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Abstract

Neuronal dynamics are fundamentally constrained by the underlying structural network architecture, yet much of the
details of this synaptic connectivity are still unknown even in neuronal cultures in vitro. Here we extend a previous approach
based on information theory, the Generalized Transfer Entropy, to the reconstruction of connectivity of simulated neuronal
networks of both excitatory and inhibitory neurons. We show that, due to the model-free nature of the developed measure,
both kinds of connections can be reliably inferred if the average firing rate between synchronous burst events exceeds a
small minimum frequency. Furthermore, we suggest, based on systematic simulations, that even lower spontaneous inter-
burst rates could be raised to meet the requirements of our reconstruction algorithm by applying a weak spatially
homogeneous stimulation to the entire network. By combining multiple recordings of the same in silico network before and
after pharmacologically blocking inhibitory synaptic transmission, we show then how it becomes possible to infer with high
confidence the excitatory or inhibitory nature of each individual neuron.
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Introduction

Important advances in the last decade have provided unprec-

edented detail on the structure and function of brain circuits [1,2]

and even programs aiming at an exhaustive mapping of the brain

connectome(s) have been announced [3–6]. First, the combination

of invasive and non-invasive techniques such as high-resolution

optical imagery and diffusion-based tractography have revealed

the major architectural traits of brain circuitry [7]. Second,

functional imaging has provided non-invasive measures of brain

activity, both at rest [8] and during the realization of specific tasks

[2]. These efforts have opened new perspectives in neuroscience

and psychiatry, for instance to identify general principles

underlying interactions between multi-scale brain circuits [9,10],

to probe the implementation of complex cognitive processes

[11,12], and to design novel clinical prognosis tools by linking

brain pathologies with specific alterations of connectivity and

function [13–15]. At the same time, tremendous technological

advancements in serial-section electron microscopy are making the

systematic investigation of synaptic connectivity at the level of

detail of cortical microcircuits accessible [16].

Despite continuous progresses, the understanding of inter-

relations between the observed functional couplings and the

underlying neuronal dynamics and circuit structure is still a major

open problem. Several works have shown that functional

connectivity [17] at multiple scales is reminiscent of the underlying

structural architecture [8,18,19]. This structure-to-function corre-

spondence is, however, not direct and is rather mediated by

interaction dynamics. On one side (‘‘functional multiplicity’’),

structural networks generating a large reservoir of possible

dynamical states can give rise to flexible switching between

multiple functional connectivity networks [20,21]. On the other

(‘‘structural degeneracy’’), very different structural networks giving

rise to analogous dynamical regimes may generate qualitatively

similar functional networks [22]. Therefore, particular care is

required when interpreting data originating from non-invasive

functional data-gathering approaches such as fMRI [23]. Alto-

gether, these arguments call for highly controllable experimental

frameworks in which the results and predictions of different

functional connectivity analysis techniques can be reliably tested in

different dynamic regimes.

A first step in this endeavor consists in simplifying the neuronal

system under investigation. For this reason, different studies have

focused on in vitro neuronal cultures of dissociated neurons [24,25].

Neuronal cultures are highly versatile and easily accessible in the

laboratory. Unlike in naturally formed neuronal tissues, the

structural connectivity in cultures can be dictated to some extent

[25], and even neuronal dynamical processes can be regulated

using pharmacological agents or optical or electrical stimulation.

These features have made neuronal cultures particularly attractive

for unveiling the processes shaping spontaneous activity, including

its initiation [26,27], synchronization [28] and plasticity [29,30], as
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well as self-organization [31] and criticality [32]. Moreover, some

studies also showed that spontaneous activity in in vitro prepara-

tions shares several dynamical traits with the native, naturally

formed neuronal tissues [33].

A second step consists in developing and testing the analysis

tools that identify directed functional interactions between the

elements in the network. Information theoretic measures such as

Transfer Entropy (TE) [34,35] can capture linear and non-linear

interactions between any pair of neurons in the network. TE does

not require any specific interaction model between the elements,

and therefore it is attracting a growing interest as a tool for

investigating functional connectivity in imaging or electrophysio-

logical studies [36–39]. The independence of TE on assumptions

about interaction models has made it adequate to deal with

different neuronal data, typically spike trains from simulated

networks [40], multi-electrode recordings [41–44] or calcium

imaging fluorescence data [22]. TE proved to be successful in

describing topological features of functional cortical cultures

[41,42,44], and in reconstructing structural network connectivity

from activity [22,43].

In a previous work [22], we investigated the assessment of

excitatory-only structural connectivity from neuronal activity data

(with inhibitory synaptic transmission blocked). For this purpose

we developed an extension of TE, termed Generalized Transfer

Entropy (GTE). To test the accuracy of our connectivity

reconstruction method, we considered realistic computational

models that mimicked the characteristically bursting dynamics of

spontaneously active neuronal cultures. Comparing diverse

reconstruction approaches, we concluded that GTE performed

superiorly, even when systematic artifacts such as light scattering

were explicitly added to our surrogate data. Besides the inclusion

of corrections coping with the poor temporal resolution of typical

calcium fluorescence recordings, a key ingredient making GTE

successful was dynamical state selection, i.e. the restriction of the

analysis to a dynamical regime in which functional interactions

were largely determined by the underlying hidden structural

connectivity. In particular we showed that it was necessary to

restrict the analysis to inter-burst regimes, while consideration of

bursting epochs led to inference of exceedingly clustered structural

topologies [22].

Here we extend our previous work, by attempting the inference

of both excitatory and inhibitory connectivity. Inhibition is a

major player in regulating neuronal network dynamics, and the

regulation of the excitatory-inhibitory balance is crucial for

optimal circuit function [45,46]. In the brain, inhibition shapes

cortical activity [47], dominates sensory responses [48], and

regulates motor behavior [49]. Severe behavioral deficits in

psychiatric diseases such as autism and schizophrenia have been

ascribed to an imbalance of the excitatory and inhibitory circuitry

[50]. Despite the importance of inhibition, functional connectivity

studies often disregard it because of the difficulty in its

identification. Hence, unraveling inhibitory connections, and their

interplay with the excitatory ones in shaping network dynamics, is

of major interest. We show here that the TE-based approach that

we previously used for the inference of excitatory connectivity can

be extended with virtually no modifications to networks including

as well inhibitory interaction, whose dynamics is once again

reproduced by realistic computational models for which the

ground-truth connectivity is known. We reveal that the most

difficult inference problem is not the identification of a link, be it

excitatory or inhibitory, but rather the correct labeling of its type.

We show that an elevated accuracy of labeling of both excitatory

and inhibitory links can be obtained by combining the analysis of

network activity in two conditions, a first one where both

excitation and inhibition are active, and a second one where

inhibition is pharmacologically removed. We show as well,

however, that the inference of link types remain extremely

uncertain with current experimental protocols. As a perspective

solution, we foresee, based on extensive simulations, that

significant improvements in both reconstruction and labeling

performance could be achieved by enhancing the spontaneous

firing of a culture through a weak external stimulation.

