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We investigate the minimal resources that are required in the local implementation of nonlocal quantum
gates in a distributed quantum computer. Both classical communication requirements and entanglement con-
sumption are investigated. We present general statements on the minimal resource requirements and present
optimal procedures for a number of important gates, including controlled{NnoT) and Toffoli gates. We
show that one bit of classical communication in each direction is both necessary and sufficient for the nonlocal
implementation of the quanturmnoT, while in general two bits in each direction is required for the imple-
mentation of a general two-bit quantum gate. In particular, the state swapper requires this maximum classical
communication overhead. Extensions of these ideas to multiparty gates are presented.

PACS numbd(s): 03.67.Lx

[. INTRODUCTION that are located in different nodes of the distributed quantum
computer. This problem is addressed in this paper. We
A quantum computef1-3] allows, in principle, for the present optimal protocols implementing gates that affect qu-
efficient solution of some problems that are intractable on &its in different nodeghere dubbed nonlocal gajesnly
classical computer, the most striking example being the facusing local operations and classical communicatic@CC)
torization of large number§4,5]. However, the practical and previously shared entanglement. Optimality is measured
problems involved in the actual construction of a quantunin terms of the consumption of the basic experimental re-
computer of an interesting sizeertainly more than 50 qu- Sources of entanglement and classical communication be-
bits) that is capable of performing a sufficiently large numbertween nodes. We present general theorems that give lower
of logical gatega few hundred appear as a lower limit for an bounds on the resources required .for the implementation of
interesting problem involving 50 qubjtsre daunting. Prob- duantum gates and for several universal quantum gates we
lems range from fundamental effects such as decoherend¥€sent optimal implementations. We also discuss the gen-
and dissipation, experimental imperfections, for example, ir!aral structure of the classical communication transfer in these
the timing, length and intensity of the laser pulses to thdmplementations.
nontrivial task of storing and isolating reliably a large num- It should be noted that the issue addressed in the present
ber of qubits[3,6—8. In fact, in proposals such as ion trap or Paper is different from the question as to whetterd how
the cavity QED implementations it seems problematic tod Particular entanglement transformation is possible under
store and process very large numbers of qubits in a singl¥cal quantum operations and classical communicaftidn
“processor.” A possible way out would be the construction in that in the course of the nonlocal implementation of a
of a quantum computer not as a local device that contains afiuantum gate the initial state is not known in advance. In-
qubits in a single processor, but to build it from the outset agtead, with the use of shared entanglement particular joint
a multiprocessor device where each processor contains onWitary operations between several parties are simulated.
a small number of qubits. Such a “distributed quantum com- In Sec. Il we begin with an investigation of two-qubit
puter” can be viewed as a generalization of a quantum comgdates. We establish some lower bounds on the resources that
munication network in which each node can act as a sendé€ required to implement two-qubit gates and present opti-
or receiver and contains only a small number of qubits. Dis/al implementations for a number of important gates. In
tributed quantum computation has been considered prevRarticular we present a protocol that implements a
ously by Grovef9], and he demonstrated that the solution ofcontrolled-NoT (CNOT) gate consuming one ebit of entangle-
a phase estimation problem can be obtained efficiently withnent and using only one classical bit of communication be-
such a device assuming ideal conditions. It was later showriween the two parties. We then proceed in Sec. Il to study
that even under nonideal conditions, i.e., in the presence dhultiparty gates such as Toffoli gates and other more general
decoherence, a distributed quantum computer can be sup@liltiparty quantum gates again presenting bounds on the
rior to a classical computer in terms of the resources that arééquired physical resources and optimal protocols for some
required for the solution of the phase estimation problenimportant classes of gates.
[10]. However, these investigations considered the specific
problem of phase estimation and did not address the question
of universal quantum computation. Before one is able to con-
sider the physical resource efficiency of a distributed quan- General single-bit rotations together witlcROT gate are
tum computer in general, it is necessary to establish firssufficient to implement any multiqubit unitary transforma-
optimal implementations of quantum gates between qubition. This implies that the resource requirements for the

