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ABSTRACT  

 Transient receptor potential vanilloid 1 (TRPV1)1 is a molecular pain receptor belonging 

to the transient receptor potential (TRP) superfamily of non-selective cation channels. As a 

polymodal receptor, TRPV1 responds to heat and a wide range of chemical stimuli. The influx of 

calcium following channel activation serves as a negative feedback mechanism leading to 

TRPV1 desensitization.  The cellular calcium sensor calmodulin (CaM) likely participates in the 

desensitization of TRPV1. Two CaM binding sites are identified in TRPV1: the N-terminal 

ankyrin repeat domain (ARD) and a short distal C-terminal segment. Here we present the crystal 

structure of calcium-bound CaM (Ca2+-CaM) in complex with the TRPV1 C-terminal (CT) 

segment, determined to 1.95 Å resolution. The two lobes of Ca2+-CaM wrap around a helical 

TRPV1-CT segment in an anti-parallel orientation, and two hydrophobic anchors, W787 and 

L796, contact the C-lobe and N-lobe of Ca2+-CaM, respectively. This structure is similar to 

canonical Ca2+-CaM peptide complexes, although TRPV1 contains no classical CaM recognition 

sequence motif.  Using structural and mutational studies, we established the TRPV1 C-terminus 

as a high affinity Ca2+-CaM binding site in both the isolated TRPV1 C-terminus and in full-

length TRPV1. Although a ternary complex of CaM, TRPV1-ARD and TRPV1-CT had 

previously been postulated, we found no biochemical evidence of such a complex. In 

electrophysiology studies, mutation of the Ca2+-CaM binding site on TRPV1-ARD abolished 

desensitization in response to repeated application of capsaicin, whereas mutation of the Ca2+-

CaM binding site in TRPV1-CT led to a more subtle phenotype of slowed and reduced TRPV1 

desensitization. In summary, our results show that the TRPV1-ARD is an important mediator of 

TRPV1 desensitization, whereas TRPV1-CT has higher affinity for CaM and is likely involved 

in separate regulatory mechanisms. 
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 INTRODUCTION 

 TRPV1 is well recognized as a polymodal molecular pain receptor responding to a wide 

range of stimuli including noxious heat >43°C, chemical agonists and protons (Caterina et al., 

1997; Tominaga et al., 1998). TRPV1 responses to these stimuli signal the exposure to extreme 

temperature or tissue damage to elicit appropriate protective mechanisms.  TRPV1 is well 

characterized for its activation by capsaicin, a naturally occurring compound found in chili 

peppers (Caterina et al., 1997). Prolonged activation of TRPV1 with capsaicin results in acute 

desensitization, where TRPV1 activity decreases during the course of stimulation. In contrast, 

repeated stimulation of TRPV1 results in tachyphylaxis where TRPV1 activation decreases with 

successive stimulation followed by loss of response to any subsequent stimuli.  

TRPV1 belongs to the transient receptor potential (TRP) superfamily of non-selective 

cation channels with high relative permeability for Ca2+ (Caterina et al., 1997). All TRP channels 

share a similar topology comprising six predicted helical transmembrane segments (S1-S6), and 

large N- and C-terminal cytosolic regions for integrating cellular signaling with channel activity 

(Gaudet, 2008). The N-terminal region of TRPV1 contains an ankyrin repeat domain (ARD), of 

which a structure is available (Lishko et al., 2007). The cytoplasmic C-terminus, of unknown 

structure, contains multiple sites for interactions with modulatory factors. TRPV1 functions as a 

tetramer, with S5-S6 forming the pore through which ion conduction occurs. Opening of TRPV1 

following channel activation allows the influx of cations, including Ca2+, into the cell.  

The intracellular Ca2+ concentration is kept as low as 10-7 M in contrast to a high external 

Ca2+ concentration up to 10-3 M (Yamniuk and Vogel, 2004). The steep Ca2+ concentration 

gradient across the membrane in combination with the high relative permeability of TRPV1 for 

Ca2+ ensures rapid Ca2+ influx into the cells upon TRPV1 activation. However, intracellular 
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calcium homeostasis is crucial for normal cell function (Han et al., 2007), and continuous 

capsaicin activation of cells expressing TRPV1 or stimulation of TRPV1 with the potent agonist 

resiniferatoxin results in severe cytotoxicity and cell death (Caterina et al., 1997; Karai et al., 

2004).  Ca2+ ions are involved in various cellular processes, including several Ca2+-dependent 

desensitization mechanisms identified for TRPV1. One is the Ca2+-dependent recruitment of the 

calcineurin phosphatase to TRPV1 via a scaffolding protein, promoting the dephosphorylation 

and dampening of TRPV1 activity (Docherty et al., 1996; Mohapatra and Nau, 2005; Zhang et 

al., 2008).  Similarly, Ca2+-dependent stimulation of phospholipase C (PLC) may promote 

cleavage of the sensitizing agent PIP2 (Liu et al., 2005; Stein et al., 2006; Lishko et al., 2007; 

Lukacs et al., 2007; Yao and Qin, 2009; Mercado et al., 2010).  Although depletion of PIP2 is 

thought to play a major role in desensitization (Lukacs et al., 2007; Mercado et al., 2010), 

artificial depletion of PIP2 does not completely reproduce the near full desensitization observed 

in the presence of calcium (Lukacs et al., 2007). 

A third proposed mechanism is the inactivation of TRPV1 via interactions with Ca2+-

CaM (Numazaki et al., 2003; Rosenbaum et al., 2004; Lishko et al., 2007; Grycova et al., 2008). 

CaM is a ubiquitous and highly conserved 17 kD protein. It comprises two globular domains, the 

N and C-lobes, connected by a central flexible linker that allows CaM to assume different 

conformations (Barbato et al., 1992; Tjandra et al., 1995). Each lobe contains two helix-loop-

helix Ca2+-binding motifs known as EF hands and can thus bind four Ca2+ ions (Vetter and 

Leclerc, 2003). Apo-CaM and Ca2+-CaM interact differently with many proteins including ion 

channels (Gordon-Shaag et al., 2008), making them versatile modulators of various proteins. 

CaM exhibits diverse mechanisms, sometimes acting through multiple sites, as shown for several 
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TRP channels (Zhu, 2005); its target recognition mechanisms are nearly as promiscuous as its 

functions (Hoeflich and Ikura, 2002; Yamniuk and Vogel, 2004).  

Although TRPV1 does not have a recognizable CaM binding motif (Rhoads and 

Friedberg, 1997), at least two CaM binding sites have been identified in TRPV1 cytosolic 

domains. In vitro studies demonstrated that Ca2+-CaM binds isolated TRPV1 peptides from the 

TRPV1-ARD (Rosenbaum et al., 2004). In addition, Ca2+-CaM competes for a shared binding 

site on TRPV1-ARD with ATP, which sensitizes the channel to capsaicin and prevents 

tachyphylaxis (Lishko et al., 2007). A second CaM binding site was localized to a short 35-

residue segment in the C-terminus of TRPV1 (TRPV1-CT) through in vitro binding assays 

(Numazaki et al., 2003). Deletion of this segment disrupts desensitization of TRPV1 to repeated 

stimulation by capsaicin. Furthermore, several mutations to positively charged residues within 

this region decreased the Ca2+-CaM binding affinity of TRPV1-CT (Grycova et al., 2008). It is 

unclear how Ca2+-CaM participates in desensitization of TRPV1 through its putative CaM 

binding sites. It has been postulated that Ca2+-CaM may bridge the two sites, leading to a closed 

channel (Lishko et al., 2007). 

Here, we present the first structural view of Ca2+-CaM in complex with the 35-residue 

CaM-binding peptide from the TRPV1-CT (TRPV1-CT35: residues 767-801). Despite the 

absence of a classical CaM recognition motif, the complex is supported by hydrophobic anchors 

and electrostatic interactions similar to well-characterized Ca2+-CaM peptide complexes. Our in 

vitro binding studies revealed that the C-lobe of Ca2+-CaM is the major determinant of binding to 

either TRPV1-CT or TRPV1-ARD. We examined whether Ca2+-CaM can bridge contacts 

between TRPV1-ARD and TRPV1-CT35, but our results do not support such a ternary complex. 