Results

Dynamics of biological and simulated networks
Dissociated neurons grown in vitro self-organize and connect to

one another, giving rise to a spontaneously active neuronal

network within a week (see Figure 1A) [24,30,51,52]. About 70–

80% of the grown connections are excitatory, while the remaining

20–30% are inhibitory [51]. Activity in neuronal cultures is

characterized by a bursting dynamics, where the whole network is

active and displays quasi-synchronous, high frequency firing

within 100–200 ms windows [30]. The timing of the bursts

themselves is irregular, with average inter-burst intervals on the

order of 10 s in a typical preparation. Between different bursts,

firing across the network has a low-frequency and can be described

as asynchronous.

Neuronal dynamics in cultures may be monitored using calcium

fluorescence imaging (see Methods)[24,53], which enables the

recording of the activity of thousands of individual neurons

simultaneously. Figure 1A shows example traces illustrating the

characteristic fluorescence signal of individual neurons in vitro. The

fluorescence signal is characterized by a fast onset as a result of

neuronal activation and the binding of Ca2z ions to the

fluorescence probe, followed by a slow decay back to the baseline

due to the slow unbinding rate. This behavior is apparent in the

population average of the signal, as shown in Fig. 1B, where bursts

are clearly identified by the fast rise of the fluorescence signal.

To appraise the role of inhibition on dynamics, we monitor

neuronal network activity in two different conditions: A first one,

with only excitatory connections active, where inhibitory connec-

tions have been completely blocked (denoted as ‘‘E–only’’

networks); and a second one, where both excitatory and inhibitory

connections are functionally active (herein after denoted as ‘‘E+I’’

networks). In experiments, inhibitory synapses are silenced

through the application of saturating levels of bicuculline, a

GABAA receptor antagonist (see Methods). An example trace of

the population average signal of such an excitatory-only system is

shown in the top left panel of Fig. 1B, whereas the dynamic

behavior in presence of inhibition is shown in the bottom left panel

of Fig. 1B. In the ‘‘E–only’’ condition, bursts are more pronounced

and more regular in amplitude than in the ‘‘E+I’’ condition, an

effect also seen in other studies [30,54,55].

These recordings in neuronal cultures provide a comparison

reference for our simulated networks of model neurons. We build a

computational model of a culture whose dynamics capture its

major qualitative features. These include a high variability in the

inter-burst intervals, a low *0:1 Hz inter-burst firing rate, and, in

presence of inhibition, an increase in bursting frequency as well as

a general decay in the amplitudes of the fluorescence signal, paired

by an increase in their heterogeneity. More specifically, we

consider a network of N~100 leaky integrate-and-fire nodes with

depressive synapses in combination with a model for the calcium

fluorescence. Network connectivity is random and sparse, with

links rewired in order to reach an above-chance level of clustering

(see Methods). Each node receives inputs from its pre-synaptic

neighbors as well as from independent external sources to mimic
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spontaneous single neuron activity due to noise fluctuations in the

ionic current through its membrane. Free model parameters, such

as the homogeneous conductance weights of recurrent connec-

tions, were calibrated such as to yield dynamics comparable to the

biological recordings, with a bursting rate of 0.1 Hz and realistic

decay time constants of the calcium fluorescence (see the bottom

right panels of Figure 1B). The blocking of inhibitory connections

(top right panel of Figure 1B) is simulated by setting the synaptic

weight of all inhibitory connections to zero (note, therefore, that

the firing itself of inhibitory neurons is not suppressed, but just its

postsynaptic effects).

As discussed more in depth in [22], a hallmark of bursting

dynamics is the right-skewed histogram of the population

average of the calcium fluorescence signal (see Figure 1C). Low

fluorescence amplitudes are associated to the non-bursting

regime, which is noise dominated, and the right tail of the

distribution reflects bursting events. The range spanned by

this right tail is distinctly shortened in presence of inhibition.

This difference in the large fluorescence amplitude distribution

can be ascribed to the dynamics at the synapse level: For purely

excitatory networks, the neurotransmitters resources of a given

synapse are depleted during a bursting event [56]. Neurons

experience high frequency discharge, but require a longer time to

recover, giving rise to long inter-burst intervals. Inhibition lowers

this release of neurotransmitters by suppressing neuronal firing

before complete depletion, therefore providing a faster recovery,

shorter inter-burst periods and lower firing activity inside the

bursts.

Reconstructing structural connectivity from directed
functional links

Based on simulations of the calcium dynamics in the network, a

network of (directed) functional connectivity is reconstructed by

computing the Generalized Transfer Entropy (GTE) for each

(directed) pair of links (see Methods). GTE is an extension of

Transfer Entropy, a measure that quantifies predictive information

flow between stationary systems evolving in time [35]. As an

information theoretical implementation of the Granger Causality

concept [57], a positive TE score assigned to a directed link from a

neuron i to a neuron j indicates that the future fluorescence of j
can be better predicted when considering as well the past

fluorescence of i in addition to the past of j itself. We previously

introduced GTE to study the reconstructed topology of purely

excitatory networks under diverse network dynamical states and

signal artifacts [22]. Here we extend its applicability to data that

includes inhibitory action.

Figure 1. Neuronal network dynamics. A Top: Bright field and fluorescence images of a small region of a neuronal culture at day in vitro 12.
Bright spots correspond to firing neurons. Bottom: Representative time traces of recorded fluorescence signals of 3 individual neurons. The numbers
beside each trace identify the neurons on the images. Data shows, for the same neurons, the signal in recordings with only excitation active (‘‘E’’) and
the signal with both excitation and inhibition active (‘‘E+I’’). B Population-averaged fluorescence signals in experiments (left) and simulations (right),
illustrating the semi-quantitative matching between in vitro and in silico data. Top: excitatory-only traces (‘‘E–only’’ data). For the experiments,
inhibition was silenced through application of saturating concentrations of bicuculline. For the simulations, inhibitory synapses were silenced by
setting their efficacy to zero. Bottom: traces for both excitation and inhibition active (‘‘E+I’’ data). Network bursts appear as a fast increase of the
fluorescence signal followed by a slow decay. Bursts are more frequent and display lower and more heterogeneous amplitudes in the presence of
inhibitory connections. C Histogram of population-averaged fluorescence intensity for a 1 h recordings in experiments (left) and simulations (right).
Data is shown in semilogarithmic scale for clarity. Red curves correspond to the ‘‘E–only’’ condition, and the blue curves to the ‘‘E+I’’ one.
doi:10.1371/journal.pone.0098842.g001
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Conditioning as state selection. A central observation that

motivated the definition of GTE was the existence of different

dynamical states in the switching behavior from asynchronous

firing to synchronous bursting activity. The distribution of

fluorescence amplitudes (see Figure 1C) provides a visual guide

to the relative weight of the single activity events and the bursting

episodes. A functional reconstruction in this bursting regime shows

a very clustered connectivity due to the tightly synchronized firing

of large communities of neurons. We can understand intuitively

this finding, by considering that, in the bursting regime, the

network is over-excitable and the firing of a single neuron can

trigger the firing of a large number of other neurons not

necessarily linked to it by a direct synaptic link. On the other

hand, the neuronal activity in the non-bursting regime is sparse

and dominated by pairwise interactions, and thus, a reconstruction

in this regime identifies directed functional interactions that

more closely match the structural connectivity (i.e. high

GTE might signal direct pre- to post-synaptic coupling in this

regime), as previously discussed thoroughly for ‘‘E–only’’ networks

[22].

