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Abstract

Gelsolin is a cytoskeletal protein which participates in actin filament dynamics and promotes cell motility and plasticity.
Although initially regarded as a tumor suppressor, gelsolin expression in certain tumors correlates with poor prognosis and
therapy-resistance. In vitro, gelsolin has anti-apoptotic and pro-migratory functions and is critical for invasion of some types
of tumor cells. We found that gelsolin was highly expressed at tumor borders infiltrating into adjacent liver tissues, as
examined by immunohistochemistry. Although gelsolin contributes to lamellipodia formation in migrating cells, the
mechanisms by which it induces tumor invasion are unclear. Gelsolin’s influence on the invasive activity of colorectal cancer
cells was investigated using overexpression and small interfering RNA knockdown. We show that gelsolin is required for
invasion of colorectal cancer cells through matrigel. Microarray analysis and quantitative PCR indicate that gelsolin
overexpression induces the upregulation of invasion-promoting genes in colorectal cancer cells, including the matrix-
degrading urokinase-type plasminogen activator (uPA). Conversely, gelsolin knockdown reduces uPA levels, as well as uPA
secretion. The enhanced invasiveness of gelsolin-overexpressing cells was attenuated by treatment with function-blocking
antibodies to either uPA or its receptor uPAR, indicating that uPA/uPAR activity is crucial for gelsolin-dependent invasion. In
summary, our data reveals novel functions of gelsolin in colorectal tumor cell invasion through its modulation of the uPA/
uPAR cascade, with potentially important roles in colorectal tumor dissemination to metastatic sites.
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Introduction

Colorectal cancer (CRC) accounts for one of the highest

mortality rates from cancer worldwide. The survival rate is highest

at about 90% when diagnosed at early stages where tumor growth

is localized to primary sites and about 35%–70% in invasive but

regional disease. However the occurrence of distant metastasis to

the liver or lungs in CRC is a major contributing factor to death,

with five-year survival rate at less than 15% [1]. The pathogenesis

of CRC from normal colonic epithelium to adenoma is fairly well-

characterized and often involves a number of genetic alterations,

including mutational activation of oncogenes such as K-ras as well

as mutational inactivation of tumor suppressors such as p53 [2]

and adenomatous polyposis coli (APC) gene [3]. In contrast, less is

known about the molecular mechanisms which convert a non-

invasive colorectal neoplasm to one with an invasive phenotype. In

most solid tumors, the spread of tumor cells is facilitated by events

which result in the detachment of malignant cells from the primary

site and subsequent dissemination through tissues and vasculature

[4]. This metastatic cascade is critically dependent on the

integration of migratory and invasive signals involving cytoskele-

ton and extracellular matrix (ECM) remodeling [5].

Gelsolin is an actin-binding protein which severs and caps actin

filaments [6], and regulates cytoskeletal turnover. Gelsolin appears

to have complex roles in tumor biology, with evidence supporting

its contradictory involvement in both tumor suppression as well as

malignant progression. Gelsolin is reported to be down-regulated

in tumors including breast [7] and lung [8] carcinomas, suggesting

that loss of gelsolin promotes oncogenesis. Consistent with this,

knockdown of gelsolin by small-interfering RNA (siRNA) in the
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immortalized human breast epithelial MCF10A cell line induced

changes suggestive of epithelial-mesenchymal transformation [9].

However, there is also evidence that the re-emergence of gelsolin

in tumors may promote aggressive behavior, as progressively

malignant stages in cancer are associated with high gelsolin

expression. Increased gelsolin expression was found to correlate

with lymphatic invasion in small cell lung cancer [10] and higher

tumor grade in renal cell carcinoma [11]. Intriguingly, in

urothelial and oral carcinomas, gelsolin exhibited a biphasic

expression profile, being down-regulated in premalignant lesions

but increased in higher grade lesions [12,13]. Furthermore, the co-

expression of gelsolin with erb-B2 and epidermal growth factor

receptor (EGFR) is a predictor of poor prognosis in breast cancer

[14]. It is likely that the role of gelsolin differs during the course of

tumor progression, and in more advanced disease gelsolin may

cooperate with other oncogenic factors to accelerate progression.

Several in vivo and in vitro studies clearly indicate that gelsolin is

crucial for migration and invasion in several cell types, including

migration of untransformed cells such as fibroblasts and neutrophils

[15,16], as well as invasion of transformed immortalized human and

canine kidney cells [17] and tumor cells includingbreast andprostate

cancer cells across collagen andmatrigelmatrices [18,19].Gelsolin’s

pro-migratory effects have been attributed to its actin-severing

actions [16,20]. However, its pro-invasive activities in epithelial

cancers are unclear, and may involve a combination of mechanisms

includingmigrationandinteractionswithsignalingproteins.Gelsolin

has been shown to be a downstream effector of signaling pathways

mediating invasion, including Ras and Rac GTPases, as well as

phosphotidylinositol 3-kinase (PI3K) [17,20].Gelsolin also facilitates

osteoclast podosome formation [21], and associates with the

oncogenic tyrosine kinase Src in these structures [22]. Podosomes

are rich inactinandmediatedynamiccell-matrixadhesionandECM

remodeling [23,24]. Although there is now a pool of convincing

evidence linking gelsolin to invasion [17,18,19], there is little insight

(beyond gelsolin’s role in actin dynamics) on the mechanisms

downstream of gelsolin leading to invasion. Previous studies have

correlated the expression of actin-associated proteins such as

cortactin and Lim Kinase-1 (LIMK1) with protease secretion

[25,26], and it is unknown whether gelsolin also modulates the

proteolyticmachinery to induce invasion. This study aims to address

the gap in knowledge between gelsolin and the matrix degradation

process during cancer cell invasion.

