Ferroelectric polarization (Ps) axes are marked by double-headed white arrows. Scale bar: 10 m.  

g, Zoomed-in high-resolution spatial map (80 nm steps) of .,220 222 avgT  ; the difference 

between the 2 center of mass (COM) of the local (220) diffraction signal and the average 2  

COM of an undistorted tetragonal b domain. Scale bar: 10 m. 

 

Figure 4: Piezoelectric properties in the thermotropic phase boundary of BaTiO3 at 298 K. 

a, Amplitude image of the vertical piezoresponse as measured by band-excitation Piezoresponse 

Force Microscopy (PFM)55. The cantilever arm in the measurement was oriented along X. Scale 

bar: 10 m. The inset shows a zoom-in on a selected area of the scan (2 m scale bar). b, 

Corresponding image of the phase of the vertical piezoresponse. Scale bar: 10 m. Where the 

piezoresponse was negligible, the phase was set to 0. c, Scanning SHG microscopy image (
2

XI

with 

XE ) recorded in the same area. Here, the MC phase is marked by the regions of high SHG 

intensity. Scale bar: 10 m. d, Spatial maps of all phase-field calculated piezoelectric 
ijd

coefficients corresponding to the orthogonally twinned domain structure in Figure 1c (see 

Materials and Methods). The maps are arranged in Voigt tensor form to allow for direct 

comparison with Figure 2d. 
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Materials and Methods 

Materials. 

BaTiO3 and KNbO3 single crystals (typical size 551mm, {100}pc surface cut) were purchased 

from Fujian Castech Crystals Inc., China, and Oxide Corporation, Japan. Where necessary, 

additional polishing of crystal surfaces was performed to obtain satisfactory optical surface quality. 

Prior to experimental investigation, the samples were cooled through the (TO) transition to about 

240 K in a liquid nitrogen cooled cryostat, and kept there for 1 hour. Next, the samples were re-

heated to ambient temperature (295 K), resulting in a typical multi-domain structure featuring 

interpenetrating, orthogonally twinned tetragonal a and b domains. Empirically, we determined 

that monoclinic signatures were readily found near such orthogonally twinned regions, which 

typically feature thin, wedge-shaped domains (e.g. see Supplementary Figure 1e). These MC 

signatures were reproducibly observed at room temperature after annealing the sample at 1150 K 

for 6 hours under a 50 cm3∙min-1 O2 flow, excluding localized sample surface damage as the origin. 

This is consistent with the observation that Raman imaging using the 514 nm excitation 

wavelength at higher power densities tends to locally ‘erase’ the monoclinic signatures,  which is 

presumably caused by the locally deposited thermal energy at this wavelength. The energy scale 

involved in this moderate ‘optical annealing’ process (local heating typically not exceeding the 

order of 50 K) is sufficient to rearrange the multi-domain structure, while being far below the 

energy required to induce reconstruction of a potentially damaged crystal surface (local 

temperatures on the order of 900 K). Furthermore, subsequent thermal cycling of the crystal after 

such optical erasure readily re-induces the monoclinic signatures. To allow for direct comparison, 

after thermal cycling the samples were kept at ambient temperature (295 K) in between and during 

SHG, Raman, nano-SXDM and BE-PFM experiments. 
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Phase field simulations.  

Our three-dimensional (3D) phase-field model to describe the evolution of the spatial ferroelectric 

polarization distribution as a function of time is based on the time-dependent Ginzburg-Landau 

equation 
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where 𝑷 is the ferroelectric polarization, 𝒙 is the spatial position in our XYZ Cartesian coordinate 

system and 𝐿 is the kinetic relaxation coefficient related to the domain wall mobility. The total free 

energy 𝐹 (a function of the polarization 𝑷) includes all the relevant energetic contributions 𝑓: 
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 (eq. S2) 

 

i.e. the bulk, gradient, elastic and electrostatic contributions, respectively. The simulations were 

conducted for BaTiO3 under stress-free boundary conditions. Stress ( ) and strain (  ) were 

calculated from the mechanical equilibrium condition58 
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 (eq. S3) 

 

where the ij are the stress tensor components. The phenomenological potential and parameters 

(Landau-Devonshire coefficients, electrostrictive constant and elastic constant tensors) were taken 

from Li et al.59 , and the modified isotropic gradient energy coefficients ( 11g , 12g  and 44g ) were 

based on Hlinka et al.46. The electric field distribution in the multi-domain structure was calculated 

by first solving the Poisson equation to find the electric potential  60, and then finding the electric 

field components through: 
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(eq. S4) 

 

The discretized quasi-two dimensional (quasi-2D) simulation size was xxx  410241024 , 

with a grid spacing of x  1.8 nm, unless otherwise specified. Periodic boundary conditions were 

imposed in all three directions. Due to the quasi-2D nature of the simulations, all domain structures 

and resulting properties were homogeneous along the out-of-plane 𝑧-direction. To obtain the 

orthogonally twinned initial multi-domain structure, we initially seeded two small sets of 

perpendicular tetragonal twins within the simulation system, filled the rest of the grid with thermal 

noise, and then allowed the system to relax at 380 K until stabilized. The phase diagram in Figure 

1b was constructed by quenching this stabilized 380 K domain structure to a variety of lower 

temperatures in a set of parallel simulations, evolving the system in each of these until equilibration 
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was reached, and plotting the resulting volume phase fractions as a function of the equilibrium 

temperature. 

 

Second Harmonic Generation (SHG) microscopy and polarimetry. 