A rough segmentation of the population signal into time

sequences of bursting and non-bursting events is simply

achieved by defining a fixed conditioning level on the population

average fluorescence. This simple modification with respect to

the original TE formulation, makes GTE suitable for an analysis

of functional interactions which distinguish different

dynamical regimes, as illustrated for purely excitatory

networks in the left panel of Figure 2A. The network is

indeed considered to be in a bursting regime when the network-

averaged fluorescence exceeds the chosen conditioning

level (dotted line in Figure 2A), and in an inter-burst regime

otherwise. The value of the conditioning level itself is obtained

through the analysis of the fluorescence signal histogram and set

close to the transition from the Gaussian-like profile shown for low

fluorescence values to the long tail characteristic of the population

bursts.

Figure 2. Signal conditioning. A Separation of the signal in two regimes according to the conditioning level (dotted line), a first one that
encompasses the low activity events (red curves), and a second one that includes the bursting regimes only (blue). The same conditioning procedure
is applied in both ‘‘E–only’’ networks (left) and in ‘‘E+I’’ ones (right). B Receiver Operating Characteristic (ROC) curves quantify the accuracy of
reconstruction and its sensitivity on conditioning. Functional networks are generated by including links with a calculated GTE score exceeding an
arbitrary threshold. ROC curves plot then the fraction of true and false positives in the functional networks inferred for every possible threshold. For
‘‘E–only’’ networks (left) and ‘‘E+I’’ networks (right), the red curves show the goodness of the reconstruction after applying the conditioning
procedure. Blue curves illustrate the reconstruction performance without conditioning. The ROC curves show that the conditioning procedure
significantly improves reconstruction performance. ROC curves were averaged over different network realizations (95% confidence intervals shown).
doi:10.1371/journal.pone.0098842.g002
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Note that, while our approach works by restricting the analysis

to epochs of inter-burst activity only, other complementary

methods exploit detailed information about typical burst build-

up sequences in order to infer structure, with potentially superior

results when the required time resolution is accessible (e.g. [58]).

Connectivity reconstruction of simulated ‘‘E–only’’

networks. Reconstruction performances from the GTE com-

putation are quantified in the form of receiver operating characteristic

(ROC) curves. These curves are obtained as follows: GTE assigns

a score to every possible link in the network, and only scores above

a given threshold are considered as putative links. These accepted

links are then systematically compared with the ground truth

topology of the network, and for gradually lower threshold levels.

The ROC curves finally plot the fraction of true positives, i.e.,

inferred connections which really exist, as a function of the fraction

of false positives, i.e., wrongly inferred connections.

The ROC curves of the reconstruction performance, with and

without conditioning, for the case of simulated ‘‘E–only’’ networks

are shown in the left panel of Figure 2B. Without conditioning

(blue ROC curves), the reconstruction quality of excitatory

connections — to both excitatory and inhibitory neurons

confounded — is significantly better than a random choice (which

would correspond to a diagonal line in the ROC curve). The

reconstruction is, however, hindered by the fact that the analysis

effectively averages over data from multiple dynamical regimes as

described above. The reconstruction performance thus signifi-

cantly increases by applying a conditioning (red ROC curves)

which selects uniquely the inter-burst regime.

It was also shown for simulations comparable to the ones

generated as described above, that the reconstructed networks

using GTE are approximately unbiased regarding bulk network

properties, such as the mean clustering coefficient, or the average

length of connections in the network [22].

Connectivity reconstruction of simulated ‘‘E+I’’

networks. An important aspect of Transfer Entropy, and by

extension of GTE, is its model-free nature. Thus, during the

process of identifying causal influences between neurons, there is

no need to define a generative model for neuronal firing or

calcium dynamics, as in the case, e.g., of Bayesian inference

approaches [59]. It follows that we can apply GTE without

modifications to the case in which both excitatory and inhibitory

links are active, provided that the inter-burst network state can be

identified in an analogous way. Indeed we observe that while the

presence of inhibition does change the dynamics of the system to

some extent, the switching behavior remains robustly present (see

the right panel of Figure 2A), allowing the straightforward

identification of a performing conditioning level.

Remarkably, the reconstruction performance of ‘‘E+I’’ networks

remains at high levels after conditioning, of about 80% true

positives at 10% false positives, as shown in the right panel of

Figure 2B. Thus the model-independence of GTE allows the

reconstruction of both excitatory and inhibitory links. As a further

self-consistency check, we have simulated the dynamics of a

neuronal culture with a topology identical to the inferred one and

compared it with the dynamics of the network with the original

ground-truth topology. The resulting bursting and firing rates, for

both the ‘‘E-only’’ and the ‘‘E+I’’ cases, are not statistically

significantly different from the case of perfect reconstruction, while

they markedly differ from the case of a randomized topology (not

shown). Nevertheless, given the phenomenon of structural

degeneracy, a large number of even very different structural

circuits could give rise to equivalent dynamical regimes [22].

Therefore, passing this self-consistency check is not a sufficient

condition to prove high reconstruction quality, though it is a

necessary one.

Note, finally, that we have disregarded, until now, the

identification of the specific type, i.e. excitatory or inhibitory, of

each link, focusing uniquely on whether a link is present or absent

in the ground-truth structural network, whatever is its nature. As

previously mentioned, correctly labeling a link turns out to be a

more elaborated task than just inferring its existence.

Distinguishing excitatory and inhibitory links
GTE probes the existence of unspecified influences between

signals, but cannot identify the type of occurring interaction a

priori. Its versatility also means that very different types of

interactions can give the same GTE score if their influence in

terms of predictability is the same. Hence, to separate between

excitatory and inhibitory connections we have to either introduce

ad hoc information on neuronal types or combine different

reconstructions together to single out the different connectivity

types.

Such ad hoc information might come from dye impregnation,

fluorescence labeling or immunostaining [60]. These techniques

identify cell bodies and processes according to some specific traits,

for instance membrane proteins or neurotransmitters’ receptors.

According to Dale’s principle [61], a neuron shows the same

distribution of neurotransmitters along its presynaptic terminals.