We investigated the influence of gelsolin on colorectal tumor cell

dissemination and the mechanisms underlying its pro-invasive

activity. Immunohistochemical (IHC) analysis showed prominent

gelsolin expression along the tumor borders of both primary human

colon tumors and liver metastases. The effects of gelsolin in human

colorectal tumor cells were examined by inducing gelsolin over-

expression as well as silencing with siRNA.Microarray analysis and

quantitative PCR in these models indicated that gelsolin modulates

the expression of several invasion-related genes in the urokinase-type

plasminogen activator (uPA) cascade, resulting in activation of

plasmin, a potent matrix degradation protease [27]. uPA and its

receptor uPAR were further determined to be crucial for gelsolin-

dependent invasion in colorectal tumor cells. Our work thus

elucidates a novel role for gelsolin in colorectal tumor dissemination,

by modulation of the uPA cascade which is crucial for invasion.

Results

Gelsolin Expression is Prominent at the Invasive Front of
Colorectal Tumors
We analyzed the expression of gelsolin by IHC in 24 primary

colorectal tumors and 26 colorectal liver metastases as well as 15

normal tissues from the surgical margins of clearance. Gelsolin

expression in tumor tissues as well as the adjacent normal tissues

was scored for intensity of staining (scale 0–3) and proportion of

tumor positivity (scale 0–3). Primary antibody exclusion as well as

mouse IgG were included as negative controls (Figure S1). In the

adjacent normal colonic mucosa, the expression was prominent at

the surface epithelium which comprises absorptive cells but weakly

expressed in goblet cells (Figure S2). In positively-stained mucosal

cells, gelsolin was present in the cytoplasm and nuclear staining

was generally observed in a small proportion of cells. Gelsolin was

highly expressed in myocytes of the muscularis propria and in

vessel walls, consistent with previous findings [28,29], as well as

lymphoid cells.

We found gelsolin expression to be heterogeneously expressed in

the matched primary tumors and liver metastases, with regions of

low and high expression seen within a tumor. Gelsolin was

detectable in the cytoplasm as well as the nuclei of tumor cells

(Figure 1). Emerging evidence supports the importance of

identifying changes within specific tumor populations, such as

those at the infiltrating borders which are involved in tumor

invasion and metastasis [30]. We therefore analyzed the pattern of

gelsolin expression at the tumor borders compared to the tumor

bulk, as these populations are potentially disseminative. In order to

define the infiltrative tumor borders, adjacent sections of liver

metastases were also stained with the pan-cytokeratin stain, AE1/

3, which identifies tumor cells of epithelial origins. Gelsolin

expression was pronounced along the tumor borders compared to

tumor bulk in both primary tumors and liver metastases (Figure 2).

In liver metastases, gelsolin expression was significantly higher in

the tumor borders compared to the main tumor bulk (p = 0.0075,

Mann-Whitney test). Interestingly we also observed high gelsolin

expression in infiltrating clusters of less-differentiated cells, some of

which appeared to be breaking away from well-formed glandular

structures, supporting the hypothesis that gelsolin is involved in

colorectal tumor cell invasion and dissemination. Our data

suggests that gelsolin is further upregulated along the metastatic

tumor borders and may promote secondary spread of colorectal

cancer cells within the primary and secondary host tissues.

Gelsolin expression was also determined in a panel of commer-

cially-available colorectal tumor cell lines derived from primary

tumors (HCT116, HT29, WiDr, RCM-1, RKO, Caco-2, SW837,

SW480, SW403, DLD-1, LS513) as well as those obtained from

metastatic lymph node (SW620) and ascites (COLO201 and

COLO205). Among the commercially-available cell lines, the

ascites-derived COLO201 and COLO205 and the primary tumor

cell lines DLD-1 and LS513 expressed the highest levels of gelsolin

(Figure S3).

Gelsolin Promotes Migration and Invasion of Colorectal
Tumor Cells
The oncogenic potential of gelsolin in colorectal tumor cells was

investigated by modulating gelsolin levels using gelsolin over-

expression and siRNA knockdown. Using the technique of in-vivo

passaging through athymic nude mice, we had previously

established the highly metastatic colon carcinoma E1 cell line

from the poorly-metastatic HCT116 cell line [31]. HCT116 was

observed to express intermediate levels of gelsolin in a panel of

colorectal carcinoma cell lines investigated (Figure S3). Consistent

with our hypothesis that there exists a correlation between

metastatic potential and gelsolin levels, E1, the metastatic variant,

expressed increased gelsolin levels compared to HCT116

(Figure 3A). To further investigate this, we overexpressed gelsolin

in HCT116 cells and performed functional assays. Overexpression

of gelsolin in the HCT116 was induced by stable transfection with

Gelsolin Induces Cancer Invasion via uPA Cascade
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Figure 1. Gelsolin immunohistochemistry in human colorectal carcinoma tissues. Gelsolin is heterogeneously expressed in a number of
primary tumors (A) and liver metastases (B), with islands of low (arrowed in blue) and high (arrowed in red) expression observed within a tumor.
Gelsolin expression is mainly cytoplasmic but occasionally, nuclear (C) and perinuclear (D) staining are detected (arrowed). Gelsolin is strongly
expressed in a mucinous adenocarcinoma (E) and in stroma (A, B).
doi:10.1371/journal.pone.0043594.g001

Gelsolin Induces Cancer Invasion via uPA Cascade
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the pIRES2-EGFP plasmid encoding human cytoplasmic gelsolin

cDNA (Figure 3B; refer to Figure S4 for the cloned sequence of

gelsolin cDNA). Control HCT116 cells were generated by

transfection with the empty pIRES2-EGFP plasmid. In addition

gelsolin expression was reduced using siRNA knockdown in

several colorectal tumor cell lines (HCT116 and its metastatic

variant E1, gelsolin-overexpressing HCT116, DLD-1 and Caco-

2), and compared to cells transfected with control siRNA. As

shown in Figure 3C, gelsolin was greatly reduced after gelsolin

siRNA treatment in these cell lines. The effects of gelsolin

overexpression and knockdown in colorectal tumor cells were

determined as described in the sections below.

