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Optimal local implementation of nonlocal quantum gates
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We investigate the minimal resources that are required in the local implementation of nonlocal quantum
gates in a distributed quantum computer. Both classical communication requirements and entanglement con-
sumption are investigated. We present general statements on the minimal resource requirements and present
optimal procedures for a number of important gates, including controlled-NOT ~CNOT! and Toffoli gates. We
show that one bit of classical communication in each direction is both necessary and sufficient for the nonlocal
implementation of the quantumCNOT, while in general two bits in each direction is required for the imple-
mentation of a general two-bit quantum gate. In particular, the state swapper requires this maximum classical
communication overhead. Extensions of these ideas to multiparty gates are presented.

PACS number~s!: 03.67.Lx
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I. INTRODUCTION

A quantum computer@1–3# allows, in principle, for the
efficient solution of some problems that are intractable o
classical computer, the most striking example being the
torization of large numbers@4,5#. However, the practica
problems involved in the actual construction of a quant
computer of an interesting size~certainly more than 50 qu
bits! that is capable of performing a sufficiently large numb
of logical gates~a few hundred appear as a lower limit for a
interesting problem involving 50 qubits! are daunting. Prob-
lems range from fundamental effects such as decoher
and dissipation, experimental imperfections, for example
the timing, length and intensity of the laser pulses to
nontrivial task of storing and isolating reliably a large num
ber of qubits@3,6–8#. In fact, in proposals such as ion trap
the cavity QED implementations it seems problematic
store and process very large numbers of qubits in a sin
‘‘processor.’’ A possible way out would be the constructio
of a quantum computer not as a local device that contain
qubits in a single processor, but to build it from the outset
a multiprocessor device where each processor contains
a small number of qubits. Such a ‘‘distributed quantum co
puter’’ can be viewed as a generalization of a quantum co
munication network in which each node can act as a sen
or receiver and contains only a small number of qubits. D
tributed quantum computation has been considered pr
ously by Grover@9#, and he demonstrated that the solution
a phase estimation problem can be obtained efficiently w
such a device assuming ideal conditions. It was later sho
that even under nonideal conditions, i.e., in the presenc
decoherence, a distributed quantum computer can be s
rior to a classical computer in terms of the resources that
required for the solution of the phase estimation probl
@10#. However, these investigations considered the spe
problem of phase estimation and did not address the que
of universal quantum computation. Before one is able to c
sider the physical resource efficiency of a distributed qu
tum computer in general, it is necessary to establish
optimal implementations of quantum gates between qu
1050-2947/2000/62~5!/052317~7!/$15.00 62 0523
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that are located in different nodes of the distributed quant
computer. This problem is addressed in this paper.
present optimal protocols implementing gates that affect
bits in different nodes~here dubbed nonlocal gates! only
using local operations and classical communication~LOCC!
and previously shared entanglement. Optimality is measu
in terms of the consumption of the basic experimental
sources of entanglement and classical communication
tween nodes. We present general theorems that give lo
bounds on the resources required for the implementation
quantum gates and for several universal quantum gates
present optimal implementations. We also discuss the g
eral structure of the classical communication transfer in th
implementations.

It should be noted that the issue addressed in the pre
paper is different from the question as to whether~and how!
a particular entanglement transformation is possible un
local quantum operations and classical communication@11#
in that in the course of the nonlocal implementation of
quantum gate the initial state is not known in advance.
stead, with the use of shared entanglement particular j
unitary operations between several parties are simulated

In Sec. II we begin with an investigation of two-qub
gates. We establish some lower bounds on the resources
are required to implement two-qubit gates and present o
mal implementations for a number of important gates.
particular we present a protocol that implements
controlled-NOT ~CNOT! gate consuming one ebit of entangl
ment and using only one classical bit of communication
tween the two parties. We then proceed in Sec. III to stu
multiparty gates such as Toffoli gates and other more gen
multiparty quantum gates again presenting bounds on
required physical resources and optimal protocols for so
important classes of gates.