We used mutations that disrupt Ca2+-CaM binding at either TRPV1-ARD (K155A) or TRPV1-



7 
 

CT (W787A) to show that the W787A TRPV1 mutant is sufficient to disrupt the interaction of 

Ca2+-CaM with full-length TRPV1, consistent with our in vitro observation that the TRPV1-CT 

is a high affinity binding site, with KD = 5.4 0.6 x 10-8 M. Finally, while the K155A mutation 

abolished tachyphylaxis, W787A caused slowed and reduced TRPV1 desensitization. In 

summary, the TRPV1-ARD is crucial for desensitization, although it is unclear whether this is 

through a direct interaction with CaM, whereas TRPV1-CT is the major CaM interaction site but 

plays only a minor role in the capsaicin-induced desensitization we measured.  
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MATERIALS AND METHODS 

Expression vectors 

 The C-terminal TRPV1 regions, (759-802; TRPV1-CT44 and 767-801; TRPV1-CT35) 

were cloned into SacI and EcoRI sites of pMALC2 (New England Biolabs), as N-terminal 

maltose-binding protein (MBP) fusions with a PreScission protease site (LEVLFQGP).  CaM C-

lobe (residues 76-148) was cloned into NdeI and BamHI sites of pET21a (Novagen). Full-length 

TRPV1 was expressed from pTracer-CMV2 (Lishko et al., 2007) for electrophysiology or 

pCDNA3-FLAG for pulldown assays. TRPV1 containing the glycosylation site mutation N604S 

(Rosenbaum et al., 2002) was cloned into NdeI and NotI sites of pCDNA3-FLAG. pCDNA3-

FLAG was generated by ligating a short double-stranded oligonucleotide (5’-

GATCACATATGGGATCCGAATTCGTCGACACTAGTGACGTCGCGGCCGCTGATTACA

AGGATGACGACGATAAGTGACTCGAG-3’ and 5’-

GGCCCTCGAGTCACTTATCGTCGTCATCCTTGTAATCAGCGGCCGCGACGTCACTAG

TGTCG ACGAATTCGGATCCCATATGT-3’) into the BamHI and NotI sites of pCDNA3 and 

mutating the NdeI site within the CMV promoter to TATATG. Cysteine mutants of CaM and 

TRPV1-CT were introduced using Quikchange site-directed mutagenesis (Stratagene) and 

confirmed by DNA sequencing.  

 

Protein purification 

 Purification of CaM and TRPV1-ARD are previously described (Drum et al., 2001; 

Lishko et al., 2007).  CaM C-lobe, CaMA15C and CaME127C were purified as CaM. MBP-TRPV1-

CT44 or -CT35 were expressed in BL21(DE3) induced at OD600 = 0.6 with 100 M IPTG at 

37°C for 2 hrs. Cells were lysed by sonication in buffer A (20 mM Tris-HCl pH 7.5, 200 mM 
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NaCl, 0.5 mM PMSF, 1 mM benzamidine) with 0.1% Triton-X-100, 40 g/mL DNase, 80 

g/mL RNase, 200 g/mL lysozyme. The cleared lysate was diluted 1:1 with buffer A 

supplemented with 2 mM CaCl2, loaded onto amylose resin (NEB), washed with buffer B (20 

mM Tris pH 7.5, 200 mM NaCl, 1 mM DTT and 1 mM CaCl2) plus 0.5 mM PMSF, and eluted 

with buffer B plus 10 mM maltose. To obtain TRPV1-CT44/35, MBP-TRPV1-CT44/35 was 

concentrated and cleaved with PreScission protease overnight at 4°C.  TRPV1-CT44/35 was 

purified on a Superdex 75 (GE Healthcare) in 20 mM Tris pH 7.5, 50 mM NaCl and 1 mM DTT, 

concentrated and stored at -80°C. Preparation of MBP-TRPV1-CT35 for binding assays was as 

above with slight modifications: (i) CaCl2 was excluded from all buffers; (ii) 1 mM EDTA was 

added to lysis buffer; (iii) additional wash with buffer C (20 mM Tris pH 7.5, 25 mM NaCl, 1 

mM DTT) and 1 mM PMSF before elution with buffer C and 10 mM maltose.  

To obtain Ca2+-CaM/TRPV1-CT44/35 complex, CaM and excess TRPV1-CT44/35 

(1:1.25-2.0 molar ratio) were incubated in 20 mM Tris pH7.5, 200 mM NaCl and 0.15 mM 

CaCl2. Ca2+-CaM/TRPV1-CT44 complex was isolated on Superdex 75 (GE Healthcare). 

  

Structure determination 

 Crystals of Ca2+-CaM/TRPV1-CT35 (mixed at a 1.3:1 ratio at ~8 mg/mL in 20 mM Tris-

HCl pH 7.5, 100 mM NaCl, 1 mM CaCl2, 1 mM DTT) were grown by vapor diffusion at room 

temperature against reservoir solution (0.1 M MES pH6.0, 2.2-2.8 M (NH4)2SO4), transferred 

into reservoir plus 25% glycerol and flash-cooled in liquid nitrogen. Crystals of the two 

disulfide-crosslinked complexes were grown in very similar conditions. Diffraction data, 

collected at beamlines 24-ID-C and -E (Advanced Photon Source, Argonne National Laboratory) 

at 0.97949 Å, were processed using HKL2000 (Otwinowski and Minor, 1997). The structure was 
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was determined by molecular replacement using CaM coordinates of PDB entry 3DVE (Kim et 

al., 2008) as a search model. Model building was performed using COOT (Emsley and Cowtan, 

2004) and restrained TLS refinement using REFMAC5 (Murshudov et al., 1997). The final 

wildtype model includes CaM residues 3-148 and TRPV1-CT35 residues 784-798 (deposited as 

PDB code 3SUI), with 93% of residues in most favored, 7% in allowed and none in disallowed 

regions of the Ramachandran plot.  Data and refinement statistics are in Table I and 

Supplementary Table S1. 

 

Binding assays 

For CaM-agarose binding of MBP-tagged TRPV1-CT peptide, MBP-TRPV1-CT35 (60 

g) in 500 L binding buffer (20 mM Tris-HCl pH 7.5, 100 mM NaCl, 0.1% TWEEN20, 1 mM 

DTT) supplemented with either 1 mM EGTA or 1 mM CaCl2 was incubated with pre-

equilibrated CaM-agarose (100 L of 50% slurry; Sigma) at 4°C for 1 hr. Beads were washed 

thrice with 1 mL of respective binding buffers, resuspended in sample dye + 5 mM EGTA and 

bound protein analyzed by SDS-PAGE.  

For CaM-agarose binding of FLAG-tagged TRPV1, HEK293 cells were transiently 

transfected with the pCDNA3-FLAG-based vectors using lipofectamine 2000 (Invitrogen). Cells 

were harvested in TNE buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl and 1 mM EDTA) 30-40 

hr post-transfection, collected by centrifugation at 2000 x g, and  lysed in 1 mL TNE buffer 

supplemented with 1x Complete protease inhibitor (Roche) and 1% Igepal. The detergent-soluble 

fraction was divided into two fractions, adding EDTA to 4 mM to one and CaCl2 to 2 mM to the 

second. CaM-agarose (100 L of 50% slurry in TNE buffer supplemented with 1x protease 

inhibitor and either 4 mM EDTA or 2 mM CaCl2) was added.  After a 2 hr incubation, beads 
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were washed five times with 1 mL of respective buffers and eluted in 80 L of 2x SDS sample 

buffer supplemented with 10 mM EGTA. 

 

Tryptophan fluorescence  

 Fluorescence experiments were performed using a Cary Eclipse fluorescence 

spectrophotometer at room temperature, in 10 mM Tris-HCl pH 7.5 and 100 mM KCl, with 1 

mM CaCl2 or 5 mM EDTA. Tryptophan excitation was set to 295 nm to minimize contributions 

of CaM tyrosines to the emission spectra. Emission spectra were recorded from 305 to 400 nm. 

Excitation and emission bandwidths were set at 5 nm. For intrinsic Trp fluorescence 

measurements of TRPV1-CT44, 10 mm pathlength cuvettes and a 1 mL volume were used to 

measure 10 M TRPV1-CT44 alone or with 10 M CaM in the presence of CaCl2 or EDTA. For 

KD determination, a 5 mm pathlength quartz cuvette (1 mL volume) was used. TRPV1-CT44 at 

0.1 M in 1 mL was titrated with CaM from stocks of 0.04-1 mM such that the final added 

volume was less than 2% of total volume. Fluorescence intensity at 330 nm was monitored and 

results from three replicates were analyzed using one site-specific binding nonlinear regression 

analysis in GraphPad Prism 5. Nonspecific binding from titrations of TRPV1-CT44 with CaM in 

EDTA was subtracted from total binding from same titrations in CaCl2. 