II. NONLOCAL TWO-QUBIT GATES
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implementation of acNOT gate are a limiting factor in the AO ©)—

construction of general unitary transformations in a distrib- 5

uted quantum computer. For this reason we investigate first AIE—G—DT |

the cNOT gate. ! |
Theorem 1 One bit of classical communication in each B{ & G De

direction and one shared ebit is necessary and sufficient for

the nonlocal implementation of a quantwROT gate. BO ©

Proof: (i) _Necessity_. TO_ demonstrate that one_ bit of com- FIG. 1. A quantum circuit to perform thenoT nonlocally with
munication in each direction is necessary we first note thal,inimal classical communication. Alice has the quEAtRNd A, ,

the procedure consists of local operations and classical comg Bob ha® andB, . Alice and Bob are only allowed to commu-
munication. As local operations cannot transmit informationpjcate classically, and this communication is represented by the

from Alice to Bob, or vice versa, all information which has gashed lines. Each dashed line denotes one bit of communication.
been sent at the end of the operation must have been sent
classically. Consider now thenoT quantum gate. If the tar-
get qubit is initialized in the stat@), then its final state will
be|0) or |1) depending on the initial state of the control qubit
being|0) or |1), respectively. Therefore, the final result of the
gate in this case is the communication of one bit of informa
tion from Alice (holding the control qubjtto Bob (holding
the target qubjt Consequently, in the nonlocal implementa-
tion, one bit of classical information must have been sent 1
classically from Alice to Bob. The reason for this can be seen 5(0400@ +a|01D)+ 8[110 + B 1OD)AA151' (@)
from an elegant argument presented in the figure caption of
the last figure in Ref.12] (see Ref[13] for more details In . .
short, assume that Alice needs to send less than one bit. fice then performs a measurement &g in the computa-
that case she could omit sending the bit and force Bob tdlonal basis, and the line correspondlng to thls.qub!t termi-
make a guess. As he would guess the correct answer with }t€S. The result of the measurement is one bit of informa-
probability larger thar, Alice and Bob could then use error 0N, which is  communicated to Bob, and this
correction codes to establish a perfect channel and would erffMmunication is denoted by the dashed line. I the result is
up with a superluminal communication channel. To see thatd) Bob does nothing, and if the result/iy Bob performs the
one bit must also have been sent from Bob to Alice, we neefOt Operation. At this point the combined stateAaindB, is
merely note that in the basfis )= (|0)*|1))/vZ the role of ~ ¢/00as, + Bl1Dp,- That is, we have now effectively per-
control and target in aNoT gate are reversed. Consequently, formed acNOT betweenA andBy, in which the initial state
if Alice’s particle is prepared in the standard state and  of 2 was|0). Now particleB; contains the necessary infor-
Bob chooses to prepare his particle either in stateor |[—), ~ mation about the state . We can now perform @&noT
Alice will, after the application of thecNoT gate, hold a betweenB; andB. The combined state of, B;, andB is
particle which is either in state+) or |-) depending on the now
state Bob’s particle has been prepared in. Therefore one bit
of information has been transmitted from Bob to Alice. As
the implementation of theNoT must be independent of the — (@y|000 + @600 + 865|110 + BY[11D)ap,e- (2)
initial state, the procedure must allow for one bit of commu- 2
nication in each direction, and as a consequence the nonlocal
implementation must involve, as a minimum, one bit of com-All we have to do is to remov®, from the state. This is
munication in both directions. done by performing a Hadamard transformationByn and
That one ebit is required can be seen from the fact that ghen measurin@, in the computational basis, at which point
CNOT gate acting on the initial statéQ),+|1),)|0)g leads the line denotingd; terminates. The result of the measure-
to a maximally entangled statd0Q)ag+|11)ag. As the  ment(one bih is communicated to Alice. If the result is “0”
amount of entanglement cannot be increased by local operadice does nothing, and if the result is “1” she performs a
tions, this implies that the nonlocal implementation of a(state-independents, operation on particleA. This com-
CNOT gate must consume at least one ebit. pletes the nonlocatNoT OJ
(i) Sufficiency In the following we construct a quantum  Theorem 2 A control-U gate can be implemented using
circuit which performs theeNOT nonlocally using ones bit  one shared ebit and one bit of classical communication in
and the transmission of one classical bit in each directioneach direction.
This quantum circuit is given in Fig. 1. TheNOT is per- Proof. A controlU gate is defined as a gate that applies
formed between the qubi#s andB. Alice holds the qubit®\  the identity on the target qubit if the control bit is in sti@e
andA;, and Bob holds the qubit® andB;. The wavy line  and it applies the unitary operatbrto the target if the con-
connectingA; and B, signifies that they are entangled. In trol qubit is in statg1). The same quantum circuit as in Fig.
particular we will choose their initial state to bg0Q) 1 can be used except that tlealoT gate on Bobs side is
+|11))/v2. The initial state ofA is necessarily arbitrary, and replaced by a contrd} gate[]