II. NONLOCAL TWO-QUBIT GATES

General single-bit rotations together with aCNOT gate are
sufficient to implement any multiqubit unitary transform
tion. This implies that the resource requirements for
©2000 The American Physical Society17-1
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implementation of aCNOT gate are a limiting factor in the
construction of general unitary transformations in a distr
uted quantum computer. For this reason we investigate
the CNOT gate.

Theorem 1. One bit of classical communication in eac
direction and one shared ebit is necessary and sufficien
the nonlocal implementation of a quantumCNOT gate.

Proof. ~i! Necessity. To demonstrate that one bit of co
munication in each direction is necessary we first note
the procedure consists of local operations and classical c
munication. As local operations cannot transmit informat
from Alice to Bob, or vice versa, all information which ha
been sent at the end of the operation must have been
classically. Consider now theCNOT quantum gate. If the tar
get qubit is initialized in the stateu0&, then its final state will
be u0& or u1& depending on the initial state of the control qub
beingu0& or u1&, respectively. Therefore, the final result of th
gate in this case is the communication of one bit of inform
tion from Alice ~holding the control qubit! to Bob ~holding
the target qubit!. Consequently, in the nonlocal implement
tion, one bit of classical information must have been s
classically from Alice to Bob. The reason for this can be se
from an elegant argument presented in the figure captio
the last figure in Ref.@12# ~see Ref.@13# for more details!. In
short, assume that Alice needs to send less than one b
that case she could omit sending the bit and force Bob
make a guess. As he would guess the correct answer w
probability larger than1

2, Alice and Bob could then use erro
correction codes to establish a perfect channel and would
up with a superluminal communication channel. To see t
one bit must also have been sent from Bob to Alice, we n
merely note that in the basisu6&5(u0&6u1&)/& the role of
control and target in aCNOT gate are reversed. Consequent
if Alice’s particle is prepared in the standard stateu1& and
Bob chooses to prepare his particle either in stateu1& or u2&,
Alice will, after the application of theCNOT gate, hold a
particle which is either in stateu1& or u2& depending on the
state Bob’s particle has been prepared in. Therefore one
of information has been transmitted from Bob to Alice. A
the implementation of theCNOT must be independent of th
initial state, the procedure must allow for one bit of comm
nication in each direction, and as a consequence the non
implementation must involve, as a minimum, one bit of co
munication in both directions.

That one ebit is required can be seen from the fact th
CNOT gate acting on the initial state (u0&A1u1&A)u0&B leads
to a maximally entangled state (u00&AB1u11&AB . As the
amount of entanglement cannot be increased by local op
tions, this implies that the nonlocal implementation of
CNOT gate must consume at least one ebit.

~ii ! Sufficiency. In the following we construct a quantum
circuit which performs theCNOT nonlocally using onee bit
and the transmission of one classical bit in each direct
This quantum circuit is given in Fig. 1. TheCNOT is per-
formed between the qubitsA andB. Alice holds the qubitsA
andA1 , and Bob holds the qubitsB andB1 . The wavy line
connectingA1 and B1 signifies that they are entangled.
particular we will choose their initial state to be (u00&
1u11&)/&. The initial state ofA is necessarily arbitrary, an
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so is given byau0&A1bu1&A . The initial state ofB is also
arbitrary, and is given bygu0&B1du1&B . Time now flows
from left to right in Fig. 1. First a localCNOT is performed
with A as the control andA1 as the target. After this the
combined state ofA, A1 , andB1 is

1

&
~au000&1au011&1bu110&1bu101&)AA1B1

. ~1!

