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Summary: One important issue in agricultural management and hydrological research 

is the assessment of water stored during a rainfall event. In this study, a new GIS-based 

rainfall-runoff model is presented to estimate soil moisture status (SMS) for each month 

of the year after an average rainfall event with maximum intensity. The new model 

computes the volume of actual available water (Waa) downwards from divides, taking 

into account the different configurations of the upslope contributing area, infiltration 

processes and climatic parameters. Results show that the spatial distribution of the 

different soil types is the main controlling factor in the initiation of runoff and, to a 

lesser extent, the antecedent topsoil moisture and the volumetric water content of the 

soil at saturation. Monthly Waa and SMS maps and Palmer Z-indexes present similar 

spatial patterns, although the values and the extension of the different dry and wet 

categories varied considerably. Predominant wet conditions occurred in May, 

September, October, November and December and dry conditions appeared in 

February, March and July. The wettest conditions took place in gently sloping areas, 
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according to the topographic wetness index. Maps based on Palmer Z-indexes match 

very closely the SMS patterns predicted by the DR2 model from January to September, 

but the similarity was poor from October to December. Spatial predictions with the new 

model identify the different sub-categories of soil wetness for each soil type in greater 

detail. The DR2 model seems to be of interest to monitor humidity variations and trends 

in time and space and to provide valuable information for sustainable soil and water 

resource management. 

 

Keywords: Actual available water; Soil moisture status; DR2 model; Topsoil saturation; 
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1. Introduction 

An aridity index is a climatological indicator that is defined in terms of low average 

precipitation, available water, or humidity and is a permanent feature of a region, while 

a drought index reflects a temporary reduction in precipitation or available water from 

its normal level (World Meteorological Organization, 1975). Normal values are defined 

from the principles of water balance between moisture supply and demand without 

considering man-made changes (Karl, 1986). Aridity indicators identify, locate or 

delimit regions that suffer from a deficit of available water, a condition that can severely 

affect the effective use of the land for agriculture, water harvesting (Thomas, 2008) or 

stock-farming. 

A drought index enables measuring areas of abnormal wetness and dryness within a 

study site with persistently normal precipitation, according to the antecedent 

precipitation, moisture supply and moisture demand (Heim, 2002). The average crop 

yield under rain-fed conditions is still highly controlled by drought and wet periods, 
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such as in India (Lal, 2008), but also in Europe the heat and drought in 2003 

significantly reduced primary productivity (Ciais et al., 2005). In the short term, the 

consequence of drought periods or trends is a decline in crop yield (Diodato and 

Bellocchi, 2008) while a long term consequence is a decrease in water resources. The 

over-exploitation of agricultural lands in semi-arid regions calls for accurate assessment 

of the moisture status of the soil. Recent studies have shown that semi-arid and arid 

environments present a higher vulnerability to projected climate change than humid 

environments in relation to hydrological processes and vegetation productivity 

(Zhongmin et al., 2009). Moreover, studies of long-term episodes (102 – 103 yr) of net 

erosion and deposition in Western Mediterranean beach deposits found a positive 

correlation between higher erosion rates and increased aridity conditions (Goy et al., 

2003). 

Several equations exist to estimate the humidity status of a soil. Water balance 

indexes are complex and consider water supply (precipitation), demand 

(evapotranspiration) and loss (runoff). Palmer’s indexes belong to this category and 

include the Palmer Z-Index (short-term drought on a monthly scale), the Palmer Crop 

Moisture Index (CMI) (short-term drought on a weekly scale and used in agriculture 

during the growing season), and the Palmer Drought Severity Index (PDSI) (long-term 

drought-inducing circulation patterns) (Palmer, 1965). Another index is the topographic 

wetness index (TWI) that combines local upslope contributing area and slope, and which 

is commonly used to quantify topographic control on hydrological processes (Sørensen 

et al., 2006) although  this index does not consider precipitation data. The wide variety 

of disciplines affected by soil dryness, the high number of drought definitions 

(hydrological, meteorological, or agricultural) (Dracup et al., 1980a) and its diverse 

geographical and temporal distribution, and the many drought scales operate on, make it 
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difficult to develop either an accurate methodology to describe drought or an index to 

measure it (Wilhite and Glantz, 1985). Other drought indexes are the index of Dracup et 

al. (1980b), which uses long-term mean annual streamflow or runoff to characterize 

drought events, and the Surface Water Supply Index (SWSI) of Wilhite and Glantz, 

(1985). However, none of the above indexes offers a holistic approach to all the 

processes included in the humidity status of a soil, nor do their spatial and temporal 

scales allow for detailed mapping. 

Climate models throughout the world are predicting an increase in global temperature 

and drought severity in some regions, such as the western United States (Cook et al., 

2004) and the Iberian Peninsula (Vicente-Serrano et al., 2011). Given the potential 

economic loss related to drought conditions, scientists and policymakers need more 

accurate drought indicators to carefully evaluate possible trends and plan land 

conservation policies. 

A critical point in the modelling process is the choice of the spatial resolution for 

hydrological and meteorological phenomena simulations (Spadavecchia and Williams, 

2009). Some articles deal with humidity research in large-scale areas (e.g., Wang and 

Takahashi, 1999 in the Loess Plateau, China) and in some cases, with the assistance of 

remotely sensing images (e.g., Mallick et al., 2009). Previous studies on aridity indexes 

in Mediterranean countries have described that the effects of drought on the natural 

vegetation and agricultural crops vary largely between areas and also from month to 

month (Vicente-Serrano, 2007). 