SHG microscopy and polarimetry were performed in reflection geometry using a modified Witec 

Alpha 300 S confocal Raman microscope equipped with a 10 nm-resolution XYZ piezo-translation 

stage. The in-plane 100 crystallographic axes of the sample were carefully oriented along the X 

and Y axes of the experimental coordinate system. A pulsed fundamental beam (Spectra-Physics 

Tsunami (Ti:Sapphire),   800 nm, 80 fs,  80 MHz, chopped at ≈800 Hz) was focused on the 

sample using a 100 microscope objective (Nikon, N.A. 0.9) at a typical incident power density 

of about 100 pJ∙μm-2∙pulse-1. The lateral spatial resolution was close to diffraction-limited at ≈355 

nm41. The polarization of the fundamental light was controlled by a zero-order half wave plate 

mounted in a motorized rotational stage. The second harmonic signal ( 2 ) was collected using 

the same objective, spectrally filtered and passed through a polarization analyzer prior to detection 

using a Hamamatsu R928 photo-multiplier tube. Nonlinear optical ijkd  coefficients were 

calculated using reference values for tetragonal BaTiO3 taken from Miller’s early work61,62, which 

were scaled using Miller’s   (which is assumed invariant for the SHG process in the same 

material63,64): 
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Here, 213    represents the SHG process, and the )(in  are the appropriate ordinary and 

extraordinary refractive indices of single domain BaTiO3 at 295 K, as calculated using the known 

Sellmeier coefficients65. Induced nonlinear optical ijkd  coefficients were estimated by linear 

multiplication of these scaled ijkd  coefficients for tetragonal BaTiO3 and the appropriate SHG 

intensity ratios (i.e. ijkd ratios are taken the same as appropriate SHG intensity ratios obtained from 

the same scan). Note that both the nonlinear optical and piezoelectric tensors are third-rank polar 

tensors, and therefore subject to the same symmetry restrictions42. However, although they are also 

similarly labeled as d, they describe very different physical phenomena. All SHG experiments 

described in this work were performed in air, at ambient pressure and temperature (1 atm, 295 K). 

Monoclinic signatures were monitored as a function of time after thermal cycling and found to be 

stable up to at least 6 months when samples were kept at 2952 K. 

 

Raman microscopy. 

Raman microscopy was performed in reflection geometry on the same modified Witec Alpha 300 

S confocal Raman microscope. The in-plane 100 crystallographic axes of the sample were 

carefully oriented along the X and Y axes of the experimental coordinate system. The continuous 

wave 514.5 nm excitation beam (Melles Griot 43 Series Ar+-laser) was focused on the sample 

using a 100 microscope objective (Nikon, N.A. 0.9) at a typical incident power density of about 

1 mW∙μm-2 (lateral spatial resolution ≈350 nm41). The polarization of the excitation light was 

controlled by a zero-order wave plate mounted in a rotational stage. The scattered Raman signal 

was collected using the same objective, spectrally filtered using an edge-pass filter (Semrock Inc.), 

and detected using an Acton Spectra-Pro 2300i monochromator equipped with a 
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thermoelectrically-cooled Andor DV401 CCD array. All Raman experiments described in this 

work were performed in air, at ambient pressure and temperature (1 atm, 295 K). 

 

Nanoscale Scanning X-ray Diffraction Microscopy (nano-SXDM). 

Nanoscale Scanning X-ray Diffraction Microscopy (nano-SXDM) experiments were performed 

using the Hard X-ray Nanoprobe (HXN) of the Center for Nanoscale Materials (CNM) at sector 

26-ID-C of the Advanced Photon Source, Argonne National Laboratory. The coherent and 

monochromatic incident x-ray beam (photon energy 10.0 keV,   1.2398 Å) was focused on the 

sample by a Fresnel zone plate (Xradia Inc., 133 μm diameter gold pattern, 24 nm outer zone, 300 

nm thickness), yielding a ≈30 nm full width half maximum lateral beam cross-section in the focal 

plane. To obtain such high spatial resolution, the center part of the radially symmetric focused 

beam was blocked by a 40 μm diameter center stop attached to the zone plate, resulting in a lateral 

beam cross section in the form of an annulus of x-ray intensity44,45. The corresponding focused 

cone of x-rays had an incident angle spread of ≈0.30. The BaTiO3 crystals ({100} surface) were 

rotationally oriented to the crystallographic Bragg diffraction condition of tetragonal b domains 

((220) reflection), in a horizontal diffraction geometry. Diffraction peaks were recorded using a 

two-dimensional (2D) area CCD detector (Princeton PIXIS-XF: 1024F, 10241024   pixels, 13 

μm2 pixel size). Geometrical calibration parameters (sample-detector distance, detector centering 

and orientation) were determined from diffraction off a purely tetragonal domain using the focused 

beam. CCD images were recorded by 1.8 s of detector exposure, and background-corrected using 

a 1.8 s dark count image. Imaging of the sample was performed by stepwise lateral scanning of 

the x-ray zone plate relative to the sample using a hybrid optomechanical nanopositioning system, 

recording the diffraction image at each step. Simultaneous detection of element-specific x-ray 
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fluorescence allowed for positioning with respect to reference silver markers patterned on the 

sample surface. The focal plane was unambiguously established to within ≈20 μm (the axial depth 

of focus) using the x-ray fluorescence signal of one of the patterned silver markers. To prevent 

in-situ domain structure rearrangement due to surface charging effects, a thin 5 nm layer of gold 

was deposited on the BaTiO3 crystal surfaces and short-circuited to the sample mount. The addition 

of this thin conducting layer had no detectable effect on the observed domain structure, as 

confirmed by SHG imaging.  

 

Band-excitation Piezoresponse Force Microscopy (BE-PFM). 

Band-excitation Piezoresponse Force Microscopy (BE-PFM) experiments were performed on a 

Cypher AFM (Asylum Research) using Cr/Pt coated conductive tips (Multi-75E-G, Budget 

Sensors) at the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National 

Laboratory. Typical imaging scan sizes were 3030 m, divided into a grid of 256256  points. 

An AC driving voltage of 1.0 V was used. Details of the BE-PFM technique can be found 

elsewhere55. The resonance of the piezoelectric response measured at each grid point was fitted 

using a simple harmonic oscillator model and analyzed using a custom-written algorithm. Figure 

4 plots corresponding images of fitted response parameters (PFM resonance amplitude and phase). 

 

FEM simulations of PFM response. 

The Finite Element Method (FEM) was utilized to model the piezoresponse in the PFM 

experiments66,67, using the commercial ANSYSTM software. In the present simulations, the tip was 

modelled as a truncated cone (tip height 10 μm, full cone angle 30°) with a circular contact area 

(50 nm) with the sample surface67. The BaTiO3 sample was modelled in an X,Y,Z reference frame 
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as a rectangular slab of 188   μm. A decoupled approximation was assumed66-69; first the electric 

field distribution in the sample was calculated, which was then used as input in the subsequent 

calculation of the piezoresponse. For different polarization rotation values, the latter used 

appropriate dielectric and piezoelectric property tensors extracted from the multi-domain phase 

field simulations. The elastic properties of the monoclinic domain were assumed to be the same as 

that for tetragonal BaTiO3
70. A constant electric voltage of +1 V was applied to the tip surface, and 

the bottom surface of the sample slab was fixed to 0 V. In addition, the surface displacements ( XU ,

YU  , and ZU  ) were confined to 0 at the bottom of the sample (clamped bottom surface). The 

meshing was adjusted fine enough to yield results independent of the meshing size. Effective 

piezoelectric coefficients were estimated by linear multiplication of the FEM computed in-plane 

displacement in tetragonal b domains (using property tensors from multi-domain phase field 

simulations) by the appropriate ratios of VPFM amplitudes (i.e. iU -ratios are taken the same as 

the corresponding VPFM amplitude ratios in the same scan). 