Hence, if a neuron is labeled as either excitatory or inhibitory, we

can assume that all its output connections are of the same

matching type. Thus by combining the type of information

provided by some extrinsic labeling technique with the unspecific

causal information provided by GTE, the overall set of inferred

links can be separated into two non–overlapping subsets of

excitatory and inhibitory links.

Being able to identify the type of a neuron — even with perfect

accuracy — does not guarantee a priori that excitatory and

inhibitory links can be inferred equally well. On the contrary,

different reconstruction performances have to be expected in

general, since the interaction mechanism of excitatory links is

inherently different from the inhibitory ones, the former promot-

ing the activity of the target neuron, whereas the latter restrain it.

We have tested the accuracy of this ad hoc approach through

numerical simulations. GTE is applied to the ‘‘E+I’’ data, and the

reconstruction quality is assessed separately for the connections

originating from neurons of different types (see Methods). Non

trivially, the results of this analysis indicate that both types of

connections are reconstructed with high accuracy (see Figure 3A).

At a fraction of 10% of false positives, excitatory links are detected

at a true positive rate of 80%. Inhibitory links show a lesser but still

high detection accuracy, of about 60% of true positives.

Reconstructing and labeling connections from
spontaneous dynamics

In the absence of information on neuronal types, an alternative

approach consists in a direct combination of the reconstructions

procured by the ‘‘E–only’’ and ‘‘E+I’’ data on the same neurons.

By adding together the GTE scores from the two reconstructions

we can assume that the higher scores come from links that show a

high score in both reconstructions. This procedure is thus expected

to highlight the pool of excitatory connections, since they are the

only ones present in both network conditions. Similarly, we can

subtract the ‘‘E–only’’ scores from the ‘‘E+I’’ ones. High scores

will then now highlight those links that are present in the ‘‘E+I’’

but not in the ‘‘E–only’’ network, i.e. the pool of inhibitory

connections.

Transfer Entropy Reconstruction and Labeling of Neuronal Connections
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The performance of this first two-step reconstruction approach

is shown in Figure 3B. The reconstruction of excitatory

connections has a quality as good as the one obtained with a

priori knowledge of neuronal type based on extrinsic labeling (see

Figure 3A). However, the performance markedly deteriorates for

the reconstruction of inhibitory links, since only 40% of the

inhibitory connections are correctly identified at 10% of false

positives.

Note that an additional complication arises with the described

two-steps pipeline. A given link might be attributed a combined

score above the inclusion threshold, both when considering the

sum and the difference of original GTE scores. In this case, the link

would be labeled as ‘‘both excitatory and inhibitory’’, a fact which

is excluded by Dale’s principle. Despite this problem, we might still

try to combine the ‘‘E–only’’ and ‘‘E+I’’ reconstructions to infer

the nature of each neuron. To test the accuracy of such

identification we try to label neurons as excitatory or inhibitory

based on a highly ‘‘pure’’ structural network reconstruction. To do

so, we select a very high GTE threshold for link, in such a way that

in the inferred subnetwork —including, correspondingly, very few

links only— the fraction of false positives remains small (with a

maximally tolerable ratio of 5%). We first sum and subtract ‘‘E–

only’’ and ‘‘E+I’’ scores to obtain putative excitatory and

inhibitory links, as just discussed. We next compute the output

degrees of the neurons for each subnetwork, kE and kI ,

respectively. Finally, we rank each neuron according to the

difference kE{kI . Following Dale’s principle, the set of neurons

with the highest (positive) ranking would be labeled as excitatory,

and those with the lowest (negative) ranking as inhibitory. The

results, however, as shown in the inset of Figure 3B, indicate that

this approach does not provide better results than a random

guessing of neuronal type (see Methods for details on significance

testing) and a different approach is required.

Reconstructing and labeling connections from
stimulated dynamics

As a matter of fact, the major challenge for an accurate

reconstruction and precise labeling of neuronal types is the

identification of inhibitory links, and this for the following reason.

To estimate GTE, we need to evaluate the probability of each

given neuron to be active in a short time window of a duration

Dt~(kz1) timage, where k~2 is the order of an assumed Markov

approximation (see Methods) and timage~20ms is the image

acquisition interval. With these parameter choices, we obtain then

Dt~60ms. Neurons in a culture spike with an average inter-burst

frequency of n*0:1Hz, resulting in a low firing probability within

each time bin. Continuing this reasoning, the probability that two

unconnected neurons spike at random in the same time window is

given by (nDt)2*4:10{5. The number of coinciding events Nevents

expected in a recording is thus:

Nevents*Nsamples (nDt)2, ð1Þ

where Nsamples is the number of independent samples in a

recording. In a typical recording session lasting *1 h, one gets

Nsamples*1:8:105 independent samples and therefore Nevents*6.

Hence, one can expect to observe, on average, just six concurrent

spikes between any pair of unconnected neurons. If an excitatory

link exists between two neurons, the conditional probability of

firing rises above this random level and more coincidence events

are observed, turning into an appreciable contribution to the GTE

calculation. However, if an inhibitory link is present, the number

of simultaneous spikes gets further reduced with respect to the

already very small chance level, making any accurate statistical

assessment very difficult. Nevertheless, we note that the number of

detected events scales as n2 with the frequency of firing, and even a

Figure 3. Optimal network reconstruction. A ROC curves for the reconstruction of a network with both excitatory and inhibitory connections
active, supposing to know a priori information about neuronal type. GTE is first applied to the ‘‘E+I’’ data. Next, following Dale’s principle and
exploiting the available information on neuronal type, links are classified according to their excitatory (red) or inhibitory (blue) nature. B ROC curves
for the best possible identification of excitatory and inhibitory connections, when information on neuronal type is unaccessible. Excitatory links (red)
are identified by adding together the Transfer Entropy scores of simulations run in ‘‘E–only’’ and ‘‘E+I’’ conditions, and later thresholding them.
Inhibitory links (blue) are identified by computing the difference in Transfer Entropy scores between the runs with inhibition present and blocked.
Inset: fraction of excitatory and inhibitory neurons correctly identified from these ROC curves. Results were not significantly different from random
guess (see Methods). All the results were averaged over different network realizations. The shaded areas in the main plots, as well as the error bars in
the inset, correspond to 95% confidence intervals.
doi:10.1371/journal.pone.0098842.g003
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slight increase in spiking frequency would enhance considerably

the reconstruction performance.

A promising approach to increase neuronal firing consists in

forcing the neuronal network through external stimulation.

Several studies on neuronal cultures have used external drives,

typically in the form of electrical stimulation, to act on neuronal

network activity, for instance to investigate connectivity traits

[51,62], modify or control activity patterns [63,64], or explore

network plasticity [65,66]. Such in vitro approaches are reminiscent

of in vivo clinically relevant techniques such as deep brain

stimulation, used in the treatment of epilepsy and movement

disorders [67,68].