so is given bya|0),+ B|1)4. The initial state ofB is also
arbitrary, and is given byy|0)g+ 8|1)g. Time now flows
from left to right in Fig. 1. First a locatNOT is performed
with A as the control andh\; as the target. After this the
combined state of, A;, andB; is
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FIG. 2. A state swapper implemented by means of three
guantumcNoT gates.

FIG. 3. A cNorT gate, with A as control and B as target, sur-
rounded by Hadamard gates is equivalent ttnaT gate with A as

In general a single application of a conttdlgate cannot target and B as control.

be employed to create one ebit from an initial product statg|gg +]11 00 +]11 _
of two qubits. Furthermore, the amount of classical informaf{| o | >A1A2)(| )58, | /8,8,)
tion that can be sent from Alice to Bob via a general

controlU gate is less than one bit. This raises the question aﬁecessary to implement it when one employs the ordinary

to whether such a contrd)- gate can be implemented with . : .
less resources than a full egbit and one cIaPssicaI bit of com.gate array picture using a universal set of quantum gates that

munication in each direction. Clearly this will not be pos- 1S made up O?NOT gates and local umtary operatiofts]. .
: . . . . This observation may be useful, as it demonstrates that in
sible when we only wish to implement a single instance of a .
. . some cases the use of entanglement can be replaced partially
controlU gate. However, it may be conceivable that one ha

. - . local measurements and classical communication.
a situation in which one needs to carry out a large number o y

. s . Before we move on to investigate the implementation of

control-U gates simultaneously. In that case it is conceivable . ;
. . ; nonlocal multiparty gates we would like to analyze the struc-
that this could be done with less than 1 ebit of entanglement 2= . . .
; . 2~ “.ture of the classical information transfer involved in the gate
per gate and less than one bit of classical communication in . )
each direction. However, this turns out to be a difficult ueslmplementanon somewhat further. In both examples dis-
. ' , q cussed above it turned out that the classical information

tion and we have been unable to find such a scheme.

; . . transfer between the two parties is symmetric, i.e., the same
Let us now move on to investigate general two-qubit

guantum gates to establish the minimum resource requiren-umber .ﬁf b[ts nehed to be se?t Ifro”.‘ AII'.C?C to qu ar;]d vice
ments for their implementation. versa. Likewise, the amount of classical information that can

Theorem 3 Two bits of classical communication in both be sent using these two-qubit gates is also the same in each

directions and two shared ebits is sufficient for the nonloca Irection. [tis therefore quite natural to ask whether this is
. . ; he case in general. Indeed we have not been able to find a
implementation of a general two-bit gate.