 

Calculation of material properties from phase field simulations. 

For the spatial property map calculations, the sets of local electric field ( x

iE ) and stress ( x

ij ) 

components at each spatial position 𝒙 in the stabilized multi-domain structure (298 K, see Figure 

1c) were extracted, with each set applied as external control parameters to a single BaTiO3 domain 

in an independent single domain simulation. Extracted local electric field components were 

multiplied by a factor of 0.5 to ensure an equivalent electrostatic energy contribution in the single 

domain simulations (where the electric field is treated as external, rather than internal). This 

approach allowed for the evaluation of the intrinsic properties of the domains stabilized in the 
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multi-domain structure. Spatial maps of these local intrinsic properties were reconstructed using 

the grid site vectors 𝒙. 

 Converse piezoelectric coefficients (in Voigt notation) were obtained from thermodynamic 

calculations using71:   

 


k

kjikij gd ,0    (k = X, Y, Z;  i = X, Y, Z;  j = XX, YY, ZZ, YZ, XZ, XY) 

(eq. S6) 

 

where 0  is the vacuum permittivity, and the piezoelectric coupling coefficient ijg  is calculated 

from the Gibbs free energy 𝐺 as: 
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The dielectric susceptibility, defined as 1 ijij  , is calculated through the dielectric stiffness: 
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(eq. S8) 

 

Finally, all applied and calculated properties were transformed into the system of local symmetry 

coordinates (123), defined in analogy to the standard crystal physics axes adopted for tetragonal 
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BaTiO3
42; at each grid site 𝒙, the local 3 axis is assigned to the direction of the largest absolute 

XYZ component of the polarization 𝑷𝑺 (always in the XY-plane in our quasi-2D simulations), the 

local 1 axis is orthogonal to 3 and always along Z, and the local 2 axis is assigned to the in-plane 

direction orthogonal to 3, complementing the orthogonal right-handed coordinate system. 
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Supplementary Discussion 1 - Origin of thermotropic behavior; internal 

domain stresses and fields 

To clarify the origin of the observed thermotropic behavior and polarization rotation, we consider 

the internal electric field and stress components that are inherently present in an orthogonally 

twinned structure of competing ferroelectric domains. Supplementary Figure 1a shows a spatial 

map of the in-plane polarization rotation angle  , corresponding to the domain structure shown 

in Figure 1c. Here,   is defined as the absolute angular deviation of PS from the closest tetragonal 

001  direction, as calculated by the single domain simulations (see Methods). A strong spatial 

correlation is observed between   (Supplementary Figure 1a), the corresponding in-plane shear 

stress, 23  (Supplementary Figure 1b), and the in-plane transverse electric field 2E

(Supplementary Figure 1c) — i.e. the internal electric field component orthogonal to the nominal 

001  polarization axis. 

These specific local stresses and electric fields arise from the internal mechanical 

constraints (through electrostriction) and polarization gradients (e.g. through domain wall 

bending) inherent to the network of orthogonally twinned domains. A large contribution to the 

internal electric fields arises from domain wall charging due to the slight bending of otherwise 

charge-neutral domain walls. As illustrated in Supplementary Figures 1d and e, a domain wall with 

a head-to-tail polarization geometry develops a bound charge density of  PnSb
ˆP , where 

n̂  is the unit vector normal to the domain wall. Adding contributions from domains 1 and 2 on 

either side of a wall with bending angle   yields: 

 

.sin||2)cos(||)cos(||
44

21  
SSSb PPPPP    
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(eq. S9) 

 

Thus, a finite wall bending angle   results in charging of the previously neutral domain wall, 

which in turn gives rise to an internal electric field. 
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Supplementary Discussion 2 – Exclusion of parent-phase nanotwinning 

In the following, we show that the monoclinic MC phase in orthogonally twinned BaTiO3 

corresponds to an intrinsically monoclinic structure. We show that an alternative interpretation of 

the observed MC phase as an adaptive superlattice of nanoscale superlattice twins is unphysical 

and inconsistent with both theory and experiments on BaTiO3. Considering the breadth of the 

issue, the discussion follows several steps: 

(1) We first briefly highlight the background, assumptions and key features of adaptive phase 

theory. 

(2) Next we use extended SXDM experiments covering a larger range of reciprocal space to 

exclude large domain twins of parent phase symmetry as the source of the observed MC phase. 

(3) We then rule out any hypothetical nanotwinned superlattice by showing that for any potential 

adaptive phase, the observed MC phase experimentally violates both the reciprocal space lever rule 

and the general invariance conditions dictated by adaptive phase theory. 

(4) Finally, we present high-resolution phase field results (grid spacing x 0.5 nm, on the order 

of the lattice constants) which show that even anomalously small domains on the 10 nm scale 

exhibit an intrinsic monoclinic symmetry. We further show that at room temperature where the 

MC phase is observed, the relevant domain wall energy in bulk BaTiO3 is in fact finite and large, 

in direct contradiction with the essential assumption of adaptive phase theory. 