External stimulation in neuronal cultures has been reported to

increase neuronal firing [64] and to reduce network bursting

[63,65], a combination of factors that, in the GTE reconstruction

context, improve the accuracy in the identification of the network

architecture. To explore potential improvements in reconstruc-

tion, we simulate the effect of an applied external drive in a purely

phenomenological way by increasing the frequency parameter of

the Poisson process that drives spontaneous activity. This

additional drive never increases the spontaneous firing frequency

beyond 3 Hz, being meant to represent the effects of a rather weak

external stimulation. Due to this contained increase of firing rate,

the collective bursting activity of the simulated network continues

to be shaped dominantly by network interactions, rather than by

the drive itself.

The performance of our GTE algorithm combined with a weak

network stimulation is illustrated in Fig. 4A, where we show the

fraction of true positives in the reconstruction of ‘‘E–only’’

networks at 5% false positives. The presence of even very small

external drives substantially enhances reconstruction based on

GTE. For higher drives, reconstruction performance reaches a

plateau that quantifies the range of optimum stimulation.

Performance later decays due to the excess of stimulation, which

substantially perturbs spontaneous activity and alters qualitatively

the global network dynamics. We incidentally remark that the

incorporation of the external drive makes unnecessary — actually,

even deleterious — the instantaneous feedback term correction

(IFT, see Methods), i.e., an ad hoc modification to the original

formulation of TE which was introduced in [22] to cope with the

poor frame rate of calcium fluorescence recordings, definitely

slower than the time-scale of monosynaptic interaction delays. The

Figure 4. Reconstruction improvement through external stimulation. A and B, fraction of true positives from the reconstructions at the 5%
false positive mark for the studied networks. ‘‘E–only’’ networks are shown in A; ‘‘E+I’’ networks in B. Inset: dependence of the spontaneous firing rate
on the applied external drive, emulated here by increasing the rate of the background drive to the culture in silico. All the excitatory reconstructions
reach a stable plateau in the reconstruction after removal of the instantaneous feedback term (IFT) correction (see Methods). The inhibitory
reconstruction is accurate only for higher values of the external drive. C ROC curves extracted from A and B with an external stimulation of 4 Hz.
Inset: fraction of excitatory and inhibitory neurons correctly identified from these reconstructions. Identification was statistically significant compared
to random guessing. For excitatory neurons, pv0:01 (**); for inhibitory neurons, pv10{4 (***). D Example of an actual reconstruction after
identification of neuronal type. Identified excitatory neurons are shown in red and inhibitory ones in blue. Incorrectly identified neurons are shown in
grey. Correctly identified excitatory and inhibitory links are shown in red and blue, respectively, and wrongly identified links are shown in black. For
clarity in the representation of the links, a threshold value lower than the optimal has been applied.
doi:10.1371/journal.pone.0098842.g004
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IFT correction allows to encompass interactions occurring in the

same temporal bin of the recording for TE estimation, a feature

useful to enhance reconstruction results when the time-scale of

pre-postsynaptic neuron interactions is fast relative to the time

resolution of the recording. However, same–bin interactions also

result in an overestimation of bidirectional connections, since one

cannot establish directionality within a single time bin. When the

firing rate is enhanced with respect to spontaneous conditions

these negative effects of the IFT corrections become predominant.

The same reconstruction analysis for ‘‘E+I’’ networks is shown

in Fig. 4B, for excitatory and inhibitory links separately. The

identification of excitatory links greatly improves with moderate

drives and, again, IFT becomes unnecessary. For inhibitory links,

performance is optimum at low drives, when IFT is used. Without

IFT, however, performance is better at relatively high drives, and

one can observe the existence of an optimal stimulation range

(leading to a firing rate of *5 Hz) that maximizes inhibition

reconstruction while preserving a relatively good excitatory

identification.

We note as well that, for ‘‘E+I’’ networks, bursts disappear in

general at higher values of the external drive. In general, as

depicted in the inset of Fig. 4A, the dependence of the spontaneous

firing frequency on the external drive is quantitatively different

from ‘‘E–only’’ networks, requiring typically a stronger drive to

achieve a comparable firing rate.

With the external drive the overall ROC curves are also

improved. In Figure 4C we show the reconstruction performance

for medium values of stimulation. In this new regime, we can again

try to determine the neuronal type based on the labeling

procedure used in the previous section (inset of Figure 4C). Now

excitatory neurons are correctly identified with 90% accuracy,

whereas the fraction of inhibitory neurons correctly identified rises

conspicuously to 60%. This marked improvement is now

statistically significant (see Methods).

In Figure 4D we show an actual reconstruction of a portion of

the original network with this procedure. Correctly inferred

excitatory and inhibitory neurons are shown in red and blue

respectively, and mismatches in yellow. Correctly identified

excitatory and inhibitory links are also shown in red and blue

respectively, and false positives are shown in black. It is visually

evident that for this thresholding level a very high purity is

achieved, and only a small fraction of the reconstructed links are

false positives.

We conclude that the addition of a weak external stimulation to

the ‘‘bare’’ network dynamics results in an overall improvement on

the reconstruction of both excitatory and inhibitory links.

Moreover, by combining the reconstructions of ‘‘E–only’’ and

‘‘E+I’’ networks, we also become able to infer the neuronal type by

just analyzing the dynamics, with no a priori knowledge of the

system and without resorting to extrinsic information of any sort.

Discussion

Living neuronal networks contain both excitatory and inhibitory

neurons. Although the interplay between excitation and inhibition

gives rise to the rich dynamical traits and operational modes of

brain circuits, inhibition is often neglected when analyzing

functional characteristics of neuronal circuits, mostly because of

its difficult identification and treatment. In this work we have

made a first step towards filling this gap, and introduced a new

algorithmic approach to infer inhibitory synaptic interactions from

multivariate activity time-series. In the framework of a realistically

simulated neuronal network that mimics in a semi-quantitative

way key features of the behavior of neuronal cultures, we applied

Generalized Transfer Entropy (and Dale’s principle) to identify

excitatory as well as inhibitory connections and neurons.

In a previous work [22], we developed the GTE framework and

applied it to extract topological information from the dynamics of

purely excitatory networks, but left as an open question the

treatment of inhibition. Here we have shown that GTE has the

potential to be applied without substantial modifications to

recordings relative to cultures with active inhibition (‘‘E+I’’

cultures). This data is characterized by an irregular bursting

dynamics with overall lower — but distinctly fluctuating —

fluorescence amplitudes as well as higher bursting frequencies than

purely excitatory (‘‘E–only’’) signals. In general, GTE provided an

overall good reconstruction of the ‘‘E+I’’ simulated data, hinting at

the robustness and general applicability of the algorithm. This is a

highly non trivial achievement of the algorithm, given the

profoundly different functional profile of inhibitory actions. The

GTE reconstruction alone performed well in identifying the

existence of links between pairs of neurons, however, it was not

sufficient to resolve their excitatory or inhibitory nature. Yet, we

provided evidence through numerical experiments that this

additional goal could be fulfilled by retrieving a priori information

about the types of different neurons (e.g. through immunostaining

or selective fluorescent dyes), or by combining the reconstructions

obtained from both ‘‘E+I’’ and ‘‘E–only’’ recordings from a same

network (thus, again relying uniquely on time-series analysis).