In this study, we present a new water balance rainfall-runoff model based on 

processes of soil saturation and conductivity, and cumulative runoff for the maximum 

rainfall intensity conditions during each month of the year and under different scenarios 

of infiltration and cumulative processes (saturated and non-saturated soils, and high and 
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low upslope contribution). This model is spatially distributed and applied in a medium-

size catchment in NE Spain (Estaña Lakes catchment) as representative of the mid-

mountainous rain-fed agricultural Mediterranean landscape. Values and maps of actual 

available water and soil moisture status are compared with the values calculated with 

the well-known Palmer Z-index for the study area. The equations and the proposed 

protocol of the new model are processed with GIS techniques in order to be of interest 

for both experts and non-experts in the different topics of soil management. 

 

2. Materials and methods 

2.1. Study area 

The Estaña Lakes catchment is a medium-size watershed (246 ha) located in the 

External Ranges of the Central Spanish Pre-Pyrenees and within the Ebro Basin (Fig. 

1a). This study site is divided in fifteen endorheic sub-catchments where seventeen 

dolines appear and it includes three fresh-water lakes (total area of 17 ha). These lakes 

and their surrounding vegetation are under regional protection since 1997 and are 

included in the European NATURA 2000 network as Site of Community Importance 

(SCI). Elevation ranges between 676 and 896 m a.s.l. and the mean slope steepness is 

19.5%. Steep slopes (slope steepness higher than 22.5%) occupy 20% of the study area 

whereas gentle slopes (slope steepness lower than 8%) cover 33%. 

The study site has a relatively long history (since the 10th century) of human 

occupation, agricultural practices and water management (Morellón et al., 2008), with 

increasing population along the 19th century and a continuous depopulation trend since 

then (Morellón et al., 2009). The landscape is representative of the typical former rain-

fed Mediterranean agro-ecosystem where small patches of natural and anthropogenic 

areas are heterogeneously distributed. Cropland of winter barley, pasture and orchards 
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cover 31% of the study area, whereas forest and scrubland occupy 67%. The parent 

material of the soils in the study area corresponds to Mesozoic gypsiferous marls, 

dolomites, limestones, and sparse saline deposits. Karstic processes partially dominate 

the evolution of this landscape where seventeen sinkholes and two uvalas appears 

(López-Vicente et al., 2009a). Machín et al. (2008) distinguished six types of soils being 

Calcisols (covering 32% of the total surface), Leptosols (32%) and Regosols (23%) 

which are the main types, whereas Gleysols (4%), Gypsisols (5%) and Vertisols (3%) 

only occupy a small part of the catchment. Calcisols and Leptosols are associated to 

limestones, and Gypsisols, Regosols and Vertisols to clayish materials. Texture is 

mainly silty loam and in some parts silty clay loam. Gleysols are developed on clay 

materials where the water table is seasonally near the soil surface and appear around the 

lakes. The different soil types present a complex spatial distribution as a consequence of 

the intricate geology and topography. 

Climate is continental Mediterranean with two humid periods, one in spring (April 

and May) and a second in autumn (September and October) and a dry summer with 

rainfall events of high intensity (average maximum rainfall intensity in 30 min, I30max, 

higher than 30 mm h-1 between May and October) (López-Vicente et al., 2008). The 

study site is located between the semi-arid areas of the Ebro valley to the south and the 

humid areas of the Pyrenees to the north. Average annual precipitation at the weather 

station of Canelles (8 km to the southeast of the study area) was 520 mm for the 

reference period 1961-1990 considered by the World Meteorological Organization, 

whereas the average precipitation during the last ten years (1999-2008) was 13% lower 

(453 mm) (Fig. 1b). Annual precipitation has a strong inter-annual oscillation. The 

average annual potential evapotranspiration is 1237 mm at the Barbastro weather station 

(33 km to the west of the study area) (Fig. 1c). Low summer precipitation can cause 
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summer droughts and long periods of low rainfall depth can cause severe damage in 

natural vegetation and crops, and reduce the volume of available water in the lakes. 

From an average number of 73 annual rainfall events only 12 had precipitation above 

12.7 mm and can be considered as erosive events (Renard et al., 1997). Weather, 

topography, land uses and tillage practices in the Estaña catchment are representative of 

rain-fed areas in Mediterranean mountainous agro-ecosystems. 

 

2.2. Conceptual basis of the distributed rainfall-runoff model (DR2) 

The new DR2 model computes for each month of the year the water balance of the soil 

and estimates the soil moisture status (SMS) as the ratio between the depth of actual 

available water (Waa, mm) and potential reference evapotranspiration (ET, mm): 

ET

W
SMS aa=  (1) 

where Waa is defined as the total depth of water that is stored and infiltrated in the soil 

profile during an average storm event for each month. Water inputs are assumed to be 

the sum of the direct rainfall depth and of the upslope contributing runoff, and moisture 

demand is computed as equal to potential evapotranspiration. Although several rainfall-

runoff models exist, such as the CASC2D (Julien and Saghafian, 1991) or the 

TOPMODEL (Beven and Kirkby, 1979), they are not usually run to characterize the 

humidity status of the soil. In this study a new sequence of calculations in three steps is 

established to estimate the depth of Waa at each pixel in any study site (Fig. 2). In the 

first step the unsaturated and saturated pixels by direct rainfall (no runoff contribution) 

are distinguished. In the second step unsaturated pixels with and without upslope 

contribution of runoff are discriminated. Finally, the upslope contributing runoff is 

calculated for the unsaturated and saturated pixels as a function of the effective depth of 
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cumulative runoff. Following this step-by-step approach five different situations are 

distinguished. Values of Waa are spatially calculated with GIS techniques. 