Gelsolin overexpression in HCT116 augmented migration

through uncoated transwells and invasion through matrigel-coated

transwells (Figure 3D). The invasiveness of the stably-transfected

gelsolin-overexpressing HCT116 cells as well as wild-type

HCT116 cells was significantly decreased by siRNA knockdown

of gelsolin expression, indicating a reliance on gelsolin for invasion

(Figure 3E). The pro-invasive role of gelsolin was consistently

demonstrated in E1 and DLD-1 cells, where reduction of gelsolin

by siRNA significantly attenuated invasion. Our observations

indicate that gelsolin confers invasive capacity in colorectal cancer

cells, which are consistent with the reported effects of gelsolin in

other types of cells [17,32].

Gelsolin Modulates the Expression of Genes Important
for Tumor Dissemination
Although gelsolin appears to be necessary for invasive behavior,

little is known about the mechanisms by which it enhances invasion.

This may partly be attributable to its ability to enhance cellular

motility through its influence on cytoskeletal dynamics such as when

lamellipodiaare formed[33].However, invasion isacomplexprocess

dependent on multiple contributory factors besides motility [5]. To

further elucidate the downstream mechanisms by which gelsolin

induces invasion in colorectal tumor cells, microarray analysis was

performed to screen for potential genes that are differentially

expressed when gelsolin levels are increased. The gene expression

profiles of four stable gelsolin-overexpressing HCT116 clones were

compared with two vector control HCT116 clones. The gelsolin-

overexpressing clones expressed a consistent pattern of differential

gene expression, suggesting that gelsolin induced specific changes in

gene expression ofHCT116 cells (Figure S5A). In total, we identified

469geneswithanaveragealteration inexpression levelofat least two-

fold.Using theGeneOntology functional annotation underDAVID

BioinformationResources, genes were classified into their respective

biological processes, including cell differentiation, cell motility and

regulation of cell adhesion (Figure S5B). The representative table of

genes modulated by gelsolin is supplied in Table S1.

Figure 2. Gelsolin expression is prominent at the invasive front of human colorectal cancer tumors. Gelsolin expression is high along
the tumor periphery in primary tumors and liver metastases. The tumor periphery is outlined as red dotted line. A magnified view of a region of
primary tumor edge (boxed) is shown on the bottom panel. The invading liver metastases shown are confirmed by cytokeratin stain, AE1/3, on an
adjacent slide (bottom middle panel). Increased gelsolin expression was also detected in less-differentiated tumor cells which appeared to be
breaking away from well-formed glandular structures (arrowed, top right panel). Gelsolin expression were scored and represented in the scatter dot
plot (bottom). The median scores are represented by the red horizontal bars. Mann-whitney test was to compare the gelsolin expression score
between the main tumor bulk and their periphery. Bar: 50 mm.
doi:10.1371/journal.pone.0043594.g002

Gelsolin Induces Cancer Invasion via uPA Cascade
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Figure 3. Gelsolin promotes migration and invasion of colorectal cancer cells. (A) Endogenous gelsolin level was increased in an in vivo-
derived metastatic variant of HCT116, E1, which was described in [31]. (B) Gelsolin overexpression plasmid was constructed by cloning human
cytoplasmic gelsolin cDNA into pIRES2-EGFP vector (left). HCT116 cells were either transfected with gelsolin-pIRES2-EGFP plasmid or empty pIRES2-
EGFP plasmid to establish stable gelsolin-overexpressing cell lines and vector control cell lines respectively. Western blot analysis confirmed increased
gelsolin expression in HCT116 cell lines stably-transfected with the gelsolin-overexpression plasmid compared to those transfected with control
plasmid. (C) Western blot showing transient gelsolin siRNA knockdown (KD) at 3 days in wild-type HCT116 and gelsolin-overexpressing HCT116 cells,
E1, as well as other colorectal cancer cell lines DLD-1 and Caco-2 cells. Control cells (Cont) were treated with control siRNA. (D) Increased gelsolin in
HCT116 enhanced tumor cell migration and invasion. The migration of gelsolin-overexpressing HCT116 cells through uncoated transwells and

Gelsolin Induces Cancer Invasion via uPA Cascade
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Gelsolin Modulates the Expression of Invasion-associated
Urokinase-type Plasminogen Activator (uPA)
Among the invasion-associated genes identified to be induced

by more than 2-fold in gelsolin-overexpressing cells is the serine

protease, urokinase-type plasminogen activator (uPA), which is

involved in the plasminogen activation cascade that results in the

activation of a broad-spectrum protease plasmin. Although

microarray analysis detected less than 2-fold changes in the levels

of other uPA cascade genes, we included these in real-time PCR

analysis as these comprise important components for regulating

uPA-dependent matrix degradation. Besides uPA, the following

genes were screened for mRNA expression: the uPA receptor

uPAR, and known inhibitors of the uPA cascade including

plasminogen activator inhibitor-1 (PAI-1), plasminogen activator

inhibitor-2 (PAI-2) and a2-antiplasmin (a2-AP) [34]. Real-time

PCR showed that increased levels of gelsolin in HCT116 cells

upregulated the expression of uPA and uPAR, and reduced the

levels of the inhibitors PAI-2 and a2-AP (Figure 4A). Consistent

with observations in the overexpression studies, mRNA levels of

uPA were also reduced by siRNA knockdown of gelsolin in wild-

type HCT116, DLD-1 and Caco-2 cells (Figure 4B). The mRNA

levels of uPAR were reduced by gelsolin siRNA-treated HCT116

and Caco-2 cells but not in DLD-1 cells. Our data indicates that

uPA levels are altered by changes in gelsolin expression, and the

uPA cascade is a possible mechanism through which gelsolin

mediates invasion.

Gelsolin Increases uPA Secretion by Colorectal Tumor
Cells and Promotes Invasion through the uPA Cascade
In the plasminogen activator cascade, the secretion of uPA is

required to activate the proenzyme plasminogen to active plasmin

in the extracellular environment. We investigated the levels of

secreted uPA protein in the conditioned media of gelsolin-

overexpressing colorectal cancer cells obtained after 48 hours of

serum-deprivation, using enzyme-linked immunosorbent assays

(ELISA). Consistent with the increase in uPA gene expression, we

also detected significantly increased uPA secretion in gelsolin-

overexpressing HCT116 compared to control cells (Figure 5A).