When a priori information about the type of each neuron is

available, Dale’s principle proves to be, at least in our simulations,

a solid yet simple approach that allows the identification of the

major connectivity traits of the neuronal network. However, when

applying Dale’s principle to actual, living neuronal networks

recordings (see later), one has to consider its possible limitations,

like the existence of (rare) exceptions to it [69]. We also remark

that, in a more realistic context, other types of a priori information

beyond the nature of the neurons and their processes could be

considered, like, e.g. information about their spatial distribution.

Although in this work we have considered only purely random

distance-independent topologies, neuronal cultures grow on a bi-

dimensional domain, and excitatory connections are typically of

shorter range than inhibitory ones. This kind of information could

be integrated in the analysis of network models that include metric

properties and accounts for spatial embedding (such as [27,70,71]),

as well as different connectivity rules for the generation of

excitatory and inhibitory sub-networks.

A systematic extrinsic labeling of neuronal types might be

difficult to achieve in large culture experiments. When a priori

information is unavailable, our results show that the combination

of the reconstructions for ‘‘E–only’’ and ‘‘E+I’’ spontaneous

activity data fails at identifying robustly the inhibitory interactions.

Nevertheless, we find that the reconstruction performance of

excitatory links remains almost unchanged when inhibition is

present, despite the fact that inhibition may substantially alter

excitatory interactions, and in turn network dynamics, for instance

through feedback and feedforward inhibitory loops. The observa-

tion that excitatory links are still correctly reconstructed in ‘‘E+I’’

data shows the robustness of the algorithm to the presence of

different interactions in the system. We remark that the main

factor determining the poor identification of inhibitory links is the

weak firing rate during inter-burst epochs. Since, in a nearly

asynchronous regime of inter-burst firing, the action of a direct

inhibitory link manifests itself by reducing below the already small

chance level the probability of firing coincidence between the two

connected neurons, the recording of a larger amount of inhibitory

firing would be required to improve the reconstruction of

inhibitory couplings. Although the recording duration can be
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increased at will in numeric simulations, this is not the case for real

experimental recordings, to which our algorithm aims at being

applied.

In our simulations, we naturally achieved to increase single

neuronal firing activity, and therefore reconstruction statistics

through a weak external stimulation of the network, with neither a

significant disturbance in neuronal network dynamics nor the need

for substantially longer recordings. In many previous works

resorting to external drives to stimulate network activity, both

experimental and theoretical, the applied stimulation was supra-

threshold, i.e. the stimulation triggered directly neuronal firing

[51,54,62,72,73]. Our approach raises instead network excitability

by a weak external drive that effectively increases activity without

modifying the network intrinsic behavior, in the direction of other

experimental studies that stimulated multiple sites of a neuronal

culture via a multi-electrodes array, to either increase network

firing, reduce the occurrence of bursting episodes, or investigate

plasticity [64,66]. Interestingly, these works observed that a weak

stimulation along few hours did not induce plastic effects, i.e. did

not change network behavior, thus making our reconstruction

strategy of immediate applicability in experimental recordings.

In the present work we have exhibited experimental data only

for qualitative comparison with fluorescence traces obtained from

the numerical model. The experimental data could be analyzed in

principle without need of any modification to the GTE

formulation, but we found our present knowledge of the

experimental recordings insufficient to get reliable reconstructions.

In particular, we are lacking good estimates of the neuronal firing

rate during the inter-burst periods, as well as the amount of

fluorescence change caused by an action potential. The former

does not allow to determine whether we expect enough events to

make the reconstruction of inhibitory links feasible (see Eq. (1)),

while the latter prevents the application of an optimal data

discretization strategy that would reduce the minimal recording

length needed for accurate results. Our study intends therefore to

foster the future application of the workaround strategies here

explored in experiments in silico, i.e., most notably: (i) a weak

external stimulation to increase spontaneous activity; and (ii) the

extrinsic labeling of excitatory and inhibitory neuronal cell bodies

after the recording (to provide at least a partial source of a priori

information) to be used in synergy with our algorithmic approach.

Finally, our reconstruction algorithm has the potential to be

immediately applied to the analysis of fluorescence data in

experimental recordings that are not affected by the aforementioned

limitations. In particular, in vivo recordings and brain slice

measurements [74–76] display a much richer activity at the

individual neuron level than in the in vitro counterparts. Recent

works have highlighted the ability of high speed multi-neuron

calcium imaging to access neuronal circuits in vivo [77–79]. Our

methodology can thus be directly applied to these data, particularly

in those investigations that target the role of inhibition [80,81],

although systematic verification of the inferred connectivity (in

absence of a known ground-truth structure) remains currently out of

reach and validation is only possible at the statistical level.

Methods

All procedures were approved by the Ethical Committee for

Animal Experimentation of the University of Barcelona, under

order DMAH-5461.

Calcium traces from in vitro cultures
Experimental traces of fluorescence calcium signals were

obtained from rat cortical cultures at day in vitro 12, following

the procedures described in our previous work [22] and in other

studies [27,51,82]. Briefly, rat cortical neurons from 18–19-day-

old Sprague-Dawley embryos were dissected, dissociated and

cultured on glass coverslips previously coated with poly–l–lysine.

Cultures were incubated at 370C, 95% humidity, and 5% CO2.

Each culture gave rise to a highly connected network within days

that contained on the order of 500 neurons/mm2. Sustained

spontaneous bursting activity appeared by day in vitro 6{7. Prior

to imaging, cultures were incubated for 40 min in recording

medium containing the cell–permeant calcium sensitive dye Fluo-

4-AM. The culture was washed with fresh medium after

incubation and finally placed in a recording chamber for

observation. The recording chamber was mounted on a Zeiss

inverted microscope equipped with a Hamamatsu Orca Flash 2.8

CMOS camera. Fluorescence images were acquired with a speed

of 50 frames per second and a spatial resolution of 3.4 mm/pixel.

In a typical measurement, we first recorded spontaneous activity

as a long image sequence 60 min long. Both excitatory and

inhibitory synapses were active in this first measurement (‘‘E+I’’

network). We next fully blocked inhibitory synapses with 40 mM

bicuculline, a GABAA antagonist, so that activity was solely driven

by excitatory neurons (‘‘E–only’’ network). Activity was next

measured again for another 60 min. At the end of the

measurements, images were analyzed to to retrieve the evolution

of the fluorescence signal for each neuron as a function of time.