 

Size exclusion chromatography (SEC) of TRPV1-ARD-CaM interactions 

 SEC runs were performed as previously described (Lishko et al., 2007). Briefly, 60 M 

of TRPV1-ARD and 60 M of CaM or CaM mutants were preincubated in running buffer (20 

mM HEPES pH 7.4, 140 mM NaCl, 1mM DTT and 0.16 mM CaCl2) for 30 min on ice, followed 

by separation on a Superdex 75 column (GE Healthcare) at 4°C. 
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Disulfide-crosslinked Ca2+-CaM/V1-CT35 mutants 

Possible disulfide bonds between Ca2+-CaM and TRPV1-CT35 were predicted 

(CaMA15/V1-CT35N789 and CaME127/V1-CT35R785) based on C-C distances using the 

SSBOND program (Hazes and Dijkstra, 1988). Both pairs were generated by mutagenesis, and 

all four resulting constructs purified as above. To test crosslinking, 20 g of CaME127C or 

CaMA15C alone or with TRPV1-CT35R785C or TRPV1-CT35N789C, respectively, were mixed in 20 

mM Tris-HCl pH 7.5, 100 mM NaCl and 1 mM CaCl2, incubated on ice for 20 min. DTT (10 

mM final) or CuSO4-1,10 phenanthroline (1-4 mM final) was added and incubated for an 

additional 20 min. Samples were resolved on 16% T 3% C Tricine SDS-PAGE with 4% T 3% C 

stacking gel as previously described (Schagger, 2006) in either reducing or non reducing sample 

buffers, using running buffer supplemented with 1 mM CaCl2.  

 For purification of CaME127C/V1-CT35R785C, CaME127C and TRPV1-CT35R785C were 

mixed at 1:1.5 ratio in 20 mM Tris-HCl pH 7.5, 100 mM NaCl, 1 mM CaCl2, and CuSO4-1,10 

phenanthroline (1-4 mM) was added after 20 min, incubating 20 min further on ice. For 

purification of CaMA15C/V1-CT35N789C, CaMA15C and TRPV1-CT35N789C were mixed at 1:2 ratio 

in 20 mM Tris-HCl pH 7.5, 100 mM NaCl, 2 mM CaCl2, 3 mM GSH and 0.3 mM GSSG, and 

incubated at room temperature overnight. Crosslinked samples were dialyzed in 20 mM Tris-HCl 

pH 7.5, 100 mM NaCl, 1 mM CaCl2 and purified on a Superdex 75 (GE healthcare) column. 

 

Electrophysiology 

 Whole-cell patch clamping recordings were carried out in HEK293 cells transiently 

transfected using Lipofectamine and PLUS reagent (Invitrogen). Currents were recorded 24-36 



13 
 

hr post-transfection in voltage ramp experiments as previously described (Lishko et al., 2007) or 

in voltage clamp experiments at a holding potential of -60 mV. Standard bath solution contained 

10 mM HEPES pH 7.4, 150 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2 and 10 mM 

glucose. Intracellular solution contained 10 mM HEPES-CsOH pH 7.2, 140 mM Cs-

methanesulfonate, 10 mM EGTA, 2.5 mM NaCl. 

 

Surface biotinylation assay 

 Transfected HEK293 cells were rinsed twice with ice-cold PBS pH8.0 and incubated 

with 0.5 mg/mL sulfo-NHS-Biotin (Pierce) in PBS pH 8.0 for 30 min at 4°C. Cells were rinsed 

twice with cold 100 mM glycine in PBS and thrice with PBS, lysed in 1 mL of RIPA buffer (50 

mM Tris-HCl pH 7.5, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM 

EDTA and 1X protease inhibitor cocktail from Roche) for 1 hr at 4°C. Cleared lysates 

normalized for total protein concentration were incubated with 50 L of 50% streptavidin-

agarose slurry (Sigma) for 1 hr at 4°C. The beads were washed three times with RIPA buffer and 

eluted with 50 L of 2x SDS sample buffer. 

 

Online supplemental material 

 Table S1 contains data and refinement statistics for the two crosslinked Ca2+-

CaM/TRPV1-CT35 crystal structures. Fig. S1 shows formation of the Ca2+-CaM/TRPV1-CT44 

complex by SEC. Fig. S2 shows CaM-agarose pull-down assay results for several TRPV1-CT35 

mutants. Fig. S3 shows SEC traces of experiments with rat TRPV1-ARD and CaM mutants. Fig. 

S4 shows SEC traces probing a possible ternary interaction between TRPV1-ARD, CaM and 

TRPV1-CT.  Fig. S5 illustrates the crystal structures of the two crosslinked Ca2+-CaM/TRPV1-
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CT35 complexes.  Fig. S6 shows voltage-clamp experiments and cell-surface biotinylation of 

TRPV1 mutants expressed in HEK293 cells. 
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RESULTS 

High-affinity interaction of TRPV1-CT with Ca2+-CaM 

 A short 35-residue segment (residues 767-801) was identified as a CaM binding site in 

TRPV1-CT (Numazaki et al., 2003).  In the same study, a longer 44-residue segment (residues 

759-802) spanning this site was observed to bind CaM in the absence or presence of Ca2+ in a 

GST pulldown assay. We used size exclusion chromatography (SEC) to evaluate the interaction 

of CaM to the 44-residue segment (TRPV1-CT44) and the 35-residue segment (TRPV1-CT35; 

Fig. 1A). TRPV1-CT44 and -CT35 undergo a large shift in elution volume when mixed with 

CaM in the presence of Ca2+, confirming that a complex is formed (Fig. 1B and Fig. S1; data 

shown for TRPV1-CT44). 

  To obtain a quantitative measurement of Ca2+-CaM binding to TRPV1-CT, we took 

advantage of the intrinsic tryptophan present in TRPV1-CT peptides to monitor its binding to 

Ca2+-CaM. We used TRPV1-CT44, which is more readily produced in large quantities and high 

purity than TRPV1-CT35. The fluorescence emission peak of tryptophan in TRPV1-CT44 is 354 

nm (Fig. 1C). In the presence of CaM in CaCl2 but not EDTA, the fluorescence emission peak 

blue-shifted to 330 nm and fluorescence intensity was enhanced, consistent with a tryptophan 

residue in a hydrophobic environment (Gomes et al., 2000; Weljie and Vogel, 2000). Our results 

further confirm that TRPV1-CT interacts with CaM in a Ca2+-dependent manner. In a titration 

experiment, we measured that TRPV1-CT44 interacts with Ca2+-CaM in a 1:1 ratio with high 

affinity, KD = 5.4 0.6 x 10-8 M (Fig. 1D), comparable to other Ca2+-CaM binding targets 

(Crivici and Ikura, 1995). Our results establish the distal TRPV1-CT region as a high affinity 

binding site for Ca2+-CaM. 
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Overall Structure of Ca2+-CaM/TRPV1-CT peptide complex 

 TRPV1 does not have a classical CaM recognition motif (Rhoads and Friedberg, 1997). 

To better understand the Ca2+-CaM interaction with TRPV1-CT, we determined the crystal 

structure of Ca2+-CaM in complex with TRPV1-CT35 (residues 767-801) to 1.95 Å resolution 

(Fig. 2A; Table I). The asymmetric unit contains a 1:1 Ca2+-CaM/TRPV1-CT35 complex. 

Residues 784-798 of TRPV1-CT were observed in the structure (Fig. 2A), with the electron 

density is well defined for residues 785-797 (Fig. 2B-C). As expected, four Ca2+ ions are 

observed in the structure, two in each CaM lobe. TRPV1-CT35 adopts an elongated structure, 

with a helix (residues 787-796) flanked by two extended peptide regions (Fig. 2A). The helical 

peptide is clasped by both Ca2+-CaM lobes in an antiparallel orientation, with its N-terminus 

interacting with the Ca2+-CaM C-lobe and its C-terminus bound to the N-lobe. This overall Ca2+-

CaM/TRPV1-CT35 structure is similar to a number of canonical Ca2+-CaM peptide complexes 

(Yamniuk and Vogel, 2004), including those of smooth muscle light chain kinase (smMLCK) 

(Meador et al., 1992), Ca2+-CaM-dependent kinase kinase (CaMKK) (Kurokawa et al., 2001) 

and endothelial nitric oxide synthase (eNOS) (Aoyagi et al., 2003). 

 

TRPV1-CT target recognition and binding by Ca2+-CaM  

 In canonical Ca2+-CaM peptide complexes, the peptide is anchored through interactions 

of two large hydrophobic residues to hydrophobic pockets, one on each Ca2+-CaM lobe (Fig. 