 

2.3. Estimation of overland flow at raster cell 

Soil only becomes saturated during a storm event or when the water table reaches the 

soil surface. Time to ponding (Tp, s) is the time until the surface of the soil is saturated 

under a rainfall intensity greater than the saturated hydraulic conductivity (Kfs, cm s-1) 

(Esteves et al., 2005). Before Tp all the water infiltrates, beyond Tp only a fraction goes 

into the soil profile and the other part becomes runoff. Time to ponding depends on soil 

infiltration properties, rainfall intensity and the antecedent soil moisture content and can 

be calculated as a function of saturated hydraulic conductivity (Kfs, cm s-1) and soil 

sorptivity (Sp, cm s-0.5) (White and Sully 1989). Hogarth et al. (1991) proposed that time 

to ponding (Tp, s) has a minimum and a maximum time and state that the average value 

can be calculated as: 
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( )φθ∆=  2pS  (3) 

0θθθ −=∆ S  (4) 

where I (cm s-1) is the rainfall intensity, φ is the matrix flux potential (cm2 s-1) of each 

soil type and θS (% vol.) and θ0 (% vol.) are the saturated and initial volumetric water 

content, respectively. The saturated volumetric water content is the maximum amount 

of water that can be stored within the soil and the initial water content is the volume 

directly measured in the field (antecedent topsoil moisture). 

Time to ponding is calculated in each point of topsoil moisture measurement for a 

characteristic rainfall event for a month (i.e. average maximum intensity). Then, the 
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potential overland flow per raster cell for each month m (Q0m, mm) is estimated as a 

function of the depths of monthly rainfall (Rm, mm) and rainfall to ponding (Rpm, mm): 

( ) ( )10    0 mmmmmmmm eITpReRpRQ −=−=  (5) 

where Tpm is the monthly time to ponding (s), Im is the monthly rainfall intensity (cm s-

1) and em is the monthly number of rainfall events. Equation (5) uses monthly average 

values of rainfall, number of rainfall events and rainfall intensity. The DR2 model runs 

on a monthly time step and intends to assess the average wetness status of the soil and 

not to calculate the humidity of the soil after each rainfall event. 

 

2.4. Estimation of the effective runoff and actual available water (Waa) 

Values of potential overland flow per raster cell at each measurement point were 

interpolated for the whole catchment and month with the Spline interpolator method 

that fits a minimum-curvature surface through the input points. Once the map of Q0m is 

obtained the potential cumulative runoff (CQ0m) is calculated with a combined flow 

accumulation algorithm that runs as a multiple flow algorithm from the catchment 

divides to a threshold value that is associated with the beginning of the gullies 

(concentrated flow). From this threshold value on overland flow is computed with a 

simple flow algorithm. The usefulness of cumulative algorithms to study hydrological 

processes at catchment scale was proved by several authors (e.g., Borselli et al., 2008) 

and by López-Vicente and Navas (2010) for this study area. The effective cumulative 

runoff for each month m (CQeff-m) is calculated according to: 

( ) SeSSeTqKCQCQ mmmfsmmeff sin   max0 −−=−  (6) 

after considering the saturated hydraulic conductivity (Kfs, mm s-1) and the average 

duration of a storm after the soil becomes saturated till the end of the rainfall event for 

each month m (Tqm, s):  
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mmm TpTRTq −=  (7) 

the maximum amount of water retained on the soil surface (SSmax, mm) according to 

Driessen (1986):  
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and the slope steepness (S, radians). TRm (s) is the total duration of an average storm 

event considering an average value of rainfall intensity for each month m. RG (mm) is 

the surface roughness, i.e. the maximum depth of the soil micro-relief, and SIG 

(radians) is the surface furrow and ridge angle determined by tillage marks and micro-

topography. Finally, values of actual available water (Waa) and soil moisture status 

(SMS) are estimated for each month following the comprehensive approach described in 

Fig. 2 and Eq. (1). 