 

1. Adaptive phase theory: background, assumptions and key features. 

In recent years, the microscopic structure of bridging ferroelectric phases observed in the MPBs 

of lead-based perovskite solid solutions has been thoroughly studied5. Where initial reports 

reported MA, MB and/or MC monoclinic structures in Pb(ZrxTi1-x)O3 (PZT)7,8,72, (1-
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x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-PT)73-77, (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT)75,78-80 

and (1-x)Pb(Sc1/2Nb1/2)O3-xPbTiO3 (PSN-PT)81,82, subsequent work showed that the observed 

diffraction signatures are also consistent with an adaptive ferroelectric phase consisting of a highly 

ordered conformal superlattice of nanoscale ferroelectric domain twins of parent phase symmetry, 

whose domain-averaged structure and symmetry is monoclinic30-33. Such nanoscale twinning can 

only occur when the ferroelectric domain wall energy goes to zero, which is a pivotal assumption 

of adaptive phase theory31,32,54. The observed lattice parameters of an adaptive phase correspond 

to a linear superposition of the lattice constants of the constituent nanotwins, weighted by the 

appropriate twin volume fractions. As a result, they exhibit a number of intrinsic crystallographic 

relationships31,33, while necessarily satisfying a set of general or special  invariance conditions (the 

latter distinction depending on the presence of an applied electric field)31,32. The monoclinic 

structures observed in the MPBs of PMN-PT and PZN-PT were shown to adhere well to these 

relationships and conditions, which, combined with the experimental observation of domain twins 

down to a 10 nm scale in PMT-PT83,84 and PZT34,85,86, argues for their adaptive nanostructured 

nature. Follow-up work by Wang et al., established the diffraction theory of nanotwin 

superlattices, and quantified the adaptive diffraction phenomenon with a lever rule for the position 

of the adaptive diffraction peak in reciprocal space35-37, based on the same intrinsic 

crystallographic relationships. This lever rule dictates that a nanotwin superlattice peak, ks, 

necessarily lies in between the corresponding conventional diffraction peaks of the constituent 

twins in reciprocal space, on the straight line that connects them: 

 

ks = K + (1-ω)∆K, 

(eq. S10) 
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where K is the relevant reciprocal space vector of the constituent crystal, ∆K is corresponding twin 

peak splitting vector, and ω represents the twin variant volume fraction. 

In summary, the key assumptions and features of adaptive phase theory are: 

i. a vanishing domain wall energy 

ii. crystallographic invariance conditions that intrinsically relate the adaptive phase lattice 

parameters to those of the constituent nanotwins 

iii. a corresponding lever rule for the adaptive diffraction peak position in reciprocal space 

 

2. Excluding coarse ferroelectric twin domains using extended SXDM diffraction. 

First, we consider the fact that in the SXDM technique employed here, one uses a focused, highly 

monochromatic x-ray beam to selectively probe the microscopic structure only locally, as opposed 

to the ensemble-based conventional diffraction techniques which generally probe a far larger 

volume. Our experimental configuration is centered on the crystallographic (220) Bragg 

diffraction peak of tetragonal b domains, with the x-ray beam focused down to a ≈30 nm lateral 

cross section at an incident angle spread of ≈0.30. Combined with the use of a 2D area CCD 

detector, we thus effectively probe a limited volume of reciprocal space around the corresponding 

(220) reciprocal space vector, with 30 nm spatial resolution (see Supplementary Figure 5). By 

rastering the beam across the sample and employing point-by-point sampling, we build up images 

of the local, nanoscale diffraction behavior.  

Under the assumption that the observed MC diffraction originates from an intrinsically 

monoclinic phase, our analysis below (Supplementary Discussion 3) shows the MC phase to 

correspond to a distorted tetragonal structure, which has altered lattice constants ( Ma 3.9984 Å;

Mb 3.9988 Å;  ccc TM 4.0361 Å) and which is sheared in the pseudocubic (100) plane that 
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is parallel to the sample surface ( M -0.018, see Supplementary Figure 12b). If one alternatively 

supposes the MC phase to consist of a geometrically organized array of adaptive nanotwins, their 

structural superposition should emulate the observed monoclinic unit cell shear. There are only 

two possible pairs of parent phase nanotwins that could potentially achieve this: tetragonal twins 

with pseudocubic {011} twin planes (see Supplementary Figure 6a), or orthorhombic twins with 

pseudocubic {010} twin planes (Supplementary Figure 6b). With respect to the reference 

orientation of the b-domains, there are two possible orientations of a tetragonal a-domain twin 

(cases 1 and 2 in Supplementary Figure 6a), with corresponding relative in-plane rotation angles 

(around the sample surface normal) of 1 +0.523 and 2 -0.523, respectively (where 

)/(tan2 90 1

TT ca  ; Ta 3.9994 Å; Tc 4.0361 Å). We first consider how conventional 

diffraction from such twins (i.e. assuming coarse domains) relate to the (220) diffraction of 

tetragonal b-domains (labeled 220T ). A simple geometrical model shows that the corresponding 

(202) diffraction planes of these a-domain twins are rotated with respect to the (220) plane of the 

reference b-domains by  )202(

1(  -0.369,  )202(

1 0.262) and  )202(

2(  +0.369,  )202(

2

0.262), respectively, where   and   are rotations around the Y and H axes indicated in 

Supplementary Figure 5b. This, combined with the larger d-spacing for the (202) planes (
)202(d = 

1.4204 Å), yields the following coordinates for their (202) diffraction in the experimental 

diffraction geometry: )202(

1

202

1 2:( T 52.233, )202(

1 0.525) and )202(

2

202

2 2:( T 53.252,

)202(

2 0.525). As indicated in Figure 3a, which shows a representative large area CCD 

diffraction image of the b-domain 220T diffraction, the corresponding 202

1T diffraction peak falls far 

outside the experimental zoom-in window used in our SXDM imaging, whereas the 
202

2T  peak falls 

far outside even the large area detector range. In short, conventional diffraction from coarse a-
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domain twins is clearly inconsistent with the observed MC diffraction peak M2( 52.017, M

0.005). Similar geometrical arguments rule out conventional diffraction from the two 

orthorhombic twins sketched in Supplementary Figure 6b, (diffraction peaks 
220

3O and 220

4O , 

respectively), as their lattice parameters yield relative  -coordinates far outside the experimental 

CCD range for (220) diffraction. For convenience and consistency, we use the pseudomonoclinic 

description of the orthorhombic structure in this discussion (
M

Oa =3.9874 Å, 
M

Ob =
M

Oc =4.0812 Å, 

M

O =0.15°)29. Thus, we can conclude that the MC diffraction peaks observed in Figure 3 are not 

due to coarse twins of parent symmetry domains (i.e. domains twins larger than the coherence 

length of x-ray radiation; on the order of 1 μm or above).  