3A). The relative sequence position of the anchor residues defines the binding mode of Ca2+-

CaM/peptide complexes. TRPV1-CT35 is indeed anchored to hydrophobic pockets on the C- and 

N-lobes of Ca2+-CaM through hydrophobic anchor residues, W787 and L796 at the C- and N-
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lobe, respectively (Fig. 3B). TRPV1-CT35 therefore has a 1-10 motif like that of CaM-

dependent kinase II (Meador et al., 1993).  

 The N-terminal anchor, W787, forms extensive hydrophobic contacts with surrounding 

residues F92, L105, M124 and M144 lining a deep hydrophobic pocket in the Ca2+-CaM C-lobe 

(Fig. 3B). These four residues form the FLMMC tetrad, which is conserved in its interaction with 

its target anchor, whereas the FLMMN tetrad in the N-lobe (F19, L32, M51 and M71) is more 

variable (Ataman et al., 2007). The TRPV1 C-terminal anchor, L796, contacts F19, M51 and 

M71 from the FLMMN tetrad (Fig. 3B). In addition to the anchor residues, other hydrophobic 

residues along the TRPV1-CT35 -helix, namely F790, A791, L792, V793, P794 and L795, also 

form extensive hydrophobic contacts with both the N- and C-lobes of Ca2+-CaM (Fig. 3D).  

 Although hydrophobic residues are major determinants of CaM interactions, basic 

residues mediate electrostatic contacts with the highly acidic surface of CaM and can drive the 

orientation of the bound CaM target (Osawa et al., 1999; Yamniuk and Vogel, 2004). Anti-

parallel Ca2+-CaM targets have positive residues near the N-terminal anchor whereas in the case 

of parallel Ca2+-CaM targets, basic residues flank the C-terminal anchor (Fig. 3A). This 

preferential distribution of basic residues around one anchor or the other in an anti-parallel or 

parallel target can be understood from examining the complementary electrostatic surfaces on 

Ca2+-CaM, which are important in determining the orientation of the bound peptide (Osawa et 

al., 1999). In our structure, basic residues R785 and K788 flank the N-terminal hydrophobic 

anchor W787 near the highly electronegative opening in the Ca2+-CaM structure, while the single 

C-terminal basic residue, R797, is oriented toward the less electronegative opening (Fig. 4A).  In 

summary, although no canonical CaM-binding sequence is found in the TRPV1-CT, residues 
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785-797 of TRPV1 interact with Ca2+-CaM using hydrophobic anchors and electrostatic 

interactions similar to those found in well-characterized Ca2+-CaM-target complexes. 

 

Unique features of the Ca2+-CaM/TRPV1-CT35 peptide complex 

 The Ca2+-CaM/TRPV1-CT35 complex exhibits several unique features. The first is the 

structure of the TRPV1-CT peptide, which consists of a short 10-residue helix flanked by two 

extended peptide regions (Fig. 2A), unlike classical Ca2+-CaM targets that assume longer -

helical structures (Rhoads and Friedberg, 1997; Yamniuk and Vogel, 2004). Sets of available 

structures comprising eight parallel and 31 antiparallel Ca2+-CaM/peptide structures had Ca2+-

CaM-interacting helices averaging 18.4 and 18.8 residues in length, respectively.  Within these 

sets, only two other Ca2+-CaM targets have short helices similar to TRPV1 – the Ca2+-CaM 

binding domain of myristoylated alanine-rich C kinase substrate (PDB:1IWQ; MARCKS; 8-

residue helix) (Yamauchi et al., 2003) and the Ca2+-CaM-dependent protein kinase kinase 

(PDB:1CKK; CaMKK; 11-residue helix) (Osawa et al., 1999). The MARCKs and TRPV1-CT 

peptides share the same antiparallel orientation with respect to Ca2+-CaM whereas the CaMKK 

peptide has a parallel orientation. The conformation of Ca2+-CaM in the TRPV1-CT complex is 

very similar to that of the MARCKS peptide-bound Ca2+-CaM (RMSD = 0.646 Å).  However, in 

contrast to the 1-10 binding mode of TRPV1-CT35, MARCKS has no hydrophobic anchor 

bound to the Ca2+-CaM N-lobe hydrophobic pocket. This highlights not only the conformational 

flexibility of Ca2+-CaM to recognize its different targets but also the variability of CaM targets 

that can fit into the same Ca2+-CaM scaffold.  

 A second feature unique to TRPV1-CT is that the two hydrophobic anchors are at the 

boundaries of the -helical region (Fig. 4B), whereas those of classical Ca2+-CaM targets are 
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present within the -helix. Out of the nearly 40 available Ca2+-CaM/peptide complex structures 

that we analyzed, the only Ca2+-CaM target that also carries a non-helical hydrophobic anchor is 

the CaMKK peptide. However, the binding modes of CaMKK and TRPV1-CT are different in all 

other aspects. The CaMKK peptide exhibits a parallel 1-16 binding mode, with an N-terminal 

tryptophan hydrophobic anchor on the -helix and its C-terminal anchor, a phenylalanine 

residue, on the extended C-terminal region (Osawa et al., 1999). In summary, the structure of the 

Ca2+-CaM/TRPV1-CT complex revealed yet another variation of Ca2+-CaM target recognition 

motifs, with a 1-10 antiparallel binding mode in which both hydrophobic anchors bound the 

peptide helix. 

  

Both hydrophobic and positively charged residues are important determinants of binding 

 Interestingly, the Ca2+-CaM binding site observed in our crystal structure overlaps a 

previously proposed phosphatidylinositol-4,5-bisphosphate (PIP2) binding site required for PIP2-

mediated inhibition of TRPV1 activity (Prescott and Julius, 2003), although this study’s 

conclusions are controversial (see Discussion). In the study, substitution of several basic residues 

by neutral polar residues resulted in increased sensitivity of TRPV1 to both chemical and heat 

stimuli. This phenotype was interpreted as a relief of inhibitory PIP2 interactions with TRPV1. In 

particular, the R785Q/K788Q substitution pair increased TRPV1 sensitivity to heat by shifting 

the temperature threshold of activation to lower temperatures. Incidentally, R785 and K788 are 

the two basic residues that flank the hydrophobic tryptophan anchor in our Ca2+-CaM binding 

site (Fig. 3A). To examine whether the region observed in our structure represents bona fide 

determinants for Ca2+-CaM binding in solution, we mutated several key residues in a MBP-fused 

TRPV1-CT35 and examined interactions with Ca2+-CaM using a CaM-agarose pulldown assay. 
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Tryptophan is often found in protein interface hot spots responsible for the bulk of binding 

energy (Bogan and Thorn, 1998), and as anticipated, substitution of the hydrophobic anchor 

W787 with alanine caused a severe disruption of Ca2+-CaM binding, underscoring the 

importance of the tryptophan anchor in mediating hydrophobic interactions with Ca2+-CaM (Fig. 

3C). Alanine substitutions at the R785/K788 pair also impaired Ca2+-CaM binding, indicating 

that these basic residues are likewise crucial for interaction with Ca2+-CaM (Fig. 3C), consistent 

with a previously published study (Grycova et al., 2008). Charge-neutralizing R785Q/K788Q 

substitutions, which were previously shown to potentiate TRPV1 activity (Prescott and Julius, 

2003), also impair binding to Ca2+-CaM (Fig. 3C).   

A separate study aimed at identifying active or hypersensitive TRPV1 mutants using a 

toxicity-based screen (Myers et al., 2008) identified several mutations that fell within our Ca2+-

CaM binding site: W787R, L792P and L796P. To determine whether these mutations alter Ca2+-

CaM binding, we studied the interaction of these mutants using our CaM-agarose pulldown 

assay. As with W787A, W787R severely disrupted Ca2+-CaM binding (Fig. 3C). Although 

mutation of the L796 C-terminal anchor to proline did not significantly disrupt binding of 

TRPV1-CT35 to Ca2+-CaM in our pulldown assay (Fig. S2), the L792P substitution severely 

disrupted Ca2+-CaM binding (Fig. 3C).  A proline substitution at L792, which is situated in the 

middle of the TRPV1-CT35 helix in the Ca2+-CaM-bound structure, would break the helical 

conformation of the peptide and thus likely displace other necessary Ca2+-CaM interacting 

groups.  In contrast, the L796P substitution is located at the C-terminal end of the helix, 

providing a likely explanation as to why this mutation is tolerated. Our binding assay agrees well 

with the observed Ca2+-CaM/TRPV1-CT structural features.  
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To examine whether phosphorylation of S800, which potentiates TRPV1 (Bhave et al., 

2003), interferes with Ca2+-CaM binding, we mutated S800 to either an aspartic acid or glutamic 

acid to mimic a phosphorylation state. Neither S800D nor S800E interfered with Ca2+-CaM 

binding (Fig. S3). This result is consistent with our structural data as S800 lies outside the region 

observed in our structure (Fig. 3D), and suggests that disruption of Ca2+-CaM binding is not the 

cause of the observed phosphorylation-induced potentiation in TRPV1.  