 

2.5. Comparison of the new DR2 model with the Palmer Z-index 

The widely-used Palmer moisture anomaly index (Z-index) is utilized in this study to 

quantify monthly dryness and wetness intensity for comparison with the values and 

maps of the SMS predicted with the DR2 model. The Palmer Z-index is a measure of 

surface moisture anomaly for a current month without consideration of the antecedent 

conditions (Trnka et al., 2009a). This index is much less sensitive to changes in 

calibration, and also has some desirable characteristics which may make it preferable to 

some agricultural and forest applications, i.e., it is more responsive to short-term 

moisture anomalies (Karl, 1986). The Palmer Z-index is defined as: 

mm dKZ  =  (9) 

with mmm PPd ˆ−=  (10) 

and mmmmm LRORETP −++=ˆ  (11) 
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where K is a climate weighting factor and is applied to yield indices with comparable 

local significance in space and time, and dm represents the deficit or surplus of moisture, 

adjusted for the seasonal changes in climate. Pm is the total precipitation and mP̂  is the 

precipitation value climatologically appropriate for existing conditions for each month 

m. The mP̂  factor represents the water balance equation where mET , mR  and mRO are 

the long-term monthly averages of evapotranspiration, soil water recharge and runoff, 

respectively. Palmer (1965) used a two-layer soil model consisting of a surface layer 

being the ‘plow layer’, and an underlying ‘root zone’, and defined mL  as the sum of soil 

water of the two layers available for evapotranspiration. He called this term ‘potential 

loss of soil water to evapotranspiration’ (for more detail, see Hu and Willson, 2000). 

An empirical value, K, is used in the definition of the climate characteristic. 

According to Palmer (1965) extremely dry Z-index values are defined as those at or 

below –2.75. Conversely, positive values indicate increasing levels of moisture and 

runoff with values at or above 3.50 indicating extreme wetness (Table 1). Extremely dry 

and extremely wet Z-index values correspond to a frequency of 2%. According to 

Ghioca (2009) the expected 2nd percentile of the Z-index values is –2.75 and the 

expected 98th percentile is 3.50. Using these two expected values of the Z-index in a 

definition of the ratio leads to the following formula for K: 
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where d represents the deficit or surplus of moisture, and Km is a climate weighting 

factor derived by Palmer (1965) as follows: 
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where mD  is the average moisture departure for the appropriate month (comparing 

expected precipitation to the actual precipitation) and mPE  is the average potential 

evapotranspiration. 

In this study the estimated values of the Palmer Z-index for the different months of the 

year are scaled so that they fit into the seven categories shown in Table 1 to allow for 

comparisons across time and space. Several approaches of self-calibrating Palmer’s 

drought indices exist to represent a more appropriate means of comparing spatial 

relationships between areas of differing moisture climates (Trnka et al., 2009b). 

However, the small size of the study area (2.5 km2) makes no necessary any spatial 

correction in the obtained values. 

 

2.6. Field measurements and weather data 

A frequency-domain probe (Delta-T Theta Probe ML2x) was used to measure topsoil 

moisture (θ0 in Eq.(4)). This device has a portable/handheld reading unit for field 

measurements and has a configuration of two rods that are inserted in the soil up to 8 

cm depth (for more details see López-Vicente et al., 2009b). Soil moisture was 

measured in a field work comprising the years 2005 (February, August and December) 

and 2006 (May). A total of 236 measurement points were established following a 

regular net with a distance of 100 m between points that entirely covers the Estaña 
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catchment. Three values of θ0 were measured at each control point and the average 

value was estimated as the representative value. Although antecedent top soil moisture 

is a monthly required input of the DR2 model only seasonal measurements were 

performed due to operational cost restrictions and the same record was used for the 

three months of the same season. 

A field survey was carried out and 236 soil samples were collected in the same points 

where topsoil moisture measurements were done, which provided one soil sample 

collected about every 1 ha. The volumetric water content at saturation (θS) was 

measured in the laboratory and values were used in Eq. (4). Values of saturated 

hydraulic conductivity and matrix flux potential, Kfs and φ in Eq. (2) and (3), 

respectively, correspond to those measured by López-Vicente and Navas (2009) with 

the Guelph Permeameter for the different soil types. 

Climatic data of rainfall intensity (I), total rainfall depth (R) and the number of erosive 

rainfall events (e) used in the DR2 model corresponds to those recorded at the Canelles 

weather station since October 1997 till December 2008 (Fig. 1b and 1c). This station is 

located south-eastern of the study area at a distance of 9 km and records precipitation 

values each 15 minutes since October 1997, daily values since 1955 and monthly values 

since 1940. There are other weather stations surrounding the study area but only with 

daily records. Values of water loss from the soil and evapotranspiration, mL , mET  and 

mPE  correspond to those calculated by López-Vicente et al. (2005) with the CropSyst 

4.04.14 cropping simulator program. Values of mD  (Eqs. (13) and (14)) were calculated 

from the total dataset of monthly precipitation at the Canelles weather station from the 

basis of the reference period 1961-1990 proposed by the World Meteorological 

Organization. Values of soil water recharge and runoff, mR  and mRO  in Eq. (11) have 
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been equaled in this study to the monthly values of infiltrated water and effective 

cumulative runoff, respectively, as described in Fig. 2 and Eq. (6). All input values, the 

interpolation and mathematical operations and the output maps were done with the 

ArcView GIS 3.2 and ArcGIS 9.0 applications at a spatial resolution of 5 x 5 m of cell 

size. 

 

3. Results and discussion 

3.1. Time to ponding and overland flow 

Measured antecedent topsoil moisture, θ0, presented the highest values in autumn and 

the lowest in summer, with average values of 17.7 and 10.7% vol., respectively, for the 

whole Estaña catchment (Fig. 3). The variability of the values obtained for θ0 was 

greater in spring and winter than in summer and autumn. Values of θ0 showed high 

spatial variations for each season and also between the different seasons, thereby setting 

a spatial pattern that is a function of the different soil types and topographic scenarios of 

slope and aspect as described for this catchment by López-Vicente et al. (2009b). These 

authors found that the highest values of relative topsoil moisture appeared in spring, 

summer and winter in the steep northern slopes, whereas no comprehensive spatial 

pattern took place in autumn. 