We examined the effects of gelsolin-induced uPA expression on

matrix degradation using zymographic analysis. Conditioned

media of the cells were loaded and electrophoresed in zymo-

graphic gels containing plasminogen and fibrinogen for analysis of

uPA activity. Gelsolin-overexpressing HCT116 cells displayed

greater uPA activity in comparison to vector control and wildtype

HCT116, as evident from the enhanced lysis zones (Figure 5A).

The increased proteolytic ability of gelsolin-overexpressing cells, as

ascertained by our zymographic analysis, corroborates with earlier

observations from the transwell invasion assay which showed that

gelsolin conferred invasiveness in colorectal cancer cells

(Figure 3D–E). Conversely, siRNA knockdown of gelsolin in the

colorectal tumor cell lines HCT116, DLD-1 and Caco-2

significantly reduced the level of secreted uPA and its proteolytic

activity (Figure 5B). Our data suggests that gelsolin modulates uPA

activity on the extracellular matrix by influencing uPA expression

and its secretion.

The cytokine, tumor necrosis factor alpha (TNF-a), is produced
by several types of tumors and has been reported to stimulate uPA

production [35] and enhance invasion [36]. As shown in

Figure 5C, treatment with TNF-a for 24 hours enhanced uPA

secretion in DLD-1 and Caco-2 cells. However when gelsolin

expression was reduced by siRNA knockdown, the increases in

uPA secretion induced by TNF-a were significantly attenuated to

levels similar to that in control cells. Our data shows that TNF-

a induced uPA secretion is attenuated in the absence of gelsolin.

However, it is currently unclear how gelsolin modulates uPA

secretion in response to TNF-a stimulation.

The involvement of the uPA cascade in the increased

invasiveness of gelsolin-overexpressors was further confirmed by

inhibiting uPA function and examining the effects on invasion

through matrigel. The highly invasive gelsolin-overexpressing

HCT116 cells were treated with function-blocking antibodies

against either uPA or uPAR, or by treatment with the uPA

inhibitor amiloride [37]. Control experiments were conducted

using isotype-control mouse IgG and vehicle control dimethyl

sulfoxide (DMSO), respectively. Blockade of the uPA cascade

using either anti-uPA or anti-uPAR antibody, or amiloride

significantly attenuated the invasiveness of gelsolin-overexpressing

HCT116 cells across matrigel, by 40% to 55% (Figure 5D). Our

data indicated that gelsolin enhances invasion through the uPA

activator cascade, by promoting uPA secretion which can enhance

matrix degradation.

Apart from members of the uPA cascade, the genes of various

other proteases or related proteins such as metalloproteinase-7

(MMP7) and TIMP2 were also modulated by gelsolin over-

expression in HCT116 (Table S1). Since tumor cells may secrete

different proteases during the course of dissemination, we in-

vestigated whether the gelsolin-mediated invasion may involve,

besides uPA, members of the MMP family. Gelsolin-overexpres-

sing cells were subjected to similar transwell invasion assays

following treatment with either the synthetic pan-MMP inhibitor

GM6001 (which blocks MMP-1, -2, -3, -8 and -9 activities) or

other specific inhibitors to MMP-2, MMP-2/29, MMP-3, MMP-

7 and MMP-8. Pan-MMP inhibition using GM6001, as well as

MMP-2 inhibition reduced the invasiveness of cells by about 20%,

although the results were not statistically significant (Figure S6).

The simultaneous inhibition of MMP-2/MMP-9 showed similar

effect to inhibition of MMP-2 alone, suggesting that MMP-9

played little or no role in the invasion of gelsolin-overexpressing

cells. There was however no significant increase in the MMP-2

activity in gelsolin-overexpressing cells compared to vector control

and HCT116 based on gelatin zymography (Data not shown).

Inhibition of MMP-3, MMP-7 and MMP-8 had no effect on

invasion (Figure S6). Taken together our data indicated that in

addition to its pro-migratory role, gelsolin promotes invasion in

the colorectal carcinoma cells predominantly via increased

expression and secretion of uPA.

Discussion

In this study, we show that invading populations of tumor cells

enriched in gelsolin are found in both primary as well as metastatic

human colorectal cancers. This is consistent with earlier observa-

tions of prominent gelsolin expression along the invasive front of

liver metastases, in contrast to its low expression in primary

colorectal adenocarcinomas [28]. The significance of ‘‘leading

cells’’ at the invasive front of tumors in promoting tumor spread

invasion through matrigel-coated transwells were ascertained over 48 hours, and was observed to be increased compared to vector control cells. (E)
siRNA downregulation of gelsolin abrogates invasion. Gelsolin knockdown significantly reduced invasion of HCT116 and gelsolin-overexpressing
HCT116 through matrigel. A requirement for gelsolin in invasion was also observed in E1 and DLD-1 cells. All data shown are the mean 6 standard
error of duplicate measurements and are representative of at least three independent experiments. *P,0.05.
doi:10.1371/journal.pone.0043594.g003