Alice then performs a measurement onA1 in the computa-
tional basis, and the line corresponding to this qubit term
nates. The result of the measurement is one bit of inform
tion, which is communicated to Bob, and th
communication is denoted by the dashed line. If the resu
u0& Bob does nothing, and if the result isu1& Bob performs the
not operation. At this point the combined state ofA andB1 is
au00&AB1

1bu11&AB1
. That is, we have now effectively per

formed aCNOT betweenA andB1 , in which the initial state
of 2 was u0&. Now particleB1 contains the necessary info
mation about the state ofA. We can now perform aCNOT

betweenB1 and B. The combined state ofA, B1 , andB is
now

1

&
~agu000&1adu001&1bdu110&1bgu111&)AB1B . ~2!

All we have to do is to removeB1 from the state. This is
done by performing a Hadamard transformation onB1 , and
then measuringB1 in the computational basis, at which poin
the line denotingB1 terminates. The result of the measur
ment~one bit! is communicated to Alice. If the result is ‘‘0’’
Alice does nothing, and if the result is ‘‘1’’ she performs
~state-independent! sz operation on particleA. This com-
pletes the nonlocalCNOT h

Theorem 2. A control-U gate can be implemented usin
one shared ebit and one bit of classical communication
each direction.

Proof. A control-U gate is defined as a gate that appli
the identity on the target qubit if the control bit is in stateu0&
and it applies the unitary operatorU to the target if the con-
trol qubit is in stateu1&. The same quantum circuit as in Fig
1 can be used except that theCNOT gate on Bobs side is
replaced by a control-U gateh

FIG. 1. A quantum circuit to perform theCNOT nonlocally with
minimal classical communication. Alice has the qubitsA and A1 ,
and Bob hasB andB1 . Alice and Bob are only allowed to commu
nicate classically, and this communication is represented by
dashed lines. Each dashed line denotes one bit of communica
7-2
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In general a single application of a control-U gate cannot
be employed to create one ebit from an initial product st
of two qubits. Furthermore, the amount of classical inform
tion that can be sent from Alice to Bob via a gene
control-U gate is less than one bit. This raises the questio
to whether such a control-U gate can be implemented wit
less resources than a full ebit and one classical bit of c
munication in each direction. Clearly this will not be po
sible when we only wish to implement a single instance o
control-U gate. However, it may be conceivable that one h
a situation in which one needs to carry out a large numbe
control-U gates simultaneously. In that case it is conceiva
that this could be done with less than 1 ebit of entanglem
per gate and less than one bit of classical communicatio
each direction. However, this turns out to be a difficult qu
tion and we have been unable to find such a scheme.

Let us now move on to investigate general two-qu
quantum gates to establish the minimum resource requ
ments for their implementation.

Theorem 3. Two bits of classical communication in bot
directions and two shared ebits is sufficient for the nonlo
implementation of a general two-bit gate.

Proof. To demonstrate that this amount of communicat
is sufficient to implement all quantum operations we ne
merely invoke quantum teleportation. Any operation may
performed by teleporting Alice’s state to Bob, at which po
Bob may locally perform the operation, and then teleport
resulting state back to Alice. This procedure requires t
bits of communication in each direction and 2 shared e
@12,16# h

Moreover, there are two-qubit gates that require two b
of classical communication in each direction and consume
bits. An example is the state-swapper, which may be writ
as threeCNOT gates, one after the other, with Alice as t
control, target, and then control, in that order~see Fig. 2!. To
show that two bits of classical communication are requi
~each way! in the nonlocal implementation of this gate, w
need to show that this amount of information may be co
municated from Alice to Bob~and vice versa! when the gate
is performed. To do this we merely have to note that at
completion of the gate Alice has sent her state to Bob. N
this state could have been initially in a maximally entang
state with a qubit that Bob possesses. Superdense co
tells us that this enables Alice to send two bits of informat
to Bob @17#. Naturally Bob can use the same procedure
send two bits of information to Alice. Therefore, in a nonl
cal implementation, the state swapper requires at least
bits of communication in each direction. An analogous ar
ment shows that the state swapper would also require
shared ebits, as a state swapper can be used to establis
ebits from a product state. To achieve this one simply app
the state swapper to particlesA2 and B2 of the state