Proof. To demonstrate that this amount of communicationcounterex‘fjmple and we therefore make the following two

is sufficient to implement all quantum operations we neeqclosely related propositions.

merely invoke quantum teleportation. Any operation may be Proposition 4 The minimal amount of classical commu-
performed by teleporting Alice’s state to Bob, at which pointmcatIon required to implement any two-party quantum gate

Bob may locally perform the operation, and then teleport theiv\\//l'ti] f r;e iqsuglth?/zOtﬂstggn:vét?neggzhpgirzgir:%ShMer'tS'

resulting state back to Alice. This procedure requires two ”» S .

. AT o . Proposition 5 The amount of classical information that

bits of communication in each direction and 2 shared ebits . : . . .

[12,16 O can be sent via any two-qubit gate is the same in each direc-
' tion.

Moreover, there are two-qubit gates that require two bits . -
. S L While these propositions appear natural, we have not been
of classical communication in each direction and consumes 2 .
: . . ... able to find general proofs for them. However, we have been
bits. An example is the state-swapper, which may be ertter2';1ble to confirm both of them for a number of classes of
as threecNOT gates, one after the other, with Alice as thetwo_ ubit quantum aates. An examole of a qate which has
control, target, and then control, in that ordsee Fig. 2 To 9 d g i P 9

. . L . the same classical information capacity in both directions is
show that two bits of classical communication are require

; ! . . he cNOT gate whose optimal implementation has been de-
(each way in the nonlocal implementation of this gate, we _ . :
. ; : scribed above. How can we see that a quantum gate is sym-
need to show that this amount of information may be com-

municated from Alice to Boland vice versawhen the gate metric with respect to its capability for classical information
: ; transfer? Before we move on to the most general case, let us
is performed. To do this we merely have to note that at the . . "
. . consider thecNOT gate. Imagine we have the ability to per-
completion of the gate Alice has sent her state to Bob. Now, : ;
. S . . form a cNOT gate with Alice as the control and Bob as the
this state could have been initially in a maximally entangled,[ar et. Using this gate and local oberations onlv. we can then
state with a qubit that Bob possesses. Superdense codin get. 9 9 P Y,

tells us that this enables Alice to send two bits of informationagFSO implement aNOT with Alice as a target and Bob as a

to Bob[17]. Naturally Bob can use the same procedure togg?;rgglerrggﬁ dbgﬁiﬁﬁlﬁ%f SHeaedia:rigargd gate to each qubit

send two bits of information to Alice. Therefore, in a nonlo- . .
) . . The two versions of theNoT gate are also related via the
cal implementation, the state swapper requires at least tw
nonloca) state swapper.

bits of communication in each direction. An analogous argu-
ment shows that the state swapper would also require two  yB8A =y UAB Ul =(HeH)UAB (HaH), (3
shared ebits, as a state swapper can be used to establish two

ebits from a product state. To achieve this one simply appliesshere U2 o represents theNoT gate withA as a control
the state swapper to particled, and B, of the state andB as a target ant .. denotes the state swapper. In gen-

It is remarkable that the swap gate requires only two
shared ebits as it can be shown that thoeeT gates are

052317-3



EISERT, JACOBS, PAPADOPOULOS, AND PLENIO PHYSICAL REVIEW @2 052317

eral if we can achieve the transformatithig,=U U Agu;‘S

t

from U o5 and purely local operations, i.e., if there exist local EI NiUsd #i)(¢ilUss

one-qubit unitary operatord,, U,, Uz, andU, for which

we have ~ ~
ORI

Uga=UsUasUl=(U1®U)Up(Us®Uy),  (4) N
=(Oau)