Time to ponding, Tp, was calculated for each soil type and month and under the 

scenarios of both an average storm event (mean rainfall intensity, I30mean) and the 

heaviest storm event (maximum rainfall intensity, I30max) in each month (Table 2). Tp 

varied greatly between soil types and within the same soil type in the different seasons 

and months. For an average storm event, Leptosols did not reach saturation in any 

season, Calcisols only became saturated in summer and early autumn, and Regosols in 

late spring, summer and early autumn. However, Calcisols and Regosols became 
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saturated in spring, summer and autumn during the heaviest storm event registered in 

the study area, whereas runoff only appeared in Leptosols in May, August, September 

and October during the heaviest storm event. The high values of saturated hydraulic 

conductivity in Leptosols, Calcisols and Regosols and the low values of rainfall 

intensity registered in some of the months explained these results. Gleysols and 

Gypsisols always became saturated, as did Vertisols except in March and December. 

Because of the lack of data on the position of the water table and its influence on the 

processes of soil saturation in the study area, the assessment of time to ponding was less 

accurate, especially in Gleysols, where the water table is close to the soil surface due to 

their proximity to the lakes. The relationship between runoff generation and water table 

position was underlined by Latron and Gallart (2008) in a study of a small catchment in 

the eastern Spanish Pyrenees during dry and wet conditions, and by Grabs et al. (2009) 

in a catchment with numerous wetlands in northern Sweden. To overcome this 

limitation, further research should include measurements of the water table level and of 

the antecedent moisture content at different depth intervals. 

Values of potential overland flow per raster cell, Q0m, during maximum rainfall 

intensity varied notably in terms of time and space. When rainfall intensity is high 

(May, August, September and October), potential runoff was predicted along the whole 

catchment and variability of Q0m was very low, whereas areas with no runoff production 

appeared when rainfall intensity was low and variability of Q0m values was high. A 

variance components analysis (Statgraphics©) shows that values of Q0m are mainly 

explained by variations in the values of Kfs (76% of the variability of Q0m) and, to a 

lesser extent, by the values of the antecedent topsoil moisture (23%) and the volumetric 

content of water of the soil at saturation (1%). The runoff coefficients (QC; percentage 

of runoff depth per raster cell from the total depth of rainfall) were calculated for the 
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maximum rainfall intensity and estimated for the whole catchment and for the different 

soil types (Fig. 4). Values of QC showed a strong variability during the different months 

of the year and important differences occurred between the different soil types for the 

whole year and for each month. Vertisols and Gypsisols presented high runoff 

coefficient values (over 70%) for all months, whereas Calcisols, Leptosols and Regosols 

showed strong differences in their runoff coefficients for the different months (standard 

deviation around or higher than 40%). Maximum surface storage capacity of the soil 

(SSmax in Eq. (6) and (8)) within the different parts of the catchment ranged between 0 

and 2.8 mm per month and thus this factor did not appear to be critical for runoff 

calculation. 

Maps of effective cumulative runoff after the maximum rainfall intensity (CQeff-m) 

presented similar spatial patterns during the different months and identified Regosols 

and Gypsisols as the main runoff production areas (Fig. 5). Maps of CQeff-m also drew 

the main flow paths of the Estaña catchment and numerous outlets associated with the 

lakes and the bottom of the different endorheic sub-catchments and tally with the spatial 

location of the gullies and preferential areas of overland flow accumulation described in 

the geomorphic map by López-Vicente et al. (2009a). Values of effective cumulative 

runoff and areas without runoff production changed temporally as a function of rainfall 

intensity, infiltration rates and topography of the catchment. Areas with values of CQeff-

m equal to zero appeared during the twelve months in those areas where infiltration rates 

are very high and in areas close to the headwaters, whereas runoff production changed 

temporally from zero to high values where infiltration rates presented values in the same 

range as the values of rainfall intensity. 

 

3.2. Soil moisture status (SMS) 
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Maps of monthly actual available water after maximum rainfall intensity, Waa (Fig. 6), 

presented the same spatial pattern as the CQeff-m maps, though values varied as a 

function of total rainfall depth and infiltration, and the five different scenarios of 

cumulative processes described in Fig. 2. The minimum value of Waa for each month 

was well correlated with the average values of precipitation (Pearson’s r = 0.86), 

whereas the mean values of Waa showed a close correlation with the values of maximum 

rainfall intensity (Pearson’s r = 0.92). Maximum values of Waa did not present 

significant correlation with climatic variables and were mainly controlled by processes 

of overland flow accumulation. 