Gelsolin Induces Cancer Invasion via uPA Cascade
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has been highlighted in a number of studies. Cells at the invasive

edge acquire molecular changes such as increased expression of

matrix-digesting proteases and integrins for matrix-remodelling

[38,39], which may be accompanied by a switch towards

a mesenchymal-like, dedifferentiated phenotype. These changes

in leading cells at the invasive front drive proteases- and force-

mediated matrix remodeling which pave the way for collective cell

invasion by non-invasive ‘‘follower cells’’ [39]. Notably, the

increased tumor aggressiveness has been associated with increased

expression or altered localization of other actin-binding proteins

such as b-catenin [30], actinin-4 [40], cortactin [41] and fascin

[42] at the invasive region of tumors. We have demonstrated here

that gelsolin is crucial for the invasive behavior of colorectal tumor

cells. Gelsolin has previously been shown to be important for

migration of fibroblasts and invasion of other tumor cells,

attributable partly to its actin-depolymerizing effects. However,

invasion involves the coordination of multiple mechanisms, which

include migration and ECM degradation. It is conceivable that the

Figure 4. Gelsolin modulates the expression of invasion-associated urokinase-type plasminogen activator (uPA) cascade in
colorectal cancer cells. (A) uPA was detected by microarray analysis to be differentially regulated by gelsolin overexpression. The average gene
expression fold changes in the gelsolin-overexpressing clones compared to vector control clones are shown. The gene expression was verified by
real-time PCR, and indicated that increased gelsolin upregulated uPA and uPAR mRNA, and decreased mRNA expression of endogenous inhibitors of
uPA and plasmin, PAI-2 and a2-AP, respectively. The relative mRNA levels were normalized to vector control cells. (B) siRNA knockdown of gelsolin
reduced uPA levels in colorectal cancer cells. Real-time PCR showing the relative mRNA expression of uPA and uPAR in HCT116, DLD-1 and Caco-2
cells after treatment with gelsolin siRNA as compared to control siRNA. All data shown are the mean6 standard error of triplicate measurements and
are representative of at least three independent experiments. *P,0.05.
doi:10.1371/journal.pone.0043594.g004

Gelsolin Induces Cancer Invasion via uPA Cascade
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Figure 5. Gelsolin increases uPA secretion of colorectal tumor cells and enhances invasion via the urokinase-type plasminogen
(uPA) cascade. (A) Increased gelsolin in HCT116 cells augmented the secretion and activity of uPA. The levels of secreted uPA by cells cultured for
48 hours in serum-free conditions were detected in the supernatant using ELISA. Gelsolin-overexpressing HCT116 cells secreted significantly higher
uPA levels compared to control cells (left), which correlated with higher uPA enzymatic activity, as evident from uPA zymographic analysis using 16-

Gelsolin Induces Cancer Invasion via uPA Cascade

PLOS ONE | www.plosone.org 8 August 2012 | Volume 7 | Issue 8 | e43594



effect of gelsolin siRNA knockdown on invasion through matrigel

may be partially attributed to a reduced migratory capacity of

cells. However, the pro-invasive role of gelsolin via matrix

degradation was reaffirmed by zymographic analyses, which

enabled the detection of proteolytic activity of secreted proteases.

Our work shows that, in addition to previous work highlighting

gelsolin’s roles in driving lamellipodia protrusion and turnover in

migration [43], gelsolin also confers invasive properties via its

ability to modulate the expression of well-known mediators of

tumor invasion - genes involved in the uPA cascade which degrade

the ECM.

The uPA cascade is initiated when secreted uPA from cancer

cells [44] or stromal components [45] binds to its receptor uPAR

and converts the inactive plasminogen to active plasmin by

proteolytic cleavage. Plasmin promotes remodeling of ECM by

direct proteolysis, or indirectly through activation of MMPs

[46,47]. The uPA system is implicated as a major factor leading to

aggressive tumor behaviour, as it promotes invasion and metastasis

in several tumor types including colorectal cancer [48,49]. uPA

and uPAR activities contribute to proteolysis of ECM at the

invasive front of tumors [50], and elevated levels in colorectal

tumors correlate with tumor progression and poor survival

[51,52].

Our findings revealed the ability of gelsolin to modulate uPA

gene expression and secretion. The roles of cytoskeletal proteins in

regulation of gene expression is an emerging field of interest, as it is

now clear that the nuclear cytoskeleton participates in several

transcriptional regulatory processes [53]. Indeed, actin-binding

proteins, including gelsolin and its family members have

prominent roles in mediating nuclear receptor-directed transcrip-

tion [54]. Gelsolin was previously reported to physically interact

with androgen receptor (AR) and enhance AR transcriptional

activity, [55]. More recently, gelsolin was found to be a key

determinant for the assembly and/or stability of estrogen receptor

nucleus complexes [56]. Interestingly, the nuclear import of

CapG, another gelsolin family member, is suggested to interfere

with chromosome condensation [53] and promote invasion into

collagen [57]. It is unknown if gelsolin also regulates non-nuclear

receptor-dependent transcription, though its presence in the nuclei

of colorectal tumor tissues suggests wider roles for nuclear-

associated gelsolin. As yet, it is unclear how gelsolin regulates uPA

gene expression - this would be an interesting avenue for further

exploration into gelsolin’s roles in transcriptional regulation of

invasion genes.

Besides modulating the mRNA levels of uPA, we also found that

gelsolin regulates uPA secretion by colorectal cancer cells.

Increased circulating levels of plasma uPA have previously been

associated with advanced cancers including colorectal [58] and

prostate cancers [59]. Very recently gelsolin was reported to

regulate insulin exocytosis through its direct interaction with

syntaxin 4, a plasma membrane protein which mediates docking of

transport vesicles [60]. The expression of other actin-associated

proteins, such as cortactin and LIMK1, has also been reported to

correlate with the secretion of matrix proteases including MMPs

[25,26,61]. LIMK1 in particular, which regulates the activities of

actin-depolymerizing factor (ADF/cofilin), has also been shown to

interact with membrane type 1 (MT1)-MMP and regulate its

vesicular trafficking [25]. It is possible that gelsolin may also

participate in the transport of vesicles containing uPA or other

proteases through its influence on F-actin dynamics which is

essential for vesicular trafficking. Future studies on the role of

gelsolin in the secretory pathway of proteases such as uPA would

yield a clearer picture of the integration of the distinct but

synergistic cellular processes mediated by gelsolin to promote

invasion. Nevertheless, the revelation of gelsolin’s function in

regulating uPA expression and secretion in colorectal cancer

invasion provides further insight into the mechanisms behind

gelsolin’s oncogenic role, and lends support to the multiple roles of

actin cytoskeletal proteins in promoting cancer cell dissemination.