FIG. 2. A state swapper implemented by means of th
quantumCNOT gates.
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(u00&A1A2
1u11&A1A2

)(u00&B1B2
1u11&B1B2

).
It is remarkable that the swap gate requires only t

shared ebits as it can be shown that threeCNOT gates are
necessary to implement it when one employs the ordin
gate array picture using a universal set of quantum gates
is made up ofCNOT gates and local unitary operations@18#.
This observation may be useful, as it demonstrates tha
some cases the use of entanglement can be replaced pa
by local measurements and classical communication.

Before we move on to investigate the implementation
nonlocal multiparty gates we would like to analyze the stru
ture of the classical information transfer involved in the ga
implementation somewhat further. In both examples d
cussed above it turned out that the classical informat
transfer between the two parties is symmetric, i.e., the sa
number of bits need to be sent from Alice to Bob and v
versa. Likewise, the amount of classical information that c
be sent using these two-qubit gates is also the same in
direction. It is therefore quite natural to ask whether this
the case in general. Indeed we have not been able to fi
counterexample and we therefore make the following t
closely related propositions.

Proposition 4. The minimal amount of classical commu
nication required to implement any two-party quantum g
with one qubit associated with each party and sharedM ebits,
M51,2, is always the same in each direction.

Proposition 5. The amount of classical information tha
can be sent via any two-qubit gate is the same in each di
tion.

While these propositions appear natural, we have not b
able to find general proofs for them. However, we have b
able to confirm both of them for a number of classes
two-qubit quantum gates. An example of a gate which h
the same classical information capacity in both directions
the CNOT gate whose optimal implementation has been
scribed above. How can we see that a quantum gate is s
metric with respect to its capability for classical informatio
transfer? Before we move on to the most general case, le
consider theCNOT gate. Imagine we have the ability to pe
form a CNOT gate with Alice as the control and Bob as th
target. Using this gate and local operations only, we can t
also implement aCNOT with Alice as a target and Bob as
control, simply by applying a Hadamard gate to each qu
both before and after theCNOT, see Fig. 3.

The two versions of theCNOT gate are also related via th
~nonlocal! state swapper.

UCNOT
BA 5UssUCNOT

AB Uss
† 5~H ^ H !UCNOT

AB ~H ^ H !, ~3!

whereUCNOT
AB represents theCNOT gate withA as a control

andB as a target andUss denotes the state swapper. In ge

e
FIG. 3. A CNOT gate, with A as control and B as target, su

rounded by Hadamard gates is equivalent to aCNOT gate with A as
target and B as control.
7-3
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eral if we can achieve the transformationUBA[UssUABUss
†

from UAB and purely local operations, i.e., if there exist loc
one-qubit unitary operatorsU1 , U2 , U3 , andU4 for which
we have

UBA5UssUABUss
† 5~U1^ U2!UAB~U3^ U4!, ~4!

then Eq.~4! is a sufficient condition for the classical info
mation transmission capacities in each direction to be eq
In the following we will determine some sets of quantu
gatesUAB for which Eq.~4! holds.

Let us begin with a slightly simpler problem. Suppose th
we have a two-qubit quantum gateV1PU(4). V1 can be
expressed in terms of its generator asV15exp(iH1), where
the generatorH1 is a Hermitean operator. We now defin
another quantum gateV2 as

V2[UssV1Uss
† 5Usse

iH 1Uss
† 5eiU ssH1Uss

†
[eiH 2, ~5!

where the generatorH2 of V2 is clearly a Hermitean opera
tor. Our goal can therefore be reformulated as: For wh
unitary operators V1 can we write V2 as V25(U1

^ U2)V1(U1
†

^ U2
†), or equivalently for which generatorsH1

of V1 can we write

H2[UssH1Uss
† 5~U1^ U2!H1~U1

†
^ U2

†!. ~6!