S, naoal k) RTI(0oU)

then Eq.(4) is a sufficient condition for the classical infor- ~
mation transmission capacities in each direction to be equal. =(U®U)
In the following we will determine some sets of quantum

gatesU g for.whig:h Eq..(4) hOk.jS' where U is defined to be the unitary operator which maps
Let us begin with a slightly simpler problem. Suppose that

we have a two-qubit quantum gaté e U(4). V, can be each basis vectﬂ'r) to its correspondingﬁf); Similarly, the
expressed in terms of its generator\as=exp(Hy), where  unitary operatot maps each basis vectpr) to its corre-
the generatoH, is a Hermitean operator. We now define sponding|i), i.e.,U= U O Another nontrivial class of quan-
another quantum gaté, as tum gatesU,q4 for which condition (6) holds, is the one
whose generator is Bell diagonal, i.e., we have the following.
Lemma 7 Any two-qubit quantum gate that has a genera-
VZEUSS\/lUls:UsseiHlU;rs: eiUssHlUlsEein, (5) tor which is Bell-diagonal is symmetric with respect to its
classical information transfer capacity.
Proof. If |¥) is anyof the Bell states, the reader can easily
where the generatdil, of V, is clearly a Hermitean opera- verify that
tor. Our goal can therefore be reformulated as: For which
unitary operatorsV; can we write V, as V,=(U; (W N (W [=Ud U W |UL= (0,0 o) [V ) (W [(0,0 ).
®U,)V;(UleUl), or equivalently for which generatoks$;
of V; can we write

Zm|¢i><¢il)(0*®w), 8

Therefore, for the quantum gat#,y, condition(6) is satis-
fied by either choosing,=U,=1 or U;=U,=0,. Recall
that o, is the Pauli matrix corresponding to the arbitrarily
H,=U.H.Ul =(U,9U,)H (UToUl. 6 chosenz direction[]
2=UsHils = (Uio Uz Hu(UioUz) © Note, however, that conditiof6) is not satisfied for all
quantum gatedJ,g. A counterexample is the gatd,g

Note that this is less general than the transformation in Eq=e"1|0+ ){0+|+€'*2]0—)(0—|+€e'3|10)(10| + €'*4]11)
(4). It is useful to realize that both the unitary operatyr ~ X(11]. For\;=X\,=0 and nontrivial choice ok 3 and\, it
and its generatoH, are diagonal in the same basis, sayis not possible to find local unitary operatddg andU, such
{|¢i),i=1,2,3,4. Furthermore, we can decompade with that Eq.(6) is satisfied. Nevertheless, it is possible to find

respect to its eigenvectors &b, =3;\i|#i){(#i|=2\ip;, local unitary operatorsJ,, U,, U, andU, which satisfy
where\; is the eigenvalue dfl; corresponding to the eigen- th'e more general conditio@). The local unitary operators
vector|¢;). Consequently, Eq(6) becomes will be of the form[14]
Us=e~M1)(1]+ s o)l ©
2 MUspiU= 20 Mi(Uro Ug)p(UieUy). () U,=|1)(1] + e 1s~29]0)(0], (10
Us=I, 11

We can now prove a number of lemmas. We begin with the .

following. U,=e"¢[1)(1|+[0)(0]. (12)
Lemma 6 Any two-qubit quantum gate that has a genera- :

tor with a single nonvanishing eigenvalue is symmetric withwel_Can the8nTﬁoncIude E{O ;helz f°”_°W|'F‘9f Iemnt1_a. that b

respect to its classical information transfer capacity. te”?ma e:a:)nuoun to ??ﬁs'?a Information that can be
Proof. Suppose that thenly nonvanishing eigenvalue of sent via any contros gate ot the form

the generatoH; is \; [15]. In that case we can always find U=10%0l®1+|1)(1]|® (e3]0)(0] + e 1)(1

one-qubit unitary operatortl; and U, such that Eq.(7) 100 [1)2|®(e74]0)0] 11D

holds. To see this, note that the eigenstatg is actually a s the same in each direction.

pure state describing a system composed by two qubitst should be noted that this does not mean that the amount of

Therefore, it has the Schmidt decompositiofty;)  information transferred in any particular operation of the

=3V KAl K)e=2Vpul k) [K). Furthermore, in this case gate will be the same in both directions, as this will depend

we have upon the choice of initial states. However, an implementa-
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FIG. 4. A quantum circuit for the nonlocal implementation of a
Toffoli gate. 1O
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FIG. 5. A quantum circuit for the nonlocal implementation of an

tion of the gate must work for all possible initial stats
particular it must work for the case where both qubits ard\-party controlt gate.
pure and therefore contain their maximum capaceyd this
is what puts the limit on the minimal communication require-
ment.