 

3. Ruling out hypothetical nanotwinned adaptive phases using extended SXDM diffraction. 

Knowing the relative structural orientations for the potential parent domain twins, we now consider 

the possibility of SXDM diffraction from an adaptive nanotwinned superlattice being responsible 

for the observed MC peaks. As mentioned above, the lever rule (eq. S10) requires that the adaptive 

superlattice peak is positioned on the straight line between the conventional twin peaks in 

reciprocal space, with its exact position determined by the relative volume fractions of the 

constituent nanotwins. Moreover, due to their nanodomain-averaged nature, the corresponding 

observed lattice parameters of any adaptive phase necessarily satisfy a set of general invariance 

conditions. Below we will show that the observed MC phase in fact violates both the lever rule and 

the general invariance conditions of any potential adaptive phase, ruling out a hypothetical 

nanotwinned substructure and confirming its intrinsically monoclinic nature. 

Supplementary Figure 7 plots the relevant diffraction peaks of all parent domain twins 

considered above in reciprocal space, along with those of the cubic, MC, and tetragonal b-domain 
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structures. The corresponding lattice parameters and relative geometric orientations are given in 

Supplementary Table 1 and Supplementary Figure 8, respectively. As is clear from these plots, the 

position of the MC peak is inconsistent with any potentially applicable lever rule (∆Ki, solid lines), 

in fact its shift is in an entirely different direction (∆qM = qM – qT = (0.0005, 0.0003, 0.0006), see 

Supplementary Table 1), and as such the observed MC phase cannot be explained through an 

adaptive phase description. This is also clearly seen by evaluating the invariance condition 

necessarily observed by adaptive phases31-33, which for tetragonal nanotwinning (Supplementary 

Figure 6a) dictates the relation of the adaptive lattice parameters (aad., bad., cad.) to the 

corresponding tetragonal lattice parameters (at, ct) as: aad. + cad. = at + ct and bad. = at, where aad. 

and cad. are in the sheared plane. When applied to the lattice parameters of the MC phase observed 

here (aad. = 3.9984 Å, bad. = 3.9988 Å, cad. = 4.0361 Å), with tetragonal lattice parameters (at = 

3.9994 Å, bt = 3.9994 Å, ct = 4.0361 Å), there are two clear discrepancies: i) the condition bad. = 

at is not fulfilled, and ii) aad. < at dictates that cad. > ct, which necessarily implies an unphysical 

twin variant volume fraction of ω > 1, through the equation cad. = at + ω(ct - at).  

 

4. Domain size, and finite and large domain wall energy. 

To further assess the feasibility of a hypothetical adaptive nanotwin superlattice in BaTiO3, we 

next consider the required ferroelectric domain wall energy and corresponding domain size. A 

strict condition for the possible formation of an adaptive superlattice of nanoscale domain twins is 

a vanishing domain wall energy31,32,54. Although it has been argued that this effect occurs in the 

narrow compositional MPB regions of certain lead-based perovskite solid solutions, the domain 

wall energy is known to be finite in unpoled BaTiO3 single crystals throughout the wide thermal 

stability range of the tetragonal phase46-47 (280-380 K) in which the MC phase is predicted to occur 
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(See Figure 1b). At 298 K, where we experimentally observe the MC phase, the domain wall energy 

density for 90° head-to-tail walls is ≈20 mJ m-2 (Supplementary Figure 9). The finite and large 

domain wall energy in bulk BaTiO3 is confirmed by experiments, in which tetragonal domain 

widths are nominally on a micron-scale16,17,21, as is also observed experimentally in this work. This 

indicates that the crucial prerequisite for adaptive phase formation is simply not present here. 

The calculation of the domain wall energy is based on gradient coefficients that were self-

consistently determined from inelastic neutron87 and IR reflectivity88 data by Hlinka and 

Marton46,47. They calculated the corresponding width of 90° head-to-tail domain walls in tetragonal 

BaTiO3 to be ≈3.6 nm at ambient conditions, which is well supported by experiments48-53. As a 

consequence, 90° tetragonal domain twins cannot be smaller than ≈7 nm. Experimentally, even in 

very thin BaTiO3 crystals the domain size behaves according to Kittel’s law89,90, with the typical 

domain size width being ≈25 nm or more90. This is further confirmed by additional high-resolution 

phase-field simulations of an orthogonally domain-twinned BaTiO3 system 

( xxx  440964096 grid with x 0.5 nm); in which most domains are larger than 25 nm, 

and none are smaller than 7 nm (see Supplementary Figure 10). Moreover, as shown in 

Supplementary Figure 10e-g, even the smallest domains in the system exhibit a rotated 

ferroelectric polarization and monoclinic symmetry, underlining that the latter are intrinsic 

characteristics of the MC phase even on the sub-30 nm length scale.   

Summarizing, the observed MC phase in BaTiO3 is established as an intrinsically 

monoclinic phase. An alternative interpretation as an adaptive superlattice of nanoscale 

superlattice twins is shown to be unphysical and inconsistent with both theory and experiment.  
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Supplementary Discussion 3 - Scanning X-ray Diffraction Microscopy  

1. Scanning X-ray Diffraction Microscopy (SXDM) geometry. 

The geometry of the nanoscale SXDM experiment is shown in Supplementary Figure 5a-b. The 

penetration depth (≈12 μm) and angle of incidence (≈27.83°) of the incident x-ray beam in nano-

SXDM yield an axially elongated probing volume at an angle to the sample surface, illuminating 

any domains in this volume and within ≈5.6 μm of the sample surface (which is the x-ray 

attenuation length in BaTiO3 (density 6.02 g∙cm-3) at 10.0 keV). Because of this angular depth-

probing effect, T and MC peaks can be observed simultaneously in individual diffraction images, 

and two dimensional maps (such as that in Figure 3f) appear more blurred than their normal 

incidence SHG counterparts, despite the greater lateral resolution of nano-SXDM.  

 

2. Calculation of relative 2θ center of mass (COM) in Fig. 3g. 

The relative 2   center of mass (COM) of the diffraction at each spatial position, 

.,220 222 avgT  , was calculated in three steps: first, an )2( XRDI -‘spectrum’ was calculated 

by integration of the background-corrected (220) diffraction image along the  -axis; second, the 

2  COM of this spectrum was calculated via 

 


 



i iXRD

i iXRDi

I

I

,

,220
2

2


 , 

 (eq. S11) 

 

and third, the averaged 2  COM value of the diffraction signal from only the T-peak recorded in 

a purely tetragonal reference domain, 
.,2 avgT  , was subtracted. CCD diffraction images and 
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)2( XRDI  data were normalized to the maximum integrated intensity in the corresponding scan 

series. As illustrated in Supplementary Figure 11c, the relative 2   center of mass (COM) MC 

diffraction peak is found to vary on a length scale on the order of  ≈1 m, while the position of the 

tetragonal T peak remains largely unchanged (see also Figure 3g). The absence of nanoscale 

structural variation shows that there are no nano-domains down to a 30 nm scale. 