Taken together, our mutagenesis results confirmed that TRPV1-CT35 interacts 

extensively with Ca2+-CaM through both hydrophobic and electrostatic interactions (Fig. 3D). 

Notably, mutation of the N-terminal tryptophan anchor alone is sufficient to severely diminish 

Ca2+-CaM interaction, suggesting that the C-lobe of Ca2+-CaM dominates the interactions with 

TRPV1-CT35.    

  

CaM C-lobe alone is sufficient to interact with TRPV1-ARD  

 The interactions of Ca2+_CaM with both TRPV1-ARD and TRPV1-CT are Ca2+-

dependent and both regions have been implicated in TRPV1 desensitization, suggesting that both 

sites may work in concert. One hypothesis is that Ca2+_CaM bridges an interaction between the 

TRPV1-ARD and TRPV1-CT, leading to a closed channel (Lishko et al., 2007). CaM forms an 

analogous ternary complex in SK channels for example, where CaM mediates dimerization of 

two channel subunits through binding of its N- and C-lobe to two different subunits (Schumacher 

et al., 2001). Having determined that the C-lobe dominates the TRPV1-CT35 interaction, we 

asked whether the TRPV1-ARD is similarly dominated by a specific CaM lobe.   

 We have been unable to measure the affinity of TRPV1-ARD for Ca2+-CaM because of 

technical difficulties with protein stability under various assay conditions, or to co-crystallize a 
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Ca2+-CaM/TRPV1-ARD complex to determine its structure.  Instead, we tested which CaM lobe 

principally drives the Ca2+-dependent interaction with TRPV1-ARD by using SEC to compare 

the impact of mutations at the CaM Ca2+-binding sites on the interaction.  CaM1, CaM2, CaM3 

and CaM4 were mutated at the first (D21A), second (D57A), third (D94A) or fourth (D130A) 

Ca2+-binding sites, respectively.  Rat TRPV1-ARD no longer interacted with any of the single-

site CaM mutants (Fig. S3).  However, rat TRPV1-ARD exhibits only a small shift by SEC when 

mixed with Ca2+-CaM, perhaps due to a weak interaction highly susceptible to perturbations. 

Slight differences in affinities for the distinct CaM mutants would be missed if any perturbation 

causes a loss of detectable binding.  Therefore, we also tested interactions between the CaM 

mutants and chicken TRPV1-ARD, which in SEC experiments has a robust shift with wildtype 

Ca2+-CaM (Fig. 5A). Chicken TRPV1-ARD showed no interaction with CaM1234, which has all 

four Ca2+-binding sites mutated (Fig. 5B), demonstrating that the interaction with CaM is Ca2+-

dependent. Chicken TRPV1-ARD retained the ability to interact with CaM12 but not CaM34 

(Fig. 5C-D), pointing to the importance of Ca2+_CaM C-lobe in interacting with TRPV1-ARD.  

Using a truncated CaM (residues 76-148), we further showed that the isolated Ca2+-CaM C-lobe 

can bind TRPV1-ARD (Fig. 5E).  While chicken and rat TRPV1-ARD may interact differently 

with Ca2+-CaM, their close homology (69.5% identity and 82.0% similarity) suggests they likely 

share a common binding mode (Phelps et al., 2007). Thus, our results suggest that the Ca2+- CaM 

C-lobe is crucial for binding to TRPV1-ARD. 

 

The Ca2+-CaM/TRPV1-CT35 complex does not interact with TRPV1-ARD 

 Although the Ca2+-CaM C-lobe appears to dominate the interactions of both TRPV1-CT 

and TRPV1-ARD, it remained to be determined whether we could observe a ternary complex 
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between TRPV1-ARD, a TRPV1-CT peptide and Ca2+-CaM.  Using SEC, a shift of the rat 

TRPV1-ARD peak was observed in the presence of isolated Ca2+-CaM/TRPV1-CT44 complex 

(Fig. S4). However, we could not unambiguously ascertain whether the observed TRPV1-ARD 

shift was due to its interaction with a Ca2+-CaM/TRPV1-CT peptide complex or with Ca2+-CaM 

alone due to overlapping elution profiles of Ca2+-CaM and the Ca2+-CaM/TRPV1-CT44 

complex. To resolve this problem, we introduced cysteine pairs to form disulfide crosslinks 

between Ca2+-CaM and TRPV1-CT35. Any SEC shift of TRPV1-ARD in the presence of 

crosslinked Ca2+-CaM/TRPV1-CT35 could thereby be attributed to the binding of TRPV1-ARD 

to a Ca2+-CaM/TRPV1-CT peptide complex.  

 Two cysteine pairs were engineered based on predicted optimal disulfide bond sites using 

SSBOND (Hazes and Dijkstra, 1988): TRPV1-CT35 N789C crosslinks to A15C in the N-lobe of 

Ca2+-CaM, and TRPV1-CT35 R785C crosslinks to E127C in the Ca2+-CaM C-lobe (Fig. 6A). 

Both sets of mutants display a Ca2+-dependent interaction similar to wildtype Ca2+-CaM and 

TRPV1-CT35, as shown in native gel (Fig. 6B).  Although the E127C-R785C pair crosslinked 

more efficiently under our original conditions (Fig. 6C), we were able to isolate both crosslinked 

complexes with good purity (see Materials and Methods). Both crosslinked complexes 

crystallized under very similar conditions and in the same space group as the wildtype complex, 

and we determined the Ca2+-CaME127C/TRPV1-CT35R785C structure to 2.4 Å resolution, and the 

Ca2+-CaMA15C/TRPV1-CT35N789C to 2.1 Å resolution. Both structures exhibited only minimal 

local conformational variations (Fig. S5). Thus the introduced crosslinks in the Ca2+-

CaM/TRPV1-CT peptide complex did not perturb the interactions observed in our original 

structure. 
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 We then used SEC to investigate whether the crosslinked complexes interact with rat 

TRPV1-ARD.  Neither TRPV1-ARD nor the crosslinked complexes showed a shift in elution 

volume when incubated together (Fig. 6D), therefore the SEC profiles showed no evidence of 

interaction between TRPV1-ARD and either crosslinked complex. Although we cannot rule out 

the possibility that crosslinking may interfere with possible conformational requirements for 

interaction with the TRPV1-ARD, the fact that neither Ca2+-CaME127C/TRPV1-CT35R785C nor 

Ca2+-CaMA15C/TRPV1-CT35N789C interacted with TRPV1-ARD makes it unlikely that the 

crosslink itself prevented the interaction.  Our results therefore indicate that TRPV1-ARD and 

TRPV1-CT do not form a ternary complex with Ca2+_CaM under the conditions we tested.  

 

TRPV1-CT is the major determinant for Ca2+-CaM binding 

 Although both the isolated TRPV1-ARD and TRPV1-CT were shown to interact with 

Ca2+-CaM in solution, it is unclear how these two sites contribute to Ca2+-CaM binding in full-

length TRPV1.  To test this, we introduced mutations K155A or W787A, which were shown to 

abolish Ca2+-CaM binding to TRPV1-ARD (Lishko et al., 2007) and TRPV1-CT (this study), 

respectively, and determined whether the resulting TRPV1 mutants can still bind Ca2+-CaM 

using a CaM-agarose pulldown assay. Wildtype TRPV1 expressed from HEK293 cells binds 

CaM in a Ca2+-dependent manner (Fig. 7A). K155A did not affect binding of TRPV1 to Ca2+-

CaM while W787A severely disrupted binding to Ca2+-CaM, suggesting that the TRPV1-CT 

alone is sufficient for binding to Ca2+-CaM. Our results support TRPV1-CT as a high affinity 

Ca2+-CaM binding site in full-length TRPV1. 