It is clear that we may now put two-bit quantum gates into

which shows that we have implementedcaoT between
parties B and C. Therefore Theorem 1 implies that one clas-
sical bit has to be exchanged in both directions between A

g . : nd the target party C and one ebit has to be shared between
two classes. Those which require no more than one bit o . )
S . hem. The same argument applies when we fix the state of
two-way communication, and those that require more than

one bit(but no more than two biis The cNOT falls into the qubit B to be|1).

first category, and the state swapper falls into the second.. (i) Sufﬁm_en_cy The |mplem_entat|on of the 'I_'offol| gate
with these minimal resources is presented in Fig. 4. Assume

Two other standard gates which fall into the first category are ot Alice and Clare share a odiz, C, of qubits in a maxi
) 1 -

System depending on the siate of the othand the state. MY entangied statay) —((00) - [11)/v2, and that Bob
preparer. and Clare share anoth'e( pair of partices and C, in the
same state. Then the initial state of the whole system con-
sisting of particlesA, B, G A;, B4, C4, andC, is of the
I1l. NONLOCAL MULTIPARTY GATES form

In the previous section we have presented a number of ) =) a® | )@ | ) c®|d ac. @b )s.c., (15
results concerning the implementation of nonlocal two-qubit m 12

quantum gates in a distributed quantum computer. In thgnhere
following we will generalize these ideas to local implemen-

tation of multiqubit gates, i.e., gates where more than two | ) a= |0) + B|1), (16)
parties are involved. To illuminate the system behind the
construction, we explain the implementation of the Toffoli l4)s=7v|0)+ 8]1), (17)
gate from which the generalization to other multiparty gates
will be evident. |)c=n[0)+£|1). (18

Theorem 9 Two shared ebits and a total of four bits of he f i< 2 local d ith
classical communication are necessary and sufficient for then€ first step is a local quantuonoT gate onA andA, wit

local implementation of a nonlocal three-party quantum Tof-» @ control. Then Alice measures partiolg and Clare
foli gate. performs aNOT operation on her particl€, if Alice finds |1)

Proof. (i) NecessityA Toffoli gate can be reduced to an @nd the identity if Alice find40). QubitA; is subsequently
ordinary cNOT gate when one fixes the state of one of thediscarded. Now Bob applies a locakoT with B being the

control qubits to bél). Chose the state of party A to . control andB, being the target. Then Bob measures particle
Then the initial state is B, and Clare performs ®OT operation on her particl€, if

Bob finds|1) and the identity if Bob find$0). Qubit B, is
(13) subsequently discarded. Now the state of the remaining qu-

|¢Im:|1>A(a|0>+ﬁ|l>)(7|o>+5|1>) bits A, B, C C]_, andC2 is given by

and after the application of the Toffoli gate we find (@|00)+ B|11)) ac,® (¥|00) + 8[11))gc,® [ ¢h)c - (19)

| #ini=|1)a(@y|00) + a8|01) + By|11) + B5|10)) g In a further step Clare applies locally a Toffoli with,
(14 andC, being the control qubits. Subsequently Clare applies
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Hadamard gates to the qub@g andC,. Then she measures the ancillasC, ,...,Cy_; being the control qubits an@ the

C, and appliesr, or the identityl to B if her result is|1) or  target. Subsequently the target party performs Hadamard

|0y, respectively. Finally she measur€s and appliesr, or gates on each of its ancillas.