Maps of soil moisture status (Fig. 7) and their values were reclassified in seven 

wetness-dryness categories (Table 3) - the same number as defined in the Palmer Z-

index - in order to facilitate their comparison. The spatial distribution of SMS values 

after the maximum rainfall intensity mainly mirrored the spatial pattern of Waa values 

for each month, although differences between the seven categories in the index 

highlighted the spatial and temporal changes in greater detail. Predominant wet 

conditions occurred in May, September, October, November and December (SMS 

scenario 1), whereas dry conditions appeared in February, March and July (SMS 

scenario 2). Drying-up conditions (SMS scenario 3) were identified in January and June 

and wetting-up conditions (SMS scenario 4) occurred in April and August. Each 

scenario is associated with different rainfall intensities and depths, topsoil moisture, and 

dominant runoff generation and accumulation processes. These different runoff 

generation process scenarios were recently described by Latron and Gallart (2008) in 

the small Can Vila catchment (NE Spain), where climate and topographic conditions are 

comparable to those in the Estaña catchment. According to the authors, under dry 

conditions, runoff was generated essentially as infiltration excess runoff in low 
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permeable areas, whereas saturation excess runoff dominated during wetting-up and wet 

conditions. 

As average annual values, dry conditions are found in 64% of the Estaña catchment 

surface, whereas humid and normal conditions take place in 30 and 6%, respectively. 

The spatial SMS pattern was similar in February, March and December, when very low 

runoff coefficient values were obtained; similar spatial patterns also appeared in May, 

August, September and October, in accordance with the highest values of runoff 

coefficients. 

The complexity of the spatial predictions in the DR2 model is controlled by several 

factors. SMS values changed between the different slope steepness of topographic 

surfaces, the wettest conditions occurring in gently sloping areas, whereas the driest 

conditions were found in steep slopes (Fig. 8). The annual percentage of soil surface 

under dry conditions ranged from 59 to 65 and 66% for gentle (slope steepness S < 8%) 

to medium (8% < S < 22.5%) and steep slopes (S > 22.5%), respectively. These spatial 

patterns match the spatial distribution of the values for relative topsoil moisture 

( 100 0 FCR θθθ = ; antecedent topsoil moisture in relation with soil moisture content at 

field capacity) and the topographic wetness index (TWI) (Fig. 7) calculated by López-

Vicente et al., (2009b) in the Estaña catchment. Although the study area is included in a 

karstic system, no subsurface flow paths are known in this catchment. Therefore, we 

assume that the presence of karstic features do not compromise the use of this new GIS 

approach to measuring soil humidity. 

SMS values also presented clear differences among the different soil types (Fig. 7 and 

9). Wet conditions were predicted in 57 and 48% of the study area in Vertisols and 

Regosols, respectively, whereas these percentages decreased progressively from 36% in 

Gypsisols to 29% in Gleysols, and to 22% in Calcisols and Leptosols. On a monthly 
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basis, the same temporal patterns were observed in Calcisols and Leptosols and between 

Vertisols and Regosols. Dry conditions were predicted in February and March for all 

soil types except for Gypsisols, where wet conditions were predicted for these two 

months (Fig. 9). These results outline the importance of considering the spatial 

variability of the wetness status within each soil type, though saturated hydraulic 

conductivity is considered to be the same in each type. This variation can be explained 

by the spatial changes in the antecedent topsoil moisture content and the physiographic 

conditions in each pixel within the same soil type (Table 4). Detailed mapping of topsoil 

moisture and water deficit can provide valuable information for sustainable soil and 

water resource management in agro-climatic analysis, especially in rain-fed productive 

agricultural systems. 

 

3.3. Comparison with the Palmer Z-index 

Maps calculated with Palmer Z-index during maximum rainfall intensity (Fig. 10) 

showed a similar spatial pattern of soil dryness and wetness as the maps estimated with 

the new water balance model, although values using the Palmer Z-index were more 

extreme. Wet (extremely moist, very moist and moderately moist categories), normal 

range and dry (moderately dry, severely dry and extremely dry categories) areas 

identified with Palmer’s index showed a perfect match with the areas predicted by the 

DR2 model within a percentage range between 93 and 99% for the period January – 

September and between 7 and 28% for the period October – December (Fig. 11). 

Comparison between the Palmer index for drought and the water balance obtained with 

the new model indicated that the DR2 model presented the different dryness and 

wetness categories within each month and between the different months of the year in 

greater detail. On a monthly scale, a moderate correlation appeared in Calcisols 
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(Pearson’s r = 0.57) and Regosols (r = 0.58) and a fairly good correlation in Leptosols 

(r = 0.75). Moreover, differences in soil wetness within the same soil type were more 

prominent with the new model (Table 4), whereas in the Palmer Z-index maps, the 

processes of runoff accumulation appeared to be more significant. Therefore, the DR2 

model seems to be of interest to monitor humidity variations and trends in time and 

space in Mediterranean landscapes, as Balling (1996) did with the Palmer Drought 

Severity Index in United States for the period 1895-1995. 

Given the currently high technological development of GIS applications and the 

availability of detailed digital elevation models (DEMs) and datasets of soil properties, 

the DR2 model appears to be suitable for areas where significant changes in rainfall 

intensities are recorded and for landscapes where topography is complex and processes 

of cumulative runoff play a critical role in surface hydrological processes. The effect of 

the different land uses, tillage and management practices on the soil wetness status at 

monthly and annual intervals may also be considered in further research. Moreover, 

validation of the results of the new model against the moisture balance estimated by 

cropping simulators such as the CropSyst suite (Stöckle et al., 2004) is also considered 

for further research. Continuous assessment of the topsoil moisture status for each year 

will allow short-term monitoring of the changes in soil humidity. Moreover, the new 

model can be easily run under different climate change scenarios to assess the effects on 

the volume of water stored in the soil each month as well as the consequences on 

agricultural and environmental management and resources. 