 

Distinct roles of TRPV1-ARD and TRPV1-CT in TRPV1 desensitization 
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 Disruption of Ca2+-CaM binding to TRPV1-ARD was shown to diminish the Ca2+-

dependent desensitization of TRPV1 to repeated capsaicin stimulations in whole-cell patch-

clamp electrophysiology experiments (Lishko et al., 2007).  To examine the functional role of 

the high affinity TRPV1-CT Ca2+-CaM binding site, we introduced mutations that abolish Ca2+-

CaM binding to either TRPV1-ARD (K155A), TRPV1-CT (W787A) or both TRPV1-ARD and 

TRPV1-CT (K155A/W787A) and compared the capsaicin-evoked currents in HEK293 cells. We 

measured the maximal current amplitude evoked by each successive pulse of capsaicin using the 

whole-cell patch-clamp technique in voltage ramps (Fig. 8) or at a holding potential of -60 mV 

(Fig. S6).  As expected, repeated applications of capsaicin resulted in strong tachyphylaxis of 

wildtype TRPV1 currents, observed as decreased inward currents (black trace, Fig. 8A). K155A 

showed little tachyphylaxis and slower activation kinetics as previously reported (Lishko et al., 

2007). The slower activation kinetics of K155A is not due to altered surface expression (Fig. S6) 

and is therefore an inherent quality of the mutant. Although the slower activation kinetics could 

suggest a constitutively desensitized phenotype, the steady-state inward currents of K155A are 

larger than those of wildtype (Fig. 8C).  Furthermore, it has been reported that desensitization 

reduces the sensitivity of TRPV1 to capsaicin (Yao and Qin, 2009), whereas we previously 

determined that the K155A mutant displays normal capsaicin sensitivity (Lishko et al., 2007).   

 In contrast, the W787A mutant showed desensitization albeit with slower kinetics and 

significantly higher residual currents in subsequent capsaicin application compared to wildtype 

TRPV1. As most tachyphylaxis occurs between the first and second application (Mohapatra et 

al., 2003), we compared the mean maximal current amplitude at -80 mV of the second 

application to that of the first application.  Wildtype TRPV1-expressing cells only retained 2.3 

 0.4 % of their maximal current at the second application, whereas W787A-expressing cells 
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retained 14.4  3.2 % (n=8, p = 0.006). Our results with the W787A mutation are similar to 

those obtained when the TRPV1-CT35 region is deleted in full-length TRPV1 (Numazaki et al., 

2003), showing that TRPV1-CT is indeed involved in the fast component of TRPV1 

desensitization.  Disruption of both Ca2+-CaM binding sites (K155A/W787A) led to capsaicin-

induced currents similar to the K155A mutation.  In summary, the stronger phenotype elicited 

by K155A suggests a major role for TRPV1-ARD in TRPV1 desensitization, while the more 

subtle W787A phenotype suggests that TRPV1-CT plays a minor role in capsaicin-induced 

desensitization, but may be involved in other responses not discernible under our experimental 

conditions.   
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DISCUSSION 

In this study, we present the structure of Ca2+-CaM bound to a short 35-residue TRPV1 

C-terminal region (TRPV1-CT35), one of two identified Ca2+-CaM binding sites in TRPV1.  The 

second Ca2+-CaM binding site was previously identified in TRPV1-ARD (Rosenbaum et al., 

2004), where Ca2+-CaM competes with a TRPV1 sensitizer, ATP, for binding (Lishko et al., 

2007).  Our affinity measurements indicate that TRPV1-CT represents a high affinity binding 

site for Ca2+-CaM (KD = 5.4 0.6 x 10-8 M). Although we could not measure the affinity of 

TRPV1-ARD for Ca2+-CaM because of technical difficulties, our SEC experiments suggest that 

the affinity is likely significantly lower than that of the TRPV1-CT. Consistently, a mutation that 

abolished Ca2+-CaM binding to TRPV1-CT (W787A), but not a corresponding one in TRPV1-

ARD (K155A), severely disrupted binding to Ca2+-CaM in full-length TRPV1. The W787A 

mutation was sufficient to slow and reduce TRPV1 desensitization, consistent with a 35-amino 

acid deletion mutant that also exhibited reduced Ca2+-dependent desensitization of TRPV1 

(Numazaki et al., 2003). 

The interaction of Ca2+-CaM with TRPV1-CT35 is similar to that observed in canonical 

Ca2+-CaM/target complexes. The bound peptide adopts an -helical conformation and binds 

Ca2+-CaM in an anti-parallel manner through two hydrophobic anchors, W787 and K796, 

corresponding to a 1-10 binding motif.  Sequence alignment of the TRPV1 C-terminal CaM-

binding site identified in the rat TRPV1 sequence with TRPV1 from other species shows that this 

site is conserved (Fig. 7B), suggesting a conserved function.   

The TRPV1-CT Ca2+-CaM binding site identified in our structure overlaps a region 

previously identified as an inhibitory PIP2 binding domain, although no direct binding was 

demonstrated (Prescott and Julius, 2003). A subsequent study found that the inhibitory effects of 
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PIP2 on TRPV1 were only detectable in whole cells, not excised patches, suggesting that PIP2-

mediated inhibition is indirect (Lukacs et al., 2007).  Furthermore, PIP2 can also potentiate 

TRPV1 (Liu et al., 2005; Lishko et al., 2007; Lukacs et al., 2007), and does so through a 

proximal C-terminal region (residues 682 to 725) (Ufret-Vincenty et al., 2011). Together with 

these findings on TRPV1 regulation by PIP2, our data support the distal C-terminal region of 

TRPV1 as a physiologically important Ca2+-CaM binding site.  

 The interactions of Ca2+-CaM with both TRPV1-ARD and TRPV1-CT are implicated in 

TRPV1 desensitization (Numazaki et al., 2003; Lishko et al., 2007). This brings up the question 

of whether Ca2+-CaM regulation of TRPV1 at TRPV1-ARD and TRPV1-CT constitutes 

integrated or separate mechanisms. Several findings suggested that both sites may work together 

in the desensitization mechanism. First, mutations or deletion of the Ca2+-CaM-binding site 

either in TRPV1-ARD or TRPV1-CT disrupts desensitization (Numazaki et al., 2003; Lishko et 

al., 2007). Second, a toxicity-based screen for active or hypersensitive TRPV1 phenotype (Myers 

et al., 2008) identified mutations that impair Ca2+-CaM binding in either TRPV1-ARD, such as 

K155E/A and K160E/A (Lishko et al., 2007), or TRPV1-CT, such as W787R and L792P (Fig. 

3C). One hypothesis is that Ca2+-CaM may bridge an interaction between TRPV1-ARD and 

TRPV1-CT (Lishko et al., 2007).  A similar mechanism is postulated for CaM regulation of 

voltage-gated Cav1 channels (Dick et al., 2008), and CaM bridges two subunits of a Ca2+-

activated K+ channel (Schumacher et al., 2001). Here we generated two different crosslinked 

Ca2+-CaM/TRPV1-CT complexes, but did not observe any ternary assemblies of these 

crosslinked complexes with TRPV1-ARD. This suggests that the Ca2+-CaM-mediated 

desensitization of TRPV1 may instead involve separate pathways. However, we cannot rule out 

the possibility that the introduced crosslinks, which maintain the interactions observed in the 



29 
 

uncrosslinked complex (Fig. S5), may restrict conformational changes required for interaction 

with TRPV1-ARD. 

 We observed a more pronounced disruption of desensitization in response to capsaicin 

when mutating the N-terminal K155A than the C-terminal W787A, suggesting that the TRPV1-

ARD is most important for tachyphylaxis. Mutation of the C-terminal site, on the other hand, led 

to a more subtle phenotype of slowed and reduced desensitization (Fig. 8). Notably, the C-

terminal site was most important for Ca2+-CaM binding in our pulldown assays.  Therefore, our 

data suggest that Ca2+-CaM binding may not be the dominant regulatory factor for TRPV1 

desensitization. Overall, our data are consistent with a model where PIP2 depletion is a major 

contributor to the acute desensitization of TRPV1 after activation by capsaicin (Lukacs et al., 

2007; Mercado et al., 2010), with Ca2+-CaM binding to the TRPV1-CT likely playing a 

supporting role.  

 It is possible that the C-terminal Ca2+-CaM binding site plays a more important role in 

regulating other TRPV1 responses not tested in the current study. Several studies hint at a role of 

the TRPV1-CT Ca2+-CaM binding site in tuning channel sensitivity. Increased sensitivity to heat 

and/or hypersensitivity was observed in several C-terminal mutants (Prescott and Julius, 2003; 

Myers et al., 2008) and in the vampire bat TRPV1-S isoform in which the C-terminal binding 

site is absent (Gracheva et al., 2011).   