the identity toA if her result is|1) or |0), respectively. This = Thjs is then followed byN—1 steps involving measure-

completes the Toffoli gate. The total number of classical bitsnents. In thekth step qubitT, is measured in thé0), |1)

which have to be communicated is 4, and only two sharegyass. If the outcome i), then o, is applied to the qubit

ebits of entanglement are consumed. Py ; if the outcome ig0) then no action is taken on quist .
Again, these results can be generalized to three-partyy,pt T, is subsequently discarded. Hence, the total required

controlU operations that can be represented in matrix form.agources are N~—1) bits of classical information anil

with respect to the computational basis as —1 initially shared ebits[]
1 The amount of consumed resources in the latter protocol
is rather surprizing. In an inefficient nonlocal implementa-
1 tion of the aboveN-party gate one could employ the simula-
1 tion of the gate with the use of two-party conttdlgates and

CNOT gates as in Refl19], but such that each step is realized
(20) nonlocally (see Fig. 5. In such a procedure a supply of 3
1 ’ x2N"1—4 ebits would be necessary. A more efficient
1 teleportation-based protoc§R0] in which the respective
states of the qubits at different nodes are twice teleported
Uoo Uo1 would still use 2N —1) ebits and 4— 1) bits of classical
Ujp Upg information.

where
IV. CONCLUSIONS

(UOO Um) 1) In this work we have addressed the problem of the local
Uyg Ugg implementation of nonlocal gates in a distributed quantum
) ) ) ) computer, i.e., a computer which is composed of many sub-
is the matrix representation of a unitary operdolWe only  pjts (local processojs Such a configuration may be useful,
need to replace the local Toffoli gate by a local three-partyys it requires only a small number of qubiesg., ions to be
controlU. This gives rise to the following. . stored at each site which may be experimentally more fea-
Lemma 10 A three party controld gate can be imple- gjple than storing a large number of qubits in a single site.
mented using four bits of classical communication and tWoHowever, this raised the issue of the nonlocal implementa-
shared ebits. ) __ tion of quantum gates. We have addressed this question and
Using theorem 9 and lemma 10 we are now in & positiomaye shown what the minimal resources for the implementa-
to construct every possible quantum gate array using onlyion of two-qubit quantum gates are. We have presented ex-
ebits, classical communication and local operations. In parpjicit optimal constructions for the local implementation of
ticular one could use the results in R¢19] to construct  ponjocal controk gates. We have generalized these results
N-party controlled gates froraNOTs and single bit rotations. 1o multiparty gates such as, for example, the Toffoli gate. We
This, however, is not optimal in terms of physical resourcespaye also adressed some issues concerning the structure of
While it will be difficult to construct the optimal procedure_ the information exchange that is required in these implemen-
for general quantum gates, for some gates we are able to fingtions. We hope that this work will be useful for the assess-

these procedures. We find, for example, the following. ment of the viability of distributed quantum computation.

Theorem 11An N party controlJ gate can be imple-  Note added Recently we became aware of the closely
mented using 24— 1) bits of classical communication and yg|ated work by D. Collins, N. Linden, and S. Popeget
N—1 shared ebit¢see Fig. 5. print quant-ph/0005102

Proof. The control parties are enumerated frdPp to
Pn-1 and each of them is carrying one ancilla numerated by
P; to Py_,. The target qubit is denoted Ayand the target

party possesseS—1 further ancillary qubits. _ We acknowledge useful discussion with Daniel Jonathan
The firstN—1 steps of the protocol are essentially analo-ang john Vaccaro. This work was supported by the Deutsche

gous. In thekth step a local quantuioNOT gate is applied on ForschungsgemeinschafDFG), the U.K. engineering and

P, and Py with Py as control. Then this party measures physical sciences research coufEiPSRG, the Leverhulme

particle Py and the target party performsnaT operation on  Trust, the European Science Foundati@$P program on

her ancillary qubitT, if Alice finds |1) and the identity if quantum information processing, the EQUIP program of the

Alice finds |0). Qubit Py, is subsequently discarded. Now we European Union and the State Scholarships Foundation of

apply anN-party controlledU gate on Clares patrticles, with Greece.
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