In the current study we also investigated the contribution of

a number of MMPs in the gelsolin-mediated invasion in colorectal

cancer cells. Inhibition of the gelatinase MMP-2 alone led to

a slight decrease in invasion but not the inhibition of MMP-3, -7, -

8 and -9 in gelsolin-overexpressing cells. Treatment with GM6001

which inhibits MMP-1 in addition to MMP-2, MMP-3, MMP-8

and MMP-9 reduced invasion to a small extent but the results

were not statistically significant. Interestingly proMMP-2 was

reported to be activated by plasmin [47,62], which may increase

the pool of active MMP-2. Although plasmin can also activate the

other gelatinase proMMP-9, it is pertinent to add that plasmin is

not an efficient activator of proMMP-9 [46]. Nevertheless, the

balance between MMPs and their endogenous inhibitors, tissue

inhibitor of metalloproteinases (TIMPs), is critical in determining

the net effect on matrix degradation. Our unpublished data

indicated that TIMP-2 was increased in gelsolin-overexpressing

HCT116 cells, with the direct implication being that the matrix-

degrading effects of MMPs can be counter-balanced. Of note,

literature also reveals paradoxical, pro-tumor roles of TIMPs in

cancer biology [63]. Due to the complexity of the biological

activities of MMPs and TIMPs, it is not within the scope of this

study to look into the interactions between MMPs and TIMPs in

detail. Moreover the evidence we presented in this manuscript

suggests that the uPA cascade is a major downstream pathway by

which gelsolin induce matrix degradation.

Together with the well-established functions of gelsolin in

cytoskeletal dynamics, our findings implicate gelsolin as a regula-

tory determinant of the uPA cascade, with significant impact on

colorectal cancer invasion. The potential contributions of gelsolin

hour serum-free conditioned media of cells (right). (B) Knockdown of gelsolin (KD) reduced the secretion of uPA. Gelsolin-overexpressing HCT116,
wildtype HCT116, DLD-1 and Caco-2 cells were treated with gelsolin siRNA or control siRNA for 24 hours prior to culture under serum-free conditions
for a further 48 hours. The levels of secreted uPA were detected using ELISA (left). Zymographic analysis indicated that uPA activity in the 3-hour
conditioned media of the colorectal tumor cells was reduced 48 hours after gelsolin siRNA knockdown treatment (right). (C) Gelsolin expression
affects TNF-a-stimulated uPA secretion in colorectal cancer cells. DLD-1 and Caco-2 cells were treated with gelsolin siRNA (KD) or control siRNA (Cont)
for at least 24 hours and serum-starved overnight prior to incubation with 5 ng/mL (DLD-1) and 10 ng/mL (Caco-2) TNF-a for 24 hours. The levels of
secreted uPA in the supernatant of cultured cells were detected using ELISA. uPA secretion was effectively stimulated by TNF-a in DLD-1 and Caco-2.
However, siRNA knockdown of gelsolin significantly attentuated TNFa-stimulated uPA levels in the colorectal cancer cell lines. (D) Inhibition of uPA
cascade attenuates the invasion of gelsolin-overexpressing HCT116 cells through matrigel. Gelsolin-overexpressing cells were treated with either
50 mM amiloride, 200 mg/mL of function-blocking anti-uPA or 80 mg/mL of anti-uPAR antibodies and examined for changes in invasive potential
through matrigel. DMSO treatment and mouse IgG antibody at 200 mg/mL were used as controls to amiloride and the function-blocking antibodies
and respectively. Untreated vector control HCT116 was included and normalized to DMSO vehicle control. The anti-uPA and anti-uPAR as well as
amiloride treatments significantly attenuated invasion of gelsolin-overexpressing HCT116 cells, indicating that the enhanced invasiveness induced by
gelsolin is mediated through the uPA cascade. All data shown are the mean 6 standard error of triplicate (ELISA) and duplicate (invasion assay)
measurements and are representative of at least two independent experiments. P,0.05 (student’s t test).
doi:10.1371/journal.pone.0043594.g005
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towards the further spread of tumor cells from liver metastases

warrant further investigations into the roles of cytoskeletal proteins

in metastatic disease. Further dissection of the mechanisms by

which gelsolin and other cytoskeletal proteins regulate invasive

pathways could contribute towards the understanding of how

cancer progresses, and the development of effective strategies

which counteract its spread.

Materials and Methods

Cell Lines and Reagents
HCT116, HT29, WiDr, RCM-1, RKO, Caco-2, SW837,

SW480, SW403, SW620, DLD-1, LS513, COLO201 and

COLO205 are human colon cancer cell lines obtained from

ATCC. The in vivo-derived metastatic E1 cell line was developed

from HCT116, as previously described [31]. HCT116, E1, HT29

and WiDr were cultured in McCoy’s 5A modified medium; Caco-

2, SW480, SW837, SW403 in Dulbecco’s Modified Eagle’s

Medium and DLD-1, RKO, LS513, RCM-1, COLO201,

COLO205 in RPMI 1640 (All media from Sigma-Aldrich). All

media were supplemented with 10% fetal bovine serum (FBS)

(Hyclone). Stable HCT116 cell lines overexpressing gelsolin and

empty vector control cell lines were grown using the McCoy’s 5A

medium with addition of 500 mg/ml Geneticin (Gibco). Cells were

maintained at 37uC in a humidified incubated with 5% CO2.

Antibodies used include mouse antibodies against human gelsolin

(Abcam), b-actin (Sigma-Aldrich), GAPDH (Santa Cruz Bio-

technology), pan-cytokeratin (AE1/3) (Dako), uPA (America

Diagnostica), uPAR, mouse IgG1 and goat IgG (R&D Systems).

Secondary antibody goat anti-mouse IgG conjugated with HRP

(Santa Cruz Biotechnology) was used. Metalloproteinase (MMP)

inhibitors include GM6001, MMP-2 Inhibitor I, MMP-2/MMP-9

Inhibitor IV, MMP-3 Inhibitor II, MMP-8 Inhibitor I (Calbio-

chem) as well as anti-MMP7 antibody (R&D Systems).