 

4. Conclusions 

Time to ponding varies greatly between soil types and within the same soil type in the 

different seasons and months, according to the spatial and temporal variations of the 
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antecedent topsoil moisture, maximum rainfall intensity and saturated hydraulic 

conductivity. When rainfall intensity is high (May, August, September and October), 

potential runoff is predicted for the whole catchment and its variability is very low, 

whereas areas with no runoff production appeared when rainfall intensity was low 

(average intensity between 5 and 9 mm h-1) and thus the variability of potential runoff 

was high. The spatial distribution of the different soil types is the main factor 

controlling the initiation of runoff, and to a lesser extent, the antecedent topsoil moisture 

and the volumetric content of water in the soil at saturation. Maps of effective 

cumulative runoff successfully draw the main flow paths in the study area and the 

numerous outlets that are associated with the lakes and the bottom of the different 

endorheic sub-catchments. 

Maps of monthly actual available water after maximum rainfall intensity (Waa), soil 

moisture status (SMS) and the Palmer Z-index draw similar spatial patterns, although the 

values and size of the different dry and wet categories vary considerably. Minimum Waa 

values are well correlated with average precipitation values; the mean values show close 

correlation with maximum rainfall intensity and maximum values are mainly controlled 

by overland flow accumulation processes. Four different scenarios of dryness and 

wetness are identified in the Estaña catchment during the year. Predominant wet 

conditions occur in May, September, October, November and December, and dry 

conditions appear in February, March and July. Each scenario is associated with 

different rainfall intensities and depths, topsoil moisture status, and dominant runoff 

generation and accumulation processes. The wettest conditions occur in gently sloping 

areas, in accordance with the wetness areas described by the topographic wetness index 

in the study area. Values obtained with the new DR2 model also reveal clear differences 
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among the various soil types, where Vertisols and Regosols are the most humid and 

Calcisols and Leptosols the driest. 

Palmer Z-index maps coincide very closely with the maps predicted by the new model 

between January and September, but very poorly between October and December. The 

spatial predictions from the DR2 model identify the different sub-categories of soil 

wetness with greater detail than Palmer’s index, a feature of the new model being that it 

refines the method of assessing soil moisture status more accurately. Therefore, the 

DR2 model seems to be of interest to monitor humidity variations and trends in time 

and space in Mediterranean landscapes and can provide valuable information for 

sustainable soil and water resource management in agro-climatic analysis, especially in 

rain-fed productive agricultural systems. The technological development of GIS 

applications and the availability of detailed DEMs and datasets of soil properties 

support the use of this new model in numerous agricultural and natural areas. 
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Figure 1 Geographic situation of the Estaña catchment in NE Spain (a); annual precipitation (b); and 

monthly rainfall, potential reference evapotranspiration and minimum and maximum temperature (c). 
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Figure 2 Step-by-step procedure to estimate the actual available water (Waa) at pixel scale. 

 

Q0m: potential runoff per raster cell; Rm: monthly rainfall; CQa-up: available upslope cumulative runoff; Rp: 

rainfall to ponding; CQ0m: monthly potential cumulative runoff; CQeff-m: monthly effective cumulative 

runoff; Kfs
*: saturated hydraulic conductivity (Kfs Tqm em, see Eq. (6)); SS

*: maximum surface storage 

capacity (SSmax em, see Eq. (6)). 
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Figure 3 Maps of the antecedent topsoil moisture content (θ0, % Vol) in May, August, December and 

February in the Estaña catchment (NE Spain). 
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Figure 4 Average runoff coefficients estimated for the whole study area and soil type in the Estaña 

catchment (NE Spain) for each month of the year after the maximum rainfall intensity. 
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Figure 5 Maps of effective cumulative runoff (CQeff) predicted on monthly basis at the Estaña catchment 

(NE Spain). 
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Figure 6 Maps of actual available water (Waa) in the Estaña catchment (NE Spain) at monthly scale after 

the maximum rainfall intensity. 
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Figure 7 Maps of the soil moisture status (SMS) for each month of the year after the maximum rainfall intensity and maps of the topographic wetness index (TWI) and soil 

types in the Estaña catchment (NE Spain). 

 

E.M.: extremely moist; V.M.: very moist; M.M.: moderately moist; N.R.: normal range; M.D.: moderately dry; S.D.: severely dry; E.D.: extremely dry 
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Figure 8 Monthly percentage of the surface of the Estaña catchment (NE Spain) under different humidity 

status estimated from the maps of the DR2 model for the different topographic conditions. 

 

E.D.: extremely dry; S.D.: severely dry; M.D.: moderately dry; N.R.: normal range; M.M.: moderately 

moist; V.M.: very moist; E.M.: extremely moist 
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Figure 9 Monthly percentage of the surface of the Estaña catchment (NE Spain) under different humidity 

status estimated from the maps of the DR2 model for the different soil types. 

 

E.D.: extremely dry; S.D.: severely dry; M.D.: moderately dry; N.R.: normal range; M.M.: moderately 

moist; V.M.: very moist; E.M.: extremely moist 
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Figure 10 Maps of the Palmer Z-index of soil dryness-wetness in the Estaña catchment (NE Spain) for 

each month of the year after the maximum rainfall intensity. 