Note that this is less general than the transformation in
~4!. It is useful to realize that both the unitary operatorV1
and its generatorH1 are diagonal in the same basis, s
$uf i&,i 51,2,3,4%. Furthermore, we can decomposeH1 with
respect to its eigenvectors asH15S il i uf i&^f i u[S il ir i ,
wherel i is the eigenvalue ofH1 corresponding to the eigen
vector uf i&. Consequently, Eq.~6! becomes

(
i

l iUssr iUss
† 5(

i
l i~U1^ U2!r i~U1

†
^ U2

†!. ~7!

We can now prove a number of lemmas. We begin with
following.

Lemma 6. Any two-qubit quantum gate that has a gene
tor with a single nonvanishing eigenvalue is symmetric w
respect to its classical information transfer capacity.

Proof. Suppose that theonly nonvanishing eigenvalue o
the generatorH1 is l1 @15#. In that case we can always fin
one-qubit unitary operatorsU1 and U2 such that Eq.~7!
holds. To see this, note that the eigenstateuf i& is actually a
pure state describing a system composed by two qu
Therefore, it has the Schmidt decompositionuf1&
5SkApkuk&Auk̃&B[SkApkuk&uk̃&. Furthermore, in this cas
we have
05231
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l iUssuf i&^f i uUss
†

5l1(
k,l

Apkpl uk̃&uk&^ l̃ u^ l u

5~ Ũ ^ U! S (
k,l

l1Apkpl ukL uk̃&^ l u^ l̃ u~ Ũ†
^ U†!

5~ Ũ ^ U! S (
i

l i uf i L ^f i u!~ Ũ†
^ U†! , ~8!

whereU is defined to be the unitary operator which ma
each basis vectorui& to its correspondingu ı̃ &. Similarly, the
unitary operatorŨ maps each basis vectoru ı̃ & to its corre-
spondingui&, i.e.,Ũ5U† h Another nontrivial class of quan
tum gatesUbd for which condition ~6! holds, is the one
whose generator is Bell diagonal, i.e., we have the followi

Lemma 7. Any two-qubit quantum gate that has a gene
tor which is Bell-diagonal is symmetric with respect to i
classical information transfer capacity.

Proof. If uC& is anyof the Bell states, the reader can eas
verify that

uC&^Cu5UssuC&^CuUss
† 5~sz^ sz!uC&^Cu~sz^ sz!.

Therefore, for the quantum gateUbd , condition~6! is satis-
fied by either choosingU15U25I or U15U25sz . Recall
that sz is the Pauli matrix corresponding to the arbitrari
chosenz directionh

Note, however, that condition~6! is not satisfied for all
quantum gatesUAB . A counterexample is the gateUAB
5eil1u01&^01u1eil2u02&^02u1eil3u10&^10u1eil4u11&
3^11u. For l15l250 and nontrivial choice ofl3 andl4 it
is not possible to find local unitary operatorsU1 andU2 such
that Eq. ~6! is satisfied. Nevertheless, it is possible to fi
local unitary operatorsU1 , U2 , U3 , andU4 which satisfy
the more general condition~4!. The local unitary operators
will be of the form @14#

U15e2 il4u1&^1u1ei ~l32l4!u0&^0u, ~9!

U25u1&^1u1e2 i ~l32l4!u0&^0u, ~10!

U35I , ~11!

U45eil4u1&^1u1u0&^0u. ~12!

We can then conclude to the following lemma.
Lemma 8. The amount of classical information that can

sent via any control-U gate of the form

U5u0&^0u ^ I 1u1&^1u ^ ~eil3u0&^0u1eil4u1&^1u!

is the same in each direction.
It should be noted that this does not mean that the amoun
information transferred in any particular operation of t
gate will be the same in both directions, as this will depe
upon the choice of initial states. However, an implemen
7-4
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OPTIMAL LOCAL IMPLEMENTATION OF NONLOCAL . . . PHYSICAL REVIEW A 62 052317
tion of the gate must work for all possible initial states~in
particular it must work for the case where both qubits
pure and therefore contain their maximum capacity!, and this
is what puts the limit on the minimal communication requir
ment.