Note once again that, in this study, experimental fluorescence

traces were used only as a guiding reference for the design of

synthetic data in ‘‘E–only’ and ‘‘E+I’’ conditions, and were not

analyzed to provide network reconstructions, given the limitations

of current experimental protocols, highlighted in the Results and

Discussion section.

In silico model
Network generation. We randomly distributed N~100

neurons over a square area of 1 mm2. Neurons were labeled as

either excitatory with probability pE~0:8 or inhibitory with

pI~0:2. A directed connection (link) was created between any pair

of neurons with fixed probability p~0:12, giving rise to a directed

Erdos-Rényi network[83]. The resulting network is defined by the

adjacency matrix A, whose entries aji~1 denote a connection

from neuron j to neuron i (j?i). The average full clustering

coefficient of the network [84] is given by

CC~
AzAT
� �3

ii

2Ti i

, ð2Þ

where AT is the transpose of A and STi denotes average over index

i. Ti is defined as

Ti~dt
i dt

i {1
� �

{2d<
i , ð3Þ

where dt
i is the total degree of node i (the sum of its in– and out–

degree) and d<
i is the number of bidirectional links of node i. The

clustering coefficient of the network after its construction was

*0:12, a value that was then raised up to a target one of 0.5 by

following the Bansal et al. construction [85], as follows. Two

existing links aij and akl were first chosen at random, with

i=j=k=l. These links were then replaced by ail and akj . This

step was repeated until the desired clustering coefficient was finally

reached within a tolerance of 0.1%.

This above-chance clustering level was generated to account for

experimental observations of clustered connections in neuronal

local circuits [86]. We do not perform here a systematic study of
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the impact of CC on reconstruction performance, referring the

reader to Ref. [22] for this issue, in which CC-independent

performance is demonstrated.

Network dynamics. Neurons in the simulated culture were

modeled as integrate-and-fire units, of the form

tm
dVi

dt
~{(Vi{Vr)z

1

gl

IA
i zIG

i zg
� �

, ð4Þ

where Vi is i-th neuron’s membrane potential and Vr~{70mV
its resting value, tm~20ms is the membrane time constant,

gl~50pS is the leak conductance, IA and IG the excitatory

(AMPA) and inhibitory (GABAA) input currents respectively, and

g a noise term. When the membrane potential reaches the

threshold value Vt~{50mV the neuron fires and its membrane

potential is reset to a value Vr~{70mV, which is maintained for

a refractory time tr~2ms during which the neuron is prevented

from firing.

Neurotransmitters were released as a response to a presynaptic

action potential fired at time tk, binding to the corresponding

receptors at the postsynaptic side of its output neurons. The

binding of neurotransmitters at the receptors triggered the

generation of postsynaptic currents IA or IG , depending on the

presynaptic neuronal type. The total input current received by a

given neuron was described by

Ix
i (t)~gx

XN

j~1

X
tk
j

AijE
x
j (t)a(t{tk

j {tx
d ), ð5Þ

where tx
d is a transmission delay (mimicking axonal conduction),

with tA
d ~1:5ms and tG

d ~4:5ms. gx is the synaptic strength, which

was adjusted to obtain the desired burst rate. The value of

gA~7:75pA in a network with inhibition silenced provided a

bursting rate of *0.1 Hz. When inhibition was active, a

comparable bursting rate of of *0.12 Hz was obtained by setting

gG~{2gA. Ex
j (t) is a term accounting for short–term synaptic

depression, and a(t) is an alpha shaped function of the form

a(t)~ exp 1{t=tsð Þ t

ts

H(t), ð6Þ

where ts~2ms represents the synaptic rise time and (t) is the

Heaviside step function.

Short–term synaptic depression accounts for the depletion of

available neurotransmitters at the presynaptic terminals due to

repeated activity [87]. The neurotransmitters dynamics at the

synapses of neuron i was described by the set of equations [88]:

dRx
i

dt
~

1{Rx
i {Ex

i

tx
r

{U
X

tk

Rx
i (tk

i )d(t{tk
i ),

dEx
i

dt
~{

Ex
i

ti

zU
X

tk

Rx
i (tk

i )d(t{tk
i ), ð7Þ

where Rx
i and Ex

i are the fraction of available neurotransmitters in

the recovered and active states, respectively. tx
r is the characteristic

recovery time with tA~r5000 ms and tG
r ~100 ms. ti~3 ms is the

inactivation time and U~0:3 describes the fraction of activated

synaptic resources after an action potential.

Simulating calcium fluorescence signals. Based on the

simulated spike data, synthetic calcium fluorescence signals were

generated according to a model that incorporates the calcium

dynamics in the neurons and experimental artifacts. The former

describes the saturating nature of calcium concentration bound to

the calcium dye inside the cells, while the latter treats the noise of

the recording camera as well as light scattering due to anisotropies

in the recording medium [22].

Each action potential of a neuron i at time t leads to the intake

of ni,t calcium ions through the cell membrane, raising the calcium

concentration inside the cell. A number ½Ca2z�i,t of the Calcium

ions bind the fluorescence dye by a fixed amount ACa~50mM,

and are slowly freed with a time scale tCa~1s. This process is

described by the equation

½Ca2z�i,t{½Ca2z�i,t{1~{
timage

tCa
½Ca2z�i,t{1zACa ni,t, ð8Þ

where timage is the simulated image acquisition frame rate.

The level of calcium fluorescence F0
i,t emitted by a cell was

modeled by a Hill function of the bound calcium concentration

(with saturation level Kd~300mM) together with an additive

Gaussian noise term gi,t characterized with a standard deviation

snoise~0:03 [59], i.e.

F0
i,t~

½Ca2z�i,t
½Ca2z�i,tzKd

zgi,t: ð9Þ

The level of fluorescence recorded by the camera at a given

neuron was not independent of neighboring cells due to the

introduction of simulated light scattering. We incorporated this

artifact by adding to the monitored cell a fraction Asc~0:15 of the

fluorescence from neighboring cells, which was weighted accord-

ing to their mutual distance dij by a Gaussian kernel of width

lsc~0:05mm. The total fluorescence captured in a neuron was

then given by:

Fi,t~F0
i,tzAsc

XN

j~1,j=i

F0
j,t exp { dij=lsc

� �2
n o

: ð10Þ

Generalized Transfer Entropy
Generalized Transfer Entropy (GTE) was introduced in [22] as

an extension of the original Transfer Entropy notion [35]. It is

given by the Kullback-Leibler divergence between two probabi-

listic transition models for a given time series I , conditioned on the

system visiting a specified target dynamical state. In the case of

fluorescence signals, this state selection is achieved by conditioning

the analysis to the regime where the population average of the

time series G is lower than a given threshold ~gg, i.e.