 

                 

                 

                 

E.M.: extremely moist; V.M.: very moist; M.M.: moderately moist; N.R.: normal range; M.D.: 

moderately dry; S.D.: severely dry; E.D.: extremely dry 
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Figure 11 Percentage of the study area under different humidity status estimated with the new DR2 

model and calculated with the Palmer Z-index for each month of the year after the maximum rainfall 

intensity. 
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Table 1 Classes for wet and dry periods according to Palmer (1965). 

Z-index value Drought index categories 

≥ 3.50 Extremely moist 

2.50 to 3.49 Very moist 

1.00 to 2.49 Moderately moist 

–1.24 to 0.99 Normal range 

–1.25 to –1.99 Moderately dry 

–2.00 to –2.74 Severely dry 

≤–2.75 

 

Extremely dry 
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Table 2 Estimated average time to ponding for the different soil types in the Estaña catchment (NE Spain) for each month of the year. R: Rainfall; e: number of erosive 

events; I30mean: average value of maximum rainfall intensity in 30 minutes; I30max: maximum rainfall intensity in 30 minutes; n: number of soil samples; NP: No ponding; *: 

values from the Canelles weather station 

R
* e

* 
I30mean

* 
I30max

* Time to ponding (Tp, s) 

Calcisol (n= 79) Gleysol (n=7) Gypsisol (n=9) Leptosol (n=82) Regosol (n=51) Vertisol (n=8) 

Month 

mm n mm h-1 

I30mean I30max I30mean I30max I30mean I30max I30mean I30max I30mean I30max I30mean I30max 

Jan 18.7 6.4 6.6 15.4 NP NP 2.0 0.8 0.6 0.2 NP NP NP 7.9 8.2 0.8 

Feb 15.6 2.7 7.1 7.8 NP NP 1.8 1.6 0.5 0.5 NP NP NP NP 5.0 3.3 

Mar 27.5 6.5 5.7 9.2 NP NP 2.3 1.3 0.7 0.4 NP NP NP NP NP 2.1 

Apr 53.7 8.7 10.9 24.6 NP 13.5 0.9 0.4 0.3 0.2 NP NP NP 2.8 1.2 0.4 

May 56.3 8.8 15.4 69.8 NP 2.6 0.6 0.1 0.2 0.1 NP 0.5 7.3 0.7 0.7 0.1 

Jun 28.0 4.7 17.9 31.2 47.7 8.2 0.5 0.3 0.2 0.1 NP NP 5.0 1.9 0.5 0.3 

Jul 19.8 4.4 21.8 32.6 21.4 8.7 0.6 0.4 0.2 0.1 NP NP 3.7 2.0 0.4 0.3 

Aug 25.9 5.3 19.8 43.6 30.8 5.5 0.6 0.3 0.2 0.1 NP 1.5 4.5 1.4 0.5 0.2 

Sep 60.5 5.9 26.9 65.6 12.6 3.2 0.5 0.2 0.1 0.1 NP 0.5 2.6 0.8 0.3 0.1 

Oct 66.2 8.5 17.2 57.8 60.2 2.8 0.6 0.2 0.2 0.1 NP 0.6 5.1 0.8 0.5 0.1 

Nov 40.3 6.9 8.6 25.0 NP 11.2 1.2 0.4 0.4 0.1 NP NP NP 2.5 1.8 0.3 

Dec 

 

35.0 

 

4.7 

 

5.4 9.0 

 

NP NP 2.1 1.2 0.7 0.4 NP NP NP NP NP 1.6 
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Table 3 Classes for wet and dry conditions for the soil moisture status (SMS) of the DR2 model. 

SMS value Wetness-Drought index categories 

≥ 100 Extremely moist 

10 to 100 Very moist 

1.1 to 10 Moderately moist 

0.9 to 1.1 Normal range 

0.5 to 0.9 Moderately dry 

0.1 to 0.5 Severely dry 

0 to 0.1 

 

Extremely dry 

 



3 
 

Table 4 Summarize of the average values of saturated hydraulic conductivity (Kfs) and sorptivity (Sp) (taken from López-Vicente and Navas, 2009), volumetric water content 

at saturation (θS) and initial (θ0) conditions, soil moisture status (SMS) and Palmer Z-index for the main soil types in the Estaña catchment (NE Spain). 

Infiltration Soil moisture SMS Palmer Z-index Soil type Season 

Kfs 

(cm s-1) 

Sp 

(cm s-0.5) 

θS  

(% vol.) 

θ0 

(% vol.) 

mean mean 

Spring 0.0866 43.0 14.6 1.5 6.6 

Summer 0.0741  10.1 1.5 6.5 

Autumn 0.0648  18.0 3.6 6.4 

Calcisol 

Winter 

0.000443 

0.0686  14.0 0.5 6.9 

Spring 0.0299 46.6 12.9 0.9 6.6 

Summer 0.0299  10.3 1.2 6.5 

Autumn 0.0265  17.7 2.6 6.3 

Leptosol 

Winter 

0.000948 

0.0281  13.5 0.5 7.0 

Spring 0.0472 51.6 14.8 3.0 4.2 

Summer 0.0468  11.6 2.6 3.6 

Autumn 0.0436  17.6 7.5 4.6 

Regosol 

Winter 

 

0.000304 

0.0464 

 

 12.3 

 

1.8 

 

6.5 

 

 