It is clear that we may now put two-bit quantum gates in
two classes. Those which require no more than one bi
two-way communication, and those that require more th
one bit ~but no more than two bits!. The CNOT falls into the
first category, and the state swapper falls into the seco
Two other standard gates which fall into the first category
the c-U ~which performs a unitary transformation on on
system depending on the state of the other!, and the state
preparer.

III. NONLOCAL MULTIPARTY GATES

In the previous section we have presented a numbe
results concerning the implementation of nonlocal two-qu
quantum gates in a distributed quantum computer. In
following we will generalize these ideas to local impleme
tation of multiqubit gates, i.e., gates where more than t
parties are involved. To illuminate the system behind
construction, we explain the implementation of the Toff
gate from which the generalization to other multiparty ga
will be evident.

Theorem 9. Two shared ebits and a total of four bits o
classical communication are necessary and sufficient for
local implementation of a nonlocal three-party quantum T
foli gate.

Proof. ~i! Necessity. A Toffoli gate can be reduced to a
ordinary CNOT gate when one fixes the state of one of t
control qubits to beu1&. Chose the state of party A to beu1&.
Then the initial state is

uc ini5u1&A~au0&1bu1&)~gu0&1du1&) ~13!

and after the application of the Toffoli gate we find

uc ini5u1&A~agu00&1adu01&1bgu11&1bdu10&)BC
~14!

FIG. 4. A quantum circuit for the nonlocal implementation of
Toffoli gate.
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which shows that we have implemented aCNOT between
parties B and C. Therefore Theorem 1 implies that one c
sical bit has to be exchanged in both directions betwee
and the target party C and one ebit has to be shared betw
them. The same argument applies when we fix the stat
qubit B to beu1&.

~ii ! Sufficiency. The implementation of the Toffoli gate
with these minimal resources is presented in Fig. 4. Assu
that Alice and Clare share a pairA1 , C1 of qubits in a maxi-
mally entangled stateuf1&5(u00&1u11&)/&, and that Bob
and Clare share another pair of particlesB1 and C2 in the
same state. Then the initial state of the whole system c
sisting of particlesA, B, C, A1 , B1 , C1 , and C2 is of the
form

uc&5uc&A^ uc&B^ uc&C^ uf1&A1C1
^ uf1&B1C2

, ~15!

where

uc&A5au0&1bu1&, ~16!

uc&B5gu0&1du1&, ~17!

uc&C5hu0&1ju1&. ~18!

The first step is a local quantumCNOT gate onA andA1 with
A as control. Then Alice measures particleA1 and Clare
performs aNOT operation on her particleC1 if Alice finds u1&
and the identity if Alice findsu0&. Qubit A1 is subsequently
discarded. Now Bob applies a localCNOT with B being the
control andB1 being the target. Then Bob measures parti
B1 and Clare performs aNOT operation on her particleC2 if
Bob finds u1& and the identity if Bob findsu0&. Qubit B1 is
subsequently discarded. Now the state of the remaining
bits A, B, C, C1 , andC2 is given by

~au00&1bu11&)AC1
^ ~gu00&1du11&)BC2

^ uc&C . ~19!

In a further step Clare applies locally a Toffoli withC1
andC2 being the control qubits. Subsequently Clare appl

FIG. 5. A quantum circuit for the nonlocal implementation of a
N-party control-U gate.
7-5
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Hadamard gates to the qubitsC1 andC2 . Then she measure
C2 and appliessz or the identity1 to B if her result isu1& or
u0&, respectively. Finally she measuresC1 and appliessz or
the identity toA if her result isu1& or u0&, respectively. This
completes the Toffoli gate. The total number of classical b
which have to be communicated is 4, and only two sha
ebits of entanglement are consumed.