 In summary, we showed that TRPV1-CT represents a high affinity binding site for Ca2+-

CaM. The TRPV1-ARD and TRPV1-CT likely provide two separate regulatory pathways, a 

model that is supported by both our biochemical and electrophysiological analyses. Our work 

provides new biochemical and structural information that enables future studies to fully decipher 

the molecular mechanisms behind the physiological regulation of TRPV1 responses.  
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FOOTNOTES 

1 Abbreviations used in this paper: TRPV1, transient receptor potential vanilloid 1; TRP, 

transient receptor potential; CaM, calmodulin; ARD, ankyrin repeat domain, CT, C-terminal; 

MBP, maltose-binding protein; SEC, size exclusion chromatography; smMLCK smooth muscle 

light chain kinase; CaMKK, CaM-dependent kinase kinase; eNOS, endothelial nitric oxide 

synthase; MARCKS, myristoylated alanine-rich C kinase substrate; PIP2, phosphatidylinositol-

4,5-bisphosphate; 
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Table I.  Data collection and refinement statistics 
for the Ca2+-CaM/TRPV1-CT35 crystal structure 

Data collection  
Space group P6122 

Cell dimensions  
a, b, c (Å) 41.68, 41.68, 341.53 

,  () 90, 90, 120 

Resolution (Å) 50.0-1.95 (1.98-1.95) 
Rsym 5.2 (46.9) 

I /I 26.4 (2.5) 

Completeness (%) 98.0 (91.2) 
Redundancy 5.4 (3.9) 
  
Refinement  
Resolution (Å) 36.10-1.95 
No. reflections 13172 
Rwork / Rfree 19.2/24.9 
No. atoms 1438 

Protein 1339 
Ligands 4 (Ca2+) + 5 (SO4

2-) 
Water 90 

B-factors  
Protein 42.72 
Ligand/ion 61.38 
Water 27.30 

R.m.s. deviations  
Bond lengths (Å) 0.0176 

Bond angles () 1.5601 
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FIGURE LEGENDS 

 

Figure 1. TRPV1 C-terminal CaM binding site. (A) Schematic diagram showing the domain 

organization of TRPV1. CaM and putative CaM binding sites are shaded in light grey. (B) SEC 

elution profile of TRPV1-CT44 alone or in complex with Ca2+-CaM. Shown are representative 

traces of a TRPV1-CT44 preparation (grey) following cleavage of a MBP tag (*) and Ca2+-

CaM/TRPV1-CT44 complex (black). (C) Tryptophan fluorescence emission spectra of 10 M of 

TRPV1-CT44 (residues 759-802) alone or incubated with equimolar amounts of CaM in the 

presence of CaCl2 or EDTA, excited at 295 nm. (D) Titration of TRPV1-CT44 (0.1 M) with 

CaM from 0.01-1 M in the presence of CaCl2. Tryptophan fluorescence emission at 330 nm 

was plotted against CaM concentration. Data were obtained in triplicate and analyzed using one 

site-specific binding non linear regression analysis in GraphPad Prism 5. Line shows the best fit 

to the data, KD = 5.4 0.6 x 10-8 M.  

 

Figure 2. Structure of a TRPV1 C-terminal peptide in complex with Ca2+-CaM.  (A) Ribbon 

diagrams of TRPV1-CT35 (cyan) bound to Ca2+-CaM, shown in two different orientations; the 

view on right is rotated 70° around the vertical axis with respect to the one on the left. The CaM 

N- and C-lobes are yellow and orange, respectively, and the calcium ions are grey. (B) 

Stereoview of TRPV1-CT35 (stick representation; residues 785-797) bound to Ca2+-CaM (grey 

ribbons with dark grey Ca2+ ion spheres).  The 2Fo-Fc electron density map corresponding to 

TRPV1-CT35 is shown in cyan, contoured at 1.0 σ. (C) Stereoview of TRPV1-CT35 in stick 

representation with the corresponding 2Fo-Fc electron density map contoured at 1.0 σ (cyan). 

Several key residues are labeled. 
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Figure 3. The Ca2+-CaM/TRPV1-CT interface. (A) Aligned sequences of Ca2+-CaM binding 

peptides with anti-parallel 1-10 motifs (TRPV1-CT, CaMKIIa (Meador et al., 1993)) and 1-14 

motifs (smMLCK (Meador et al., 1992), skMLCK (Ikura et al., 1992), CaMKI (Clapperton et al., 

2002)), and parallel 1-16 motifs (CaMKK(Osawa et al., 1999) and cCAMKKp (Kurokawa et 

al., 2001)). Residues are colored as follows: positively charged, blue; negatively charged, red; 

and hydrophobic, orange. Hydrophobic anchors are boxed in black. (B) Lobe-specific 

interactions, featuring hydrophobic pockets on CaM, with the CaM C- and N-lobes shown in 

surface representation.  The views of the C- and N-lobes are related to Figure 2A by rotations of 

+80° and -100° around the horizontal axis, respectively.  CaM residues that contact TRPV1-

CT35 (interatomic distances ≤ 4.2 Å) are colored according to their side chain properties 

(hydrophobic, orange; positively charged, blue; negatively charged, red; polar, green) and 

selected ones are labeled in black. Selected TRPV1 residues are labeled in cyan. (C) CaM-

agarose pulldowns of maltose-binding-protein (MBP)-fused TRPV1-CT35 peptides (residues 

767-801). A Coomassie-stained gel of pulldowns in the absence (EGTA) or presence (Ca2+) of 

calcium is shown as a representative result of three independent experiments. An MBP-α-Gal 

protein construct, expressed from the unmodified vector, was used as a negative control. (D) 

Sequence map of CaM residues in contact with TRPV1-CT35 (interatomic distances ≤ 4.2 Å). 

CaM N-lobe, C-lobe and TRPV1-CT35 residues are mustard, orange and cyan respectively.  

Interacting CaM residues making at least one polar contact are boxed.  

 

Figure 4. Electrostatic surface potential of Ca2+-CaM and TRPV1-CT peptide. Surface of Ca2+-

CaM (top) viewed from N- (left) and C-terminal (right) face of equivalently positioned TRPV1-
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CT peptide (bottom). The molecular surface is colored according to the electrostatic potential 

from red (-6 kT/e) to blue (6 kT/e).  Electrostatic potential surfaces were generated in PyMOL 

using APBS (Baker et al., 2001). (B) Cartoon representation of TRPV1-CT peptide against 

surface representation of binding pocket, showing the hydrophobic anchors: W787 (left) and 

L796 (right) positioned at the TRPV1-CT helix N- and C-termini, respectively. 

 

Figure 5.  The C-lobe of Ca2+-CaM is necessary and sufficient to interact with chicken TRPV1-

ARD. (A-E) SEC elution profiles of chicken (Gallus gallus) TRPV1-ARD (GgV1ARD) mixed 

with various CaM mutants. A physical interaction was observed in the presence of 2 mM Ca2+ 

for wildtype CaM, CaM12 and CaM C-lobe, as indicated by a left-shift of the peak for the mixed 

proteins (60 M GgV1ARD and 60 M CaM; black) compared to elution volumes of the 

individual proteins (GgV1ARD, grey; CaM, dashed black).  Shown are representative traces 

from two repeats. Wildtype CaM was used in (A), followed by CaM mutated at all four Ca2+ 

sites (B, CaM1234), the two N-lobe Ca2+ sites (C, CaM12) or the two C-lobe Ca2+ sites (D, 

CaM34). (E) The isolated C-lobe of CaM (residues 76-148) interacts with chicken TRPV1-ARD 

by SEC. (F) Coomassie-stained gels from SEC runs in (E).  The lanes from left to right are 

fractions of increasing elution volume, from 10.5 to 15.5 mL. 

 

Figure 6. Disulfide-crosslinked Ca2+-CaM/TRPV1-CT35 complexes do not interact with 

TRPV1-ARD. (A) Ribbon diagram of TRPV1-CT35 (cyan) bound to Ca2+-CaM (grey) with 

modeled disulfide bonds (pink) based on predictions using SSBOND (Hazes and Dijkstra, 1988). 

(B) Native-PAGE of CaM or CaM cysteine mutants alone or in the presence of increasing molar 

ratio of respective TRPV1-CT or TRPV1-CT mutant. (C) Tricine-SDS-PAGE of CaM and 
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TRPV1-CT35 cysteine mutants under reducing or oxidizing conditions. (D) Purified rat TRPV1-

ARD (RnARD; 60 M) was mixed with CaM (60 M; left), the crosslinked complex 

CaME127C/V1-CT35R785C (60 M; middle) or CaMA15C/V1-CT35N789C (60 M; right) in the 

presence of CaCl2 and separated using SEC.   