 

3. SXDM rocking curve analysis. 

Supplementary Figure 11 shows the variation of both the (220) T and MC peaks from a single 

spatial position in a selected b-domain as a function of the sample angle    (equivalent to a 

traditional rocking curve). As illustrated by the series of (220) diffraction images, the MC peak 

consistently diffracts to a higher 2  than the T peak throughout this rocking curve. Moreover, 

upon increasing  , the MC peak both appears and disappears at lower sample angles compared to 

the T peak. These two observations combined show that the difference between the diffracting MC 

and T planes is mainly due to a rotation of the diffraction planes around axis Y, as indicated by 

angle    in Supplementary Figure 5b. By contrast, a pure change in lattice plane spacing (d-

spacing) would have resulted in either the MC peak being at a lower 2  than the T-peak (larger d), 

or the MC peak disappearing at a larger    than the T peak (smaller d). The center diffraction 

condition of the peaks is defined by the sample angle   at which the on-axis portion of the incident 

beam is diffracted by the corresponding set of diffraction planes. The variation of the integrated 

intensity of each diffraction peak with the sample angle   yields a symmetric double-maximum 

curve due to the annular beam cross-section (Supplementary Figure 11b), and the center of mass 

of this curve defines the center diffraction condition for that peak. This yields T  27.834 and 

M  27.822 for the T and MC peaks, respectively, and an extracted plane rotation of
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 TM   -0.012. The peak positions (at their center diffraction condition) are ( T2

52.006, T 0) and ( M2 52.017, M 0.005), respectively, corresponding to d-spacings of 

Td 1.4140 Å and Md 1.4137 Å for the respective (220) reflections. The Td  value corresponds 

to a tetragonal lattice constant of Ta  3.9994 Å, consistent with values found in 

literature25,26,28,29,91. 

 

4. Geometrical shear model 

With the MC phase anticipated to be an intermediate bridging phase between the tetragonal and 

orthorhombic structures, we consider a simple shear distortion of the tetragonal unit cell as a 

geometrical model (Supplementary Figure 12a). Because we found rotation of the diffraction plane 

to be the dominant distortion contribution, we initially assume the edge lengths of the sheared MC 

parallelepiped to remain equal to the tetragonal lattice constants Ta 3.9994 Å and Tc 4.0361 Å 

( Tc was taken from Ref. 91). Then, based on the experimentally determined relative (220) plane 

rotation of  -0.012, we use the simple geometrical model to estimate a corresponding shear 

angle M  of -0.018 (see Supplementary Figure 12a). When compared to anticipated values for 

the tetragonal and orthorhombic unit cells ( T  0 and O  -0.075, the latter in its 

pseudomonoclinic description29), this value clearly establishes the MC-phase as an intermediate 

between the T and O phases. Both the change in d-spacing and the relative tilting (rotation around 

axis H by angle  ) of the MC diffraction planes are negligible in the pure shear model at this M . 

The experimentally observed d-spacing decrease (  TM ddd  -0.0003 Å) and out-of-plane 

tilting (  TM   0.005) are likely the result of small changes in lattice constants that 

accompany the unit cell shearing (i.e. changes in the edge lengths of the sheared MC parallelepiped). 
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Based on the experimental d   and    values (both are dependent on Ma   and Mb  , see 

Supplementary Figure 12b), a simple geometrical calculation for the sheared (220) diffraction 

plane with M -0.018 yields corresponding values of Ma 3.9984 Å and Mb 3.9988 Å. The 

fact that the tetragonal a axis, perpendicular to the sheared plane, shortens more than b is consistent 

with an intermediate cell; on full transformation to the orthorhombic phase, the a axis is expected 

to shorten, while the b axis is expected to elongate, both by significantly larger amounts23. 

Recalculation of the shear angle M  using the new Ma  and Mb  constants yields the same value 

(-0.018), confirming the validity of our initial assumption of constant edge-lengths. Finally, we 

note that the exact value of c has no significant effect on the shear angle assessment (we took 

 ccc TM 4.0361 Å for all calculations).  
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Supplementary Discussion 4 - FEM simulations of piezoresponse 

We used FEM simulations to calculate the sample surface displacements ,XU  YU  and ZU  in a 

single monoclinic BaTiO3 domain in contact with a PFM tip, using the corresponding dielectric 

and piezoelectric properties calculated from phase-field simulations (See Materials and Methods). 

In the FEM simulations, the rotation angle of the ferroelectric polarization in the monoclinic 

domain,  , is defined with respect to the X direction (i.e. polarization rotation occurs in the XY-

plane). Due to the in-plane orientation of the domains (PS  Z), the out-of-plane displacement of 

the sample surface, ZU , is negligible as compared to XU  and YU . Consequently, the vertical PFM 

(VPFM) response shown in Figures 4a and b is due to buckling of the cantilever arm, induced by 

in-plane displacements of the sample surface parallel to the cantilever arm. Given the experimental 

cantilever geometry, the VPFM response in b- and a-domains is governed by the simulated XU  

and YU  displacements, respectively. We use the in-plane displacement obtained for tetragonal 

b-domains from the FEM simulations — 0
XU  -146 pm at +1.0 V— to calibrate the 

experimental piezoresponse. As seen in the inset of Figure 4a, in the MC phase the b-domains 

exhibit a slightly reduced displacement (corresponding to XU ≈ 114 pm V-1, position 3), while the 

monoclinic a-domains show newly induced displacements that are entirely absent in the tetragonal 

phase (
yU ≈ 43 pm V-1 and 105 pm V-1 in positions 2 and 1, respectively). Supplementary Figure 

13a plots the relative contributions of the individual 
ijd  piezoelectric coefficients to ,XU  showing 

its main contributions arise from ,15d  24d  and .33d  As shown in Supplementary Figure 13b, it is 

the suppression of 15d  that dominates the reduction of XU  with increasing polarization rotation 

.  Supplementary Figure 13c plots the relative contributions of the individual 
ijd  piezoelectric 
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coefficients to ,YU  showing its main contributions are from 22d  and .16d  Here the induced 

nonzero value of YU  is the combined effect of both these coefficients, which become nonzero as 

  increases (Supplementary Figure 13d). Given the FEM-calibrated experimental in-plane 

displacements, we estimate the polarization rotation angles at positions 1, 2 and 3 in Figure 4a to 

be 15, 7 and 17, respectively. 
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Supplementary Figure 1. a, Spatial map of the relative polarization rotation angle   at 298 K, 

corresponding to the domain structure shown in Figure 1c. Here,   is defined as the absolute deviation 

from the closest nominal 100 polarization axis. b, Calculated spatial map of the in-plane internal shear 

stress 23  in the same domain structure. c, Corresponding map of the calculated in-plane transverse electric 

field component 2E . As illustrated by the strong spatial correlation between  , 23 , and 2E , the 

polarization rotation finds its origin in the combined effect of the local shear stress and transverse electric 

field, which is consistent with the experimentally found in-plane shear distortion. d, Zoomed-in sketch of 

a slightly bent domain wall, illustrating the mechanism of wall charging upon wall bending (see eq. S9). 