Again, these results can be generalized to three-p
control-U operations that can be represented in matrix fo
with respect to the computational basis as

1
1

1

1

1

1

1

u00 u01

u10 u11

2 , ~20!

where

S u00 u01

u10 u11
D ~21!

is the matrix representation of a unitary operatorU. We only
need to replace the local Toffoli gate by a local three-pa
control-U. This gives rise to the following.

Lemma 10. A three party control-U gate can be imple-
mented using four bits of classical communication and t
shared ebits.

Using theorem 9 and lemma 10 we are now in a posit
to construct every possible quantum gate array using o
ebits, classical communication and local operations. In p
ticular one could use the results in Ref.@19# to construct
N-party controlled gates fromCNOTs and single bit rotations
This, however, is not optimal in terms of physical resourc
While it will be difficult to construct the optimal procedur
for general quantum gates, for some gates we are able to
these procedures. We find, for example, the following.

Theorem 11. An N party control-U gate can be imple-
mented using 2(N21) bits of classical communication an
N21 shared ebits~see Fig. 5!.

Proof. The control parties are enumerated fromP1 to
PN21 and each of them is carrying one ancilla numerated
P18 to PN218 . The target qubit is denoted byT and the target
party possessesN21 further ancillary qubits.

The firstN21 steps of the protocol are essentially ana
gous. In thekth step a local quantumCNOT gate is applied on
Pk and Pk8 with Pk as control. Then this party measur
particlePk8 and the target party performs aNOT operation on
her ancillary qubitTk if Alice finds u1& and the identity if
Alice finds u0&. Qubit Pk8 is subsequently discarded. Now w
apply anN-party controlledU gate on Clares particles, wit
05231
s
d

ty

y

o

n
ly
r-

.

nd

y

-

the ancillasC1 ,...,CN21 being the control qubits andT the
target. Subsequently the target party performs Hadam
gates on each of its ancillas.

This is then followed byN21 steps involving measure
ments. In thekth step qubitTk is measured in theu0&, u1&
basis. If the outcome isu1&, thensz is applied to the qubit
Pk ; if the outcome isu0& then no action is taken on qubitPk .
Qubit Tk is subsequently discarded. Hence, the total requ
resources are 2(N21) bits of classical information andN
21 initially shared ebits.h

The amount of consumed resources in the latter proto
is rather surprizing. In an inefficient nonlocal implement
tion of the aboveN-party gate one could employ the simul
tion of the gate with the use of two-party control-U gates and
CNOT gates as in Ref.@19#, but such that each step is realize
nonlocally ~see Fig. 5!. In such a procedure a supply of
32N2124 ebits would be necessary. A more efficie
teleportation-based protocol@20# in which the respective
states of the qubits at different nodes are twice telepo
would still use 2(N21) ebits and 4(N21) bits of classical
information.

IV. CONCLUSIONS

In this work we have addressed the problem of the lo
implementation of nonlocal gates in a distributed quant
computer, i.e., a computer which is composed of many s
units ~local processors!. Such a configuration may be usefu
as it requires only a small number of qubits~e.g., ions! to be
stored at each site which may be experimentally more f
sible than storing a large number of qubits in a single s
However, this raised the issue of the nonlocal implemen
tion of quantum gates. We have addressed this question
have shown what the minimal resources for the implemen
tion of two-qubit quantum gates are. We have presented
plicit optimal constructions for the local implementation
nonlocal control-U gates. We have generalized these resu
to multiparty gates such as, for example, the Toffoli gate. W
have also adressed some issues concerning the structu
the information exchange that is required in these implem
tations. We hope that this work will be useful for the asse
ment of the viability of distributed quantum computation.

Note added: Recently we became aware of the close
related work by D. Collins, N. Linden, and S. Popescu~e-
print quant-ph/0005102!.
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