 

Figure 7. The conserved TRPV1-CT sequence is necessary for interaction of full-length TRPV1 

with Ca2+-CaM. (A) Tryptophan 787 is necessary for the interaction of full-length TRPV1 with 

Ca2+-CaM. Detergent-soluble fractions of HEK293 cells expressing wildtype, K155A or W787A 

FLAG-tagged TRPV1 were incubated with CaM-agarose beads in the presence of EDTA or 

CaCl2, washed and the bound fractions were eluted and analyzed by western blot using anti-

FLAG antibody.  Shown is a representative result of three independent experiments. (B) 

Sequence alignment of the rat TRPV1-CT35 region with representative mammalian and avian 

species shows that the region is highly conserved (sequence identity over the whole protein 

sequence of rat TRPV1 vs. mouse, human, guinea pig, bovine, rabbit, chicken, and bat splice 

variants (long and short) TRPV1 is 96%, 86%, 89%, 86%, 87%, 67% 86% and 87% 

respectively).  Non-conserved residues are shaded grey.  The region visible in the crystal 

structure (residues 784-798) and the helical region (788-796) are indicated above the alignment 

(cyan). 

 

Figure 8.  Mutations that reduce CaM binding to the TRPV1-ARD or TRPV1-CT caused 

different defects in TRPV1 current desensitization in HEK293 cells.  (A) Representative traces 

of capsaicin-evoked whole-cell currents in response to repeated capsaicin applications in the 

presence of extracellular Ca2+. Cells were repeatedly stimulated with 1 M capsaicin for 1 min 



44 
 

followed by 1 min washouts. The +80 mV (red) and -80 mV (black) currents extracted from 

1500 ms voltage ramps are shown. (B) Mean current amplitudes for successive capsaicin 

applications were normalized to the maximal current amplitudes of the first capsaicin 

application. * indicates p < 0.01 vs. TRPV1 WT using two-tailed unpaired t tests. (C) Mean 

current density of the maximal response to the first capsaicin application normalized to the cell 

capacitance. The values in (B) and (C) were calculated from current amplitudes at -80 mV 

(negative scale) and +80 mV (positive scale) measured in experiments as in (A). Bars represent 

mean ± SEM (n = 6, 8, 8, 8 for WT, W787A, K155A and W787A/K155A, respectively).  
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Table S1. Data collection and refinement statistics for the crosslinked Ca2+-CaM/TRPV1-CT35 
crystal structures 
 CaME127C/V1-CT35R785C CaMA15C/V1-CT35N789C 
Data collection   
Space group P6122 P6122 

Cell dimensions   
a, b, c (Å) 41.94, 41.94, 340.29 41.48, 41.48, 339.0 
,  () 90, 90, 120 90, 90, 120 

Resolution (Å) 45.0-2.40 (2.49-2.40) 36.0-2.10 (2.14-2.10) 
Rsym 11.6 (45.4) 7.0 (61.9) 
I /I 10.1 (2.0) 23.6 (3.0) 
Completeness (%) 97.3 (98.1) 95.6 (98.3) 
Redundancy 2.8 (2.8) 5.7 (5.8) 
   
Refinement   
Resolution (Å) 36.12-2.40 36.00-2.10 
No. reflections 7260 10261 
Rwork / Rfree 21.67/28.28 21.19/28.79 
No. atoms 1311 1380 

Protein 1267 1308 
Ligands 4 (Ca2+) + 10 (SO4

2-) 4 (Ca2+) + 10 (SO4
2-) 

Water 30 58 
B-factors   

Protein 63.67 57.53 
Ligand/ion 72.21 67.45 
Water 56.36 52.87 

R.m.s. deviations   
Bond lengths (Å) 0.0174 0.0166 
Bond angles () 1.6066 1.8064 
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Figure S1. Size exclusion chromatography (SEC) elution profile of TRPV1-CT44 alone or in 
complex with Ca2+-CaM as shown in Figure 1D. Shown are representative traces of a TRPV1-
CT44 preparation (grey) following cleavage of a MBP tag (*) and Ca2+-CaM/TRPV1-CT44 
complex (black) (see Materials and Methods). Silver-stained gels of eluted fractions from 
TRPV1-CT44 and Ca2+-CaM/TRPV1-CT44 are shown above and below, respectively. 
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Figure S2. Phosphomimetic mutations of S800 and mutation of the CaM N-lobe anchor do not 
interfere with Ca2+-CaM binding to TRPV1-CT. CaM-agarose pulldowns of maltose-binding-
protein (MBP)-fused TRPV1-CT35 peptides (residues 767-801). S800D/E substitutions were 
made to mimic the phosphorylated state. Coomassie-stained gel of pulldowns in the absence 
(EGTA) or presence (Ca2+) of calcium is shown as a representative result of three independent 
experiments. An MBP-α-Gal protein construct, expressed from the unmodified vector, was used 
as a negative control.  
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Figure S3. The rat TRPV1-ARD interaction with Ca2+-CaM requires all four calcium binding 
sites. Purified rat TRPV1-ARD (RnV1ARD; 60 M) was mixed with CaM (CaM; 60 M) in the 
presence of 2 mM Ca2+ and separated by SEC.  A physical interaction was observed only for 
wildtype CaM, as indicated by a shift of the peak of the mixed proteins (orange) to the left 
compared to elution volumes of the individual proteins (RnV1ARD, grey; CaM, black).  Shown 
are representative traces from two repeats. CaM mutated at each of four Ca2+ sites (CaM1, 
CaM2, CaM3 or CaM4), the two N-lobe Ca2+ sites (CaM12), the two C-lobe Ca2+ sites (CaM34) 
or all four sites (CaM1234) did not show evidence of interaction with rat TRPV1-ARD, as 
evidenced by the lack of a significant shift in elution volume. 
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Figure S4. Chicken TRPV1-ARD (GgV1ARD) shifts to higher MW fractions by SEC when 
mixed with preformed Ca2+-CaM/TRPV1-CT44 complex. (A) SEC elution profiles of Ca2+-
CaM/TRPV1-CT44 (dashed line) GgV1ARD (grey) alone or when mixed together (black). 
Purified GgV1ARD (60 M) was mixed with Ca2+-CaM/TRPV1-CT44 complex (60 M) in the 
presence of 0.15 mM Ca2+ and separated by SEC. Shown are representative traces from two 
repeats. (B) Silver-stained gels from SEC runs in (A).  The lanes from left to right are fractions 
of increasing elution volume, from 10 to 14 ml. 
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Figure S5. The structures of crosslinked complexes are very similar to the wildtype complex.  
(A, B) 2Fo-Fc electron density maps corresponding to the region of the Ca2+-CaME127C/TRPV1-
CT35R785C disulfide (A) and Ca2+-CaMA15C/TRPV1-CT35N789C (B), contoured at 1.0 σ in 
magenta (blue CaM and green V1-CT peptide).  Note that both the CaME127C/TRPV1-CT35R785C 
and Ca2+-CaMA15C/TRPV1-CT35N789C peptide N-termini are poorly ordered, similar to the 
wildtype structure, indicating that the disulfides do not constrain the structures. (C, D) The 
structures of the crosslinked complexes (blue CaM and green V1-CT peptide), Ca2+-
CaME127C/TRPV1-CT35R785C (C) and CaME127C/TRPV1-CT35R785C (D), are superimposed with 
wildtype Ca2+-CaM/TRPV1-CT35 (grey CaM and cyan V1-CT peptide). Both crosslinked 
structures show few differences when compared to wildtype.  The RMSD to the wildtype 
structure are: 
(C) 0.580 Å for all 161 common C atoms and 0.206 Å for the best fitting 146 C atoms for 
CaME127C/TRPV1-CT35R785C; 
(D) 0.290  Å for all 158 common C atoms and 0.193 Å for the best fitting 141 C atoms for 
Ca2+-CaMA15C/TRPV1-CT35N789C.  
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Figure S6. Mutations that reduce CaM binding to the TRPV1-ARD or TRPV1-CT caused different 
defects in TRPV1 current desensitization in HEK293 cells. (A) Representative traces of capsaicin-evoked 
whole-cell currents in the presence of extracellular Ca2+. Cells were held at -60 mV and repeatedly 
stimulated with 1 M capsaicin for 1 min followed by 1 min washouts. (B)  Cell-surface expression of 
TRPV1. Cell-surface proteins were biotinylated, pulled down with streptavidin-agarose beads and 
immunoblotted with anti-TRPV1 antibody (see Materials and Methods). Shown is a representative result 
of three independent experiments. Upper and lower bands likely correspond to N-glycosylated and non-
glycosylated forms of TRPV1, respectively (Rosenbaum et al., 2002). 
 
 