The domain wall bending angle is given by  , and the surface unit normals for domains 1 and 2 are 
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indicated by 1n̂  and 2n̂ , respectively. e, Polarized optical image (unpolarized incident white light,  0) 

of a typical orthogonally twinned multi-domain structure in BaTiO3. Scale bar: 2 m. Domains are 

delineated by solid black lines for clarity, arrows indicate proposed polarization directions.   
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Supplementary Figure 2. a, Scanning SHG microscopy image (
2

XI  with 

XE ) of an in-plane a,b-domain 

structure in a BaTiO3 single crystal without orthogonal twinning. Scale bar: 8 m. Ferroelectric polarization 

(PS) axes are marked by double-headed white arrows. b, Scanning SHG microscopy image (
2

YI  with

YE ) 

of an in-plane a,b-domain structure in a BaTiO3 single crystal with orthogonal twinning. Scale bar: 12 m.  

c, SHG intensity polar plots taken in indicated domains, showing 
2

XI  and 
2

YI components (radius) versus 

linear incident light polarization angle (azimuth angle  ). For all polar plots, data points correspond to 

experiment, with solid lines depicting the corresponding theory fits. Theory for domains 1 and 2 assumed 

tetragonal 4mm point group symmetry, showing excellent agreement with experiment. By contrast, in 

domains 3 and 4, neither tetragonal nor orthorhombic models fit experiment. Instead, monoclinic symmetry 

(point group m) is required to match the experimental data.  
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Supplementary Figure 3. a, Raman spectrum of a tetragonal a-domain (4mm, position 1) in an 

orthogonally twinned multi-domain BaTiO3 single crystal in parallel ))(( ZXXZ  scattering configuration. 

b, Raman spectrum of the same tetragonal a-domain (point group 4mm, position 1) in perpendicular 

))(( ZXYZ  scattering configuration. c, Raman spectrum taken in a monoclinic MC domain (point group m, 

position 2) in perpendicular ))(( ZXYZ  scattering configuration. For all the spectra shown, Raman mode 

symmetries92 are color coded by fitted Lorentzian line shapes as indicated, with dark green line shapes 

corresponding to two-phonon contributions to the spectra. d, Effect of symmetry lowering on Raman 

selection rules for the point group symmetries considered, in terms of the experimental XYZ coordinate 

system. Where appropriate, two different in-plane orientations of PS are considered. As clear from the 
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spectra in a and b, the tetragonal domains adhere to the 4mm selection rules, with mode frequencies 

corresponding well to literature values for BaTiO3
93,94. Symmetry lowering to a monoclinic MC domain 

however, (point group m, mirror plane  Z ; PS  Z) reduces the former 𝐴1 and 𝐵1 modes to 𝐴′ symmetry, 

making them now additionally active in the ZXYZ )(  scattering geometry. Thus, the presence of these 

modes in the ZXYZ )(  spectrum is an adequate “marker” for such an MC domain95, as illustrated in c. e, 

Scanning SHG image (
2

XI  with 

YE ) of a selected area of an orthogonally twinned multi-domain BaTiO3 

single crystal, where high SHG intensity marks local areas of m symmetry. Scale bar: 7 m. f, 

Corresponding Raman image of the integrated intensity of the ≈530 cm-1 mode in the ZXYZ )(  Raman 

spectrum, which is taken as a marker for monoclinic m symmetry. Scale bar: 7 m. The comparison with e 

shows good agreement between the experimental signatures of m symmetry (high intensity in both), thus 

yielding an independent confirmation of the point group symmetry of the MC phase.  
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Supplementary Figure 4. High-resolution scanning SHG microscopy image (
2

XI  with 

XE ) on densely 

twinned multi-domain KNbO3 single crystals at room temperature. The sample surface corresponds to a 

{100}-cut in pseudocubic coordinates. Scale bar: 5 m. Ripple features of high SHG intensity, indicative 

of the induced monoclinic phase in a thermotropic phase boundary, are clearly seen within the orthorhombic 

domain matrix. Using SHG polarimetry, the polarization in the monoclinic phase was determined to be in 

the X-Z reference plane. We note that no monoclinic signatures are observed by complementary polarized 

optical microscopy. Polarization directions with respect to the perovskite pseudocube are sketched on the 

right for the observed orthorhombic domains, with double-headed arrows indicating the PS sign ambiguity 

in each case.  
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Supplementary Figure 5. a, Schematic summary of the nano-SXDM technique44,45. b, Schematic top view 

of the diffraction process for the sample angle where the T planes diffract the on-axis portion of the incident 

beam (center diffraction condition of T peak, T 27.834). Insets show the schematic cross-sections of 

the incident and diffracted beams. 
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Supplementary Figure 6. a, Schematic sketches of the two types of tetragonal in-plane twinning that could 

potentially emulate a monoclinic shear in the YZ plane. The distinct cases 1 and 2 show the relative 

orientations of hypothetical a-domain twins with respect to that of the reference b-domains. b, Schematic 

sketch of the only type of orthorhombic in-plane twinning that could potentially emulate a monoclinic shear 

in the YZ plane. The twinning structure is drawn with both the conventional orthorhombic and the pseudo-

monoclinic description of the unit cell29. In each sketch, the plane of the figure corresponds to the crystal 

surface. Unit cell distortions are drawn exaggerated for clarity.  
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Supplementary Figure 7. a, Three-dimensional plot of the relevant diffractions peak positions (colored 

solid spheres) in reciprocal space. Solid lines ∆Ki indicate coarse twin peak splitting vectors, and represent 

the lever rules for the reciprocal space position of potential adaptive superlattice peaks. Dashed lines mark 

projections in the hk-, kl-, and hl-planes, which are individually plotted in panels b, c, and d, respectively. 