Construction and Transfection of Gelsolin-overexpression
Plasmids
A coding sequence of human gelsolin was amplified from

a PMW172 expression plasmid containing human cytoplasmic

gelsolin cDNA, by polymerase chain reaction (PCR) using the

forward primer 59CG GAA TTC ATG GTG GTG GAA CAC

CCC GAG TTC 39 and reverse primer 59 CG CCG CGG TCA

GGC AGC CAG CTC AGC CAT GGC 39, followed by cloning

of gelsolin insert into pIRES2-EGFP vector (Becton Dickinson) at

Eco RI and Sac II enzyme restriction sites. The resulting vectors

were transformed into competent Escherichia coli XL1B MRF’ cells

(Stratagene) and clones were selected based on kanamycin

resistance. Sequencing of the cloned gelsolin cDNA verified that

the cDNA sequence encodes the human cytoplasmic gelsolin

protein (Swiss-Prot accession P06396). To generate stable cell

lines, gelsolin- pIRES2-EGFP vector or empty vector were

transfected into HCT116 using FuGENE 6 (Promega) and

selected using 500 mg/ml G418.

Immunohistochemistry
24 primary colorectal tumors and 26 colorectal liver metastases

tissues as well as 15 adjacent normal colonic tissues were obtained

for use from the Department of Pathology, National University

Hospital, Singapore, with approval from the National University

of Singapore Institutional Review Board. Briefly, the 4 mm-thick

tissue specimens were deparaffinized, boiled in citric acid, and

treated with hydrogen peroxide, before incubation with anti-

gelsolin primary antibody overnight at 4uC, followed by in-

cubation with polymer-horse radish peroxidase-conjugated sec-

ondary antibody at room temperature. Sections were developed

with diaminobenzidine (DAB) and counterstained with hematox-

ylin. Images were acquired using Olympus BX43F microscope

equipped with a DP70 camera. Gelsolin staining in the muscularis

propria and stroma [28,29] were used as internal positive controls.

The intensity of staining was graded from 0 (undetectable) to 3

(intense staining), whilst the proportion of positive staining tumor

cells within a tissue was scored from 0 to 3 where: 1 =,30%,

2= 30–60%, 3=.60% of tumor cells identified. The staining

score was expressed as the product of intensity of staining and

proportion of tumor positivity. Both cytoplasmic and nuclear

staining were scored and summed. The maximum possible score

for a sample is therefore 18, the sum of the maximum cytoplasmic

(9) and nuclear scores (9).

siRNA Transfection
10 nM of the Stealth siRNA of the sequence 59 AAA CGU

CCA AUC UUG UUG GAG CAG G 39 (Invitrogen), complexed

with lipofectamine, was used to silence gelsolin expression in cells.

Medium GC control siRNA which matched the GC content of the

gelsolin siRNA used and no-siRNA treatment were included as

controls. Cells were harvested at 48 or 72 hours, and treated as

used in other assays as described.

Matrigel Invasion Assay
The transwell assay was carried out as previously described

[31]. 56104 cells were seeded for HCT116 and E1 cell lines and

36104 cells for DLD-1, for 48 hours. 10% FBS was used as

chemoattractant in the bottom transwell chamber. For function-

blocking experiments, cells were seeded with 200 mg/mL anti-uPA

or 80 mg/mL anti-uPAR (American Diagnostica). For MMP

inhibition treatments, 0.156106 gelsolin-overexpressing HCT116

cells were seeded for 24 hours with 40 mM of MMP inhibitor

(either GM6001 or MMP-2, MMP-2/-9, MMP-3 inhibitor),

except for MMP-8 inhibitor which was used at 1 mM. Mouse

IgG1and goat IgG were included as controls for anti-uPA/anti-

uPAR and anti-MMP7 respectively whereas the vehicle control

dimethyl sulfoxide (DMSO) was used alongside with the remaining

MMP inhibitor treatments. The same protocol was used for

migration studies but without the addition of matrigel coating on

the transwell membrane.

ELISA
For measurement of secreted uPA under standard culture

condition, cells were incubated in serum-free medium for 48 hours

before harvest of culture supernatant for assay. For stimulated

conditions, cells were serum-starved overnight prior to incubation

with either 5 or 10 ng/mL of human recombinant TNF-

a (PeproTech) in fresh serum-free media for 24 hours. As a control

for TNF-a stimulation, cells were incubated with serum-free media

in parallel. All harvested cell culture supernatants were kept at

220uC until analysis by ELISA. For measurement of secreted uPA

under gelsolin-knockdown conditions, cells were treated with

siRNA before the serum-starvation step on the following day.

Levels of uPA present in the neat supernatants were determined by

the human Duoset ELISA Development Kit (R&D Systems),

according to the manufacturer’s protocol.

Microarray Analysis
Microarray analysis was performed on the wild-type HCT116

cell line as well as stably-transfected HCT116 cells including four

gelsolin-overexpressing cell lines and two empty vector-transfected

control cell lines using Sentrix HumanRef-8 Beadchips (Illumina),

Gelsolin Induces Cancer Invasion via uPA Cascade

PLOS ONE | www.plosone.org 10 August 2012 | Volume 7 | Issue 8 | e43594



according to the protocol outlined in the Illumina technical

manual. The arrays were scanned using Ilumina BeadArray

Reader and analyzed using BeadStudio version 3.1.3.0. For each

cell line, duplicates from two independent harvests were profiled.

The absolute data was exported into GeneSpring GX v7.3

software (Silicon genetics) for further analysis. The measurements

on each chip were first divided by the 50th percentile value, after

which the value obtained for each gene was normalized to the

average baseline median value of the control samples. One-way

ANOVA approach was used to identify differentially-expressed

genes and genes showing an average of at least a two-fold change

in expression level in the four gelsolin-overexpressing samples. The

output was then functionally annotated via Gene Ontology

functional annotation under DAVID Bioinformation Resources

(http://david.abcc.ncifcrf.gov/). The microarray data reported

here are described in accordance with MIAME guidelines, and is

accessible at Gene Expression Omnibus (GEO) database [64]

through GEO Series accession number GSE36588 (http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc =GSE36588).