GTEJ?I~
X

P(it,i
(k)
t{1,j

(k)
t{1zSjgtv~gg)

log
P(itj i(k)

t{1,j
(k)
t{1zS,gtv~gg)

P(itj i(k)
t{1,gtv~gg)

:
ð11Þ

Here, vectors in time are denoted by their length in brackets,

which is equal to the order of Markov order approximation
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assumed for the underlying process, x
(n)
t ~fxt,xt{1,:::,xt{nz1g.

The sum is defined over all possible values of it and the vectors

i
(k)
t{1 and j

(k)
t{1zS . The shift variable S[f0,1g denotes the inclusion

of same-bin (instantaneous) interactions for S~1. This adjustment

was introduced in [22] to cope with the limited time-resolution of

calcium fluorescence signals and is dubbed in the text as

Instantaneous Feedback Term (IFT) correction. Furthermore,

the time-series of calcium fluorescence were high-pass filtered by

mean of a discrete difference operator, as a straightforward

attempt to enhance the visibility of firing events drowned in noise.

Note that GTE reduces to conventional Transfer Entropy for

S~0 and ~gg??, i.e. when same-bin interactions are excluded and

when the selected state encompasses the whole observed dynamics.

The Markov order of the underlying process is here somewhat

arbitrarily set to k~2, following on [22] where we extensively

checked its effect on the reconstructions: in our previous study,

k~2 resulted to be the lowest dimensionality in the probability

distribution allowing to separate actual interactions from signal

artifacts like light scattering.

Note that we did not perform any delay embedding of the time-

series, because we did not find it here necessary to reach satisfying

performance levels, or leading to noticeable improvements.

Methodological developments along the lines of [38,39] would

be however desirable for future applications to real experimental

data.

Code for our Generalized Transfer Entropy method is publicly

available at https://github.com/olavolav/TE-Causality.

Optimal binning
The probability distributions in GTE as defined in Eq. (11) were

estimated based on discretized values of the temporal difference

signal of the observed fluorescence. To cope with potential

undersampling artifacts —since the probability distributions to

estimate have an elevated dimensionality, as large as 2kz1— we

symbolized the signals into a binary sequence, by applying a sharp

threshold. The optimal threshold value x̂x for this conversion was

obtained from the following analysis. We first ignored the

exponential decay of the fluorescence signal since it has a small

influence on discretely differentiated signals, and assumed a

sufficiently low firing rate so that the occurrence of more than one

spike per frame of a given neuron is negligible. Under these

simplification hypotheses, the probability distribution of the signal

can be cast as a combination of Gaussian functions, with mean

values given by the offset associated to the number of action

potentials encountered in the current time bin. Additionally, to

preserve information about spiking events when projecting the

time-series into a binary representation, we computed the optimal

mapping by determining the probability P that the mapping is

correct at any given time step (provided the parameters of the

model q and a threshold value x), i.e.:

P(correct mapping jq)~P(xt§x,st~1jq)z

P(xtvx,st~0jq),

where st[f0,1g denotes the occurrence of a firing event at time

frame t, and q refers to unspecified but frozen parameters of the

analyzed system, which have a potential influence on the estimated

probability. In particular, the probability that a neuron fires at a

given image frame is a function of the firing rate and the length of

the image frame, psp~fsp timage. For a normally distributed

camera noise with standard deviation snoise and an expected

variation Dx in fluorescence due to a single spike, a straightforward

solution for the optimal separation value x̂x that yields the

maximum of the correct mapping probability can be derived:

x̂x~
1

2
Dxz

s2
noise

Dx
log

1{psp

psp

� �
: ð12Þ

GTE scores were robust against the selection of a separation value

above the optimal x̂x. Indeed, for xwx̂x the total number of samples

above the separating value is reduced, but the fraction of samples

that correspond to real spikes is actually increased. The resulting

network reconstructions did not show any notable decrease of

quality for values of x up to a 30% above the optimal value.

Network reconstruction
In order to reconstruct a whole network, GTE was computed

for each directed pair of neurons i,j from Eq. (11), resulting in a

matrix M of directed causal influences where Mji~GTEJ?I . A

new binary matrix T(z) was created from the GTE scores, where

Tji~1 if Mji is amongst the fraction z of links with the highest

GTE score.

The quality of the reconstruction was quantified through a

Receiver Operating Characteristic (ROC) analysis. The ROC is a

parametric curve that establishes a relationship between the true

and the false positive links found in T(x) for the different

thresholded levels. If A denotes the binary connectivity matrix of

the real network, then the true positive ratio (TPR) is defined as

the number of links in T that are present in A respect to the total

number of existing links. The false positive ratio (FPR) is the

fraction of links in T that do not match original links, i.e.,

TPR(z)~
X
Vi,j

Tji(z)Aji=
X
Vi,j

Aji, ð13Þ

FPR(z)~
X
Vi,j
i=j

Tji(z)Aji=
X
Vi,j
i=j

Aji, ð14Þ

where A is the negation of the binary connectivity matrix A (0<1).

Thus TPR(z) and FPR(z) constitute, respectively, finite-size

estimates of the probabilities P(reconstruction~1j true~1,z) and

P(reconstruction~1jtrue~0,z), for any given link across the

network. Confidence intervals for ROC curves were estimated

based on 5 different network realizations.

Combining two reconstruction results. To distinguish

between excitatory and inhibitory neurons, we combined the

information of the reconstructions obtained from the ‘‘E+I’’ and

‘‘E–only’’ data, namely MEzI and MEonly. We assumed that

excitatory links are present in both datasets, while inhibitory ones

appear only in the ‘‘E+I’’ reconstruction, and proceeded by

defining new matrices of putative excitatory Mexc and putative

inhibitory influences M inh, of the form:

Mexc~MEzIzMEonly, ð15Þ

M inh~MEzI{MEonly: ð16Þ

To obtain the effective connectivity reconstruction only the rank

ordering of GTE values is relevant. Therefore no rescaling of these
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matrices is necessary, and the final set of links could be obtained by

thresholding the matrices as described above.

To label the neurons as either excitatory or inhibitory, we first
removed all links that were present in both reconstructions, and
then ranked the neurons according to the difference between

excitatory and inhibitory links, li~
P

j T exc
ji {

P
j T inh

ji . We next

used the prior information that a fraction fE~80% of the
neuronal population is excitatory, therefore identifying as excit-
atory neurons the fE fraction with the highest li score, and labeling

the rest as inhibitory.
Statistical tests. Statistical significance on the inference of

excitatory and inhibitory neuronal types was performed as follows.

Assuming that the fraction of excitatory and inhibitory neurons (fE

and fI respectively) is known with good precision in a population of

N cells, the probability to correctly identify by chance a given set of

neurons nE and nI in a given trial X follows a binomial distribution:

P(X~n)~
Nfx

n

� �
f n
x (1{fx)Nfx{n: ð17Þ

Let suppose that a labeling method provides a fraction nguess of

correctly labeled links. We considered this labeling result as

statistically significant if the probability of outperforming by

chance this success rate was P(X§nguess)vp, with a standard

choice of p~0:05.
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