Axes are scaled by the reciprocal lattice unit, 1.566 Å-1, defined through the lattice constant of cubic BaTiO3 

at 450 K28. 
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Supplementary Figure 8. Panels a through g sketch the relative geometric orientations of the unit cells 

relevant in considering a potential adaptive superlattice, with respect to that of the reference tetragonal b-

domain (panel b). Corresponding reciprocal lattice vectors in the XYZ reference frame are provided in 

Supplementary Table 1. 

 

Supplementary Table 1. Structural parameters of relevant domains. 

 C 28 T MC T1 T2 O3 29 O4 29 

Lattice 

constants 
aC

  = 4.011 Å 
aT = 3.9994 Å 

cT = 4.0361 Å 

aM = 3.9984 Å 

bM = 3.9988 Å 

cM = 4.0361 Å 

δM = -0.0177° 

aT = 3.9994 Å 

cT = 4.0361 Å 

= 0.523° 

aT = 3.9994 Å 

cT = 4.0361 Å 

= -0.523° 

aO
† = 3.9874 Å 

bO
†= 4.0812 Å 

cO
†= 4.0812 Å 

δO3
†= -0.15° 

aO
† = 3.9874 Å 

bO
†= 4.0812 Å 

cO
†= 4.0812 Å 

δO4
†= 0.15° 

Sketch Supp. Fig. 8a Supp. Fig. 8b Supp. Fig. 8c Supp. Fig. 8d Supp. Fig. 8e Supp. Fig. 8f Supp. Fig. 8g 

h‡ 2.000 2.0058 2.0063 2.0058 2.0058 2.0118 2.0118 

k‡ 2.000 2.0058 2.0061 1.9875 1.9875 1.9964 1.9964 

l‡ 0 0 0.0006 0.0182 -0.0182 0 0 

†
pseudo-monoclinic description of the orthorhombic unit cell29 

‡ Reciprocal space coordinates of relevant diffraction peaks in the reference frame of the tetragonal b-domain (in cubic reciprocal 

lattice units28; 1.566 Å-1) 
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 Supplementary Figure 9. a, Phase-field calculated components of the ferroelectric polarization across a 

90° head-to-tail wall in BaTiO3 at 298 K. b, Corresponding wall energy versus position, defined as the local 

free energy of the 90° head-to-tail domain wall minus that of a single equilibrated tetragonal domain. The 

area under this curve gives the domain wall energy density.  
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Supplementary Figure 10. a, High-resolution phase-field simulation of an orthogonally-twinned BaTiO3 

domain structure at 298 K. Panels b through d show zoom-ins on indicated areas 1 through 3, respectively. 

The phase classification in terms of discrete ferroelectric polarization (PS) orientation ranges is shown on 

the top right. Panels e through g plot cross-sectional traces across the smallest domains observed. 

Corresponding domain and domain wall widths are indicated. Black arrows indicate local polarization 

vectors PS.
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Supplementary Figure 11. a, Background-subtracted, normalized 2D diffraction images taken at indicated 

sample angles in the SXDM rocking curve. b, Corresponding integrated peak intensity versus sample angle 

(ω) for both T (left) and MC diffraction (right). The experimental data points were fitted with a pair of twin 

Gaussian line shapes (solid lines) to extract the center diffraction conditions for the two peaks (colored 

lines).   
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Supplementary Figure 12. a, Schematic geometrical model of a pure shear distortion of the tetragonal unit 

cell (edge lengths of the MC parallelepiped equal to the tetragonal lattice constants). b, Schematic 

geometrical model of a simultaneous shear distortion and change in lattice constants. In both a and b, the 

orientation of the (220) diffraction planes of the MC phase is indicated by the filled red shape (only one 

plane is shown for clarity). Sample surface is in the ),( TT ca -plane. Directions of relative rotations relevant 

for (220) diffraction are indicated (  and    impacting 2   and   , respectively), with the Y-axis as 

defined in Supplementary Figure 5b and the H-axis equivalent to the intersection of the tetragonal (220) 

plane and the XZ-plane. c, Aspect-ratio corrected high-resolution spatial map (80 nm step size) of the 

relative 2  COM of the (220) diffraction signal. Scale bar: 1 m. For reference,  2 0 refers to 2

51.9869, which corresponds to the averaged 2   COM value of the T-peak. Background-subtracted, 

normalized 2D diffraction images and corresponding normalized integrated XRD intensity plots ( )2( XRDI ) 

at the indicated positions are shown on the right/bottom. Here, white dashed lines (top) indicate positions 

of the T and MC peaks, with dashed red lines (bottom) indicating the 2  COM values of the total (T+ MC) 
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diffraction used to generate the spatial map. The MC peak-shape variation is a consequence of the annular 

cross-section of the incident beam44,45.   
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Supplementary Figure 13. a, Fractional contributions of each piezoelectric 
ijd  coefficient to ,XU  for a 

monoclinic domain in which  5. Fractional contributions are calculated by having all but the 
ijd  in 

question set to zero in the FEM simulation. The bar named “tensor” corresponds to the FEM simulation 

with the full tensor. Its excellent agreement with the sum value demonstrates the validity of this approach. 

Relative contributions are qualitatively similar for all .  b, Dependence of ,15d  ,24d  ,33d  and XU  on the 

polarization rotation angle ,   normalized to the corresponding FEM calculated value for   0. For 

reference,   0

24

0

15

 dd  325 pm V-1, 0

33

d  56 pm V-1 and 0
XU  -146 pm (at a field of +1.0 V). 

Dashed lines indicate the estimation of the polarization rotation angle corresponding to position 3 in Figure 

4a. c, Fractional contributions of each piezoelectric 
ijd   coefficient to ,YU   for a monoclinic domain in 

which  5. d, Dependence of ,16d 22d  and YU  on the polarization rotation angle ,  normalized to the 

corresponding maximum value in the  -range. For reference, 45

16

d  133 pm V-1, 25

22

d  842 pm V-
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1 and 25
YU  -135 pm (at a field of +1.0 V). Dashed lines indicate the estimation of the polarization 

rotation angles corresponding to positions 1 and 2 in Figure 4a. 
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