Real Time Quantitative RT-PCR
Real Time PCR was used to validate gene expression change

from microarray data. 0.5–1.4 mg of cDNA was used for reverse-

transcription, carried out on the ABI 7300 Real time PCR system.

The thermal cycling conditions were as follows: one cycle at 95uC
for 10 minutes, followed by 40 cycles of denaturation at 95uC for

15 seconds and annealing extension at 60uC for 1 minute. The

primers used included uPA (Hs01547054_m1), uPAR

(Hs00182181_m1), PAI-1 (Hs00167155_m1), PAI-2

(Hs00234032_m1) and a2-antiplasmin (Hs00171467_m1).

GAPDH (Hs99999905_m1) was included as the internal control.

All reagents are from Applied Biosystems.

Western Blotting
Total cell lysates were extracted using lysis buffer (6 M urea, 1%

SDS, 2 M b-mercaptoethanol, 1 M Tris pH 7.4, PBS). Equivalent

amounts of protein from each sample were separated on 10%

SDS-PAGE gels and transferred to PVDF membranes, blocked

and incubated with primary antibody overnight at 4uC followed

by secondary antibody before chemiluminescence substrate de-

tection.

Zymography
Secreted uPA enzymatic activities were examined by zymo-

graphy. Briefly, cells were grown in serum-free medium for 3 to

16 hours. The conditioned media were normalized using cellular

lysate and then combined with non-reducing sample loading

buffer and loaded into 10% SDS-PAGE gels containing 730 ug/

mL of human fibrinogen and 20 ug/mL human plasminogen

(Sigma-aldrich). After electrophoresis, gels were rinsed with

distilled water and incubated with wash buffer (2.5% Triton X-

100 and 50 mM Tris-HCl pH 8.0) for 1 hour, followed by

incubation at 37uC with incubation buffer (0.1 M glycine buffer,

pH 8.0) for 16 hours. The gels were then stained with Coomassie

blue (0.05% Coomassie dye, 40% methanol, and 10% acetic acid)

for 1 hour at room temperature, and destained with distilled

water. Areas of lysis were expected to appear as zones of clearance

against the Coomassie blue-stained background of undegraded

substrate.

Statistical Analysis
Statistical analysis was performed using Student’s t-test except

for IHC gelsolin expression analysis in which Mann-Whitney test

was used. Differences between sample means were considered

statistically significant with P,0.05.

Supporting Information

Figure S1 Gelsolin immunohistochemistry in human
colon tissues. An example of gelsolin staining in adjacent liver

metastases section is shown here. Negative controls, including

primary antibody exclusion and IgG isotype control were included

to confirm the specificity of the gelsolin antibody used. Gelsolin

was consistently highly expressed in the stroma but stromal

stainings were mainly undetectable in the negative control

samples. Bar: 50 mm.

(TIF)

Figure S2 Gelsolin immunohistochemistry in normal
human colon tissues. Gelsolin is prominent in surface

epithelium cells (A, arrowed) and weakly expressed, or absent in

goblet cells (B, C). Cytoplasmic labelling is predominant, with

occasional nuclear localization (C, arrowed). Gelsolin is intensely

expressed in muscularis propria (D), vessel walls (E) and lymphoid

cells (F). Bar: 50 mm.

(TIF)

Figure S3 Gelsolin immunohistochemistry in human
colorectal carcinoma cell lines. In a panel of colorectal cell

lines, gelsolin levels are highest in COLO201 and COLO205,

both of which were obtained from metastatic ascites. Gelsolin

expression in the remaining primary tumor-derived cell lines

(except SW620 which was derived from lymph node) were more

varied. The graph displays normalized gelsolin expression to

HCT116. b-actin was used as loading control.

(TIF)

Figure S4 Cloned sequence of human cytoplasmic
gelsolin cDNA. Nucleotides 159 to 2354 was cloned. This

sequence is a 100% match with Genbank accession

#BC026033.1.

(TIF)

Figure S5 Gelsolin modulates the expression of genes
important for tumor dissemination. (A) The global gene

expression profile of four stable gelsolin-overexpressing HCT116

cell lines were compared against the pooled average of two vector

control cell lines using microarray analysis. Each horizontal row in

the cluster diagram represents a gene. Blue shades represent

downregulation while red shades represent upregulation in gene

expression relative to the vector control cells. All samples were

assayed in independent duplicates. (B) Biological function

classification of differentially-expressed genes from the microarray

output, using Gene Ontology annotation from DAVID bioinfor-

mation resources. Genes showing an average of at least two-fold

change in expression level in the four gelsolin-overexpressing

clones are represented in the classification. Gelsolin modulates the

genes involved in tumor dissemination including cell differentia-

tion, cell motility and the regulation of cell adhesion.

(TIF)

Figure S6 Gelsolin-overexpressing HCT116 may en-
hance invasion by MMP-2. Gelsolin-overexpressing cells were

treated with MMP inhibitors and examined for changes in invasive

potential through matrigel. The pan-MMP inhibitor GM6001 as

well as inhibitors to MMP-2, MMP-2/-9 and MMP-3 were used at

40 mM, MMP-8 inhibitor at 1 mM, and a-MMP7 antibody at

80 mg/mL. DMSO and goat IgG antibody were used as controls

to MMP chemical inhibitors and a-MMP7 antibody treatments

respectively. No significant reduction in invasion was observed in
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any of the MMP inhibitor treatments, although GM6001 and

MMP-2, MMP-2/29 inhibitors showed a slight reduction. All

data shown are the mean 6 standard error of at least duplicate

measurements and are representative of at least two independent

experiments.

(TIF)

Table S1 Gelsolin modulates the expression of genes
important for various cellular processes. Genes from the

microarray output were classified under various biological pro-

cesses using Gene Ontology annotation from DAVID bioinforma-

tion resources. Average fold change in gene expression is

determined from comparison between 4 gelsolin-overexpressing

HCT116 clones and 2 vector-control HCT116 clones.

(PDF)
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