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Abstract 1 

Oil (healthier lipid combination of olive, linseed and fish oils)-in-water 2 

emulsions stabilized with different protein systems (prepared with sodium caseinate 3 

(SC), soy protein isolate (SPI), and microbial transglutaminase (MTG) were used as 4 

pork backfat replacers in low-fat frankfurters. Microstructure, lipid oxidation, nitrite 5 

content, microbiological changes and biogenic amine formation of frankfurters were 6 

analysed as affected by the type of oil-in-water emulsion and by chilling storage (2 °C, 7 

41 days). Although the lipid oxidation levels attained were low, replacement of animal 8 

fat by healthier oil combinations in frankfurter formulation did promote a slight increase 9 

in lipid oxidation. Residual nitrite was affected (P<0.05) by formulation and storage. 10 

Only 51-61% of the added nitrite was detectable in the product after processing and 17-11 

46% at the end of storage. The microbial population was low in all formulations during 12 

chilling storage. Spermine was the most abundant amine (19-20 mg/kg), but similar in 13 

level in all samples.  14 

 15 
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1. Introduction 

Healthier lipid formulation based on processing strategies is one of the most 

important current approaches to the development of potential meat based functional 

foods. Reformulation of frankfurters has been used to achieve better lipid compositions 

by reducing fat content and/or replacing the animal fat normally present in the product 

with another fat (of plant and/or marine origin) whose characteristics are more in line with 

health recommendations: i.e. contain smaller proportions of saturated fatty acids (SFA) 

and larger proportions of monounsaturated (MUFA) or polyunsaturatyed (PUFA) fatty 

acids, especially long chain n-3 PUFA, better n-6/n-3 PUFA and PUFA/SFA ratios, and 

if possible cholesterol-free (Jiménez-Colmenero, 2007). A number of studies have been 

conducted to improve the lipid profile of finely comminuted cooked meat products like 

frankfurters (Bloukas & Paneras, 1993; Jiménez-Colmenero, 2007; Paneras & Bloukas, 

1994; Park, Rhee, Keeton, & Rhee, 1989). Incorporation of individual lipids (from only 

one source of plant or marine origin) does improve the fatty acid profile of meat products, 

but a better approximation to optimal lipid profiles, meaning one more in line with health 

recommendations, can be achieved using healthier oil combinations as animal fat 

replacers (Delgado-Pando, Cofrades, Ruiz-Capillas, Solas, & Jiménez-Colmenero, 

2010b; García-Iníguez de Ciriano et al., 2010; López-López, Cofrades, & Jiménez-

Colmenero, 2009; Paneras, Bloukas, & Filis, 1998). Among the various technological 

options for replacement of animal fat, oil-in-water emulsion technology (pre-emulsion) 

has been shown to be viable as a mean of stabilizing the non-meat fats used for 

incorporation in meat derivates (Bishop, Olson, & Knipe, 1993; Bloukas & Paneras, 

1993; Djordjevic, McClements, & Decker, 2004; Jiménez-Colmenero, 2007). A number 

of procedures have been reported for producing an oil (plant or marine) pre-emulsion 

for incorporation in meat derivatives (Jiménez-Colmenero, 2007). Because they are 

added to frankfurters as fat ingredients, their physicochemical characteristics can affect 

their role in the meat system and hence the quality properties of the reformulated 

product (Delgado-Pando et al., 2010b). 

In a previous paper our group (Delgado-Pando, Cofrades, Ruiz-Capillas, & 

Jimenez-Colmenero, 2010a) assessed the suitability of a healthier oil combination 

stabilized (oil-in-water emulsion) with various protein systems as pork backfat replacers 

in low-fat frankfurters. The healthier oil combination was formed by vegetable (olive 

and linseed) and fish oils in suitable amounts and proportions to produce a fatty acid 

profile more in line with healthier intake goals. The authors reported the nutritional 
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advantages (fatty acid profile), sensory analyses and technological properties of 

frankfurters as affected by the type of oil-in-water emulsion and chilling storage. Total 

n-3 PUFA of the reformulated products were around 2.5 g/100 g, of which 

approximately 2 g/100 g was α-linolenic acid and 500 mg/100 g were long chain n-3 

PUFA, docosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), a composition 

more in line with dietary recommendations for optimal intake of total, saturated and 

unsaturated fatty acids. Technological properties and sensory characteristics show that it 

is possible to produce such healthier frankfurters. However, other aspects such as safety, 

shelf-life and morphological characteristics need to be considered in order to gain a 

clearer understanding of these products and a more accurate assessment of the 

suitability of this strategy for a healthier reformulation of frankfurters. To that end, in 

parallel to Delgado-Pando et al. (2010a), the additional studies described in this paper 

were carried out to assess the influence of the type of oil-in-water emulsion (as a pork 

backfat replacer) and chilling storage (41 days at 2 °C) on microstructure, lipid 

oxidation, nitrite content, microbiological changes and biogenic amine formation in 

frankfurters. As in the experiment reported in Delgado-Pando et al. (2010a), oil 

(healthier lipid combination of olive, linseed and fish oils)-in-water emulsions stabilized 

with different protein systems (prepared with sodium caseinate (SC), soy protein isolate 

(SPI), and microbial transglutaminase (MTG) were used as pork backfat replacers in 

low-fat frankfurters. 

 

2. Materials and methods 

2.1. Materials, healthy frankfurters preparation and chilled storage 

The ingredients used for the manufacture of oil-in-water emulsions and 

frankfurters, the procedures for preparation of oil-in-water emulsions (Table 1), 

experimental design, preparation of healthy frankfurters (Table 2) and the chilling 

storage conditions were as reported by Delgado-Pando et al. (2010a). Four different 

formulations were studied (Table 2): a control frankfurter (all pork fat) and three 

modified frankfurters reformulated by totally replacing pork backfat with one of the oil-

in-water emulsions (Delgado-Pando et al., 2010a). The samples were vacuum-packed, 

stored at 2 ºC (± 1 °C) and analysed periodically (days 1, 13, 27 and 41). . 

 

2.2. Microstructure  
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 Microstructure was analysed by scanning electron microscopy (SEM) as 

reported by Jiménez-Colmenero, Carballo and Solas (1995). The frankfurters were fixed 

with a mixture (1:1 v/v) of paraformaldehyde (4 g/100 g) and glutaraldehyde (0.2 

g/100g) in 0.1 M phosphate buffer pH 7.2, post-fixed with OsO4, washed, dehydrated in 

increasing concentrations of acetone, critical-point-dried, sputter-coated with 

gold/palladium in a metallizer (Blazer, SCD004) and scanned by SEM (Jeol, JSC 6400, 

Akishima, Tokyo, Japan) at 20 kV. A large number of micrographs were taken in order 

to select the most representative ones. 

 

2.3.Lipid oxidation 

  Oxidative stability was evaluated by changes in thiobarbituric acid-reactive 

substances (TBARS). The procedure for measurement of TBARS was based on 

methods used by Serrano, Cofrades, and Jiménez-Colmenero (2006). Briefly, the 

procedure was as follows: 5 g of each sample was homogenized in 35 ml of 7.5 % 

trichloroacetic acid for 1 min at high speed in an Ultraturrax blender (Ika-Werke, GmbH 

& Co, Staufen, Germany). The blender sample was centrifuged (3000 g, 2 min) and 5 

ml of the supernatant was mixed with 5 ml of 20 mM thiobarbituric acid; finally the 

solution was mixed and kept in the dark for 20 h at 20 ±1.5 ºC. The pink colour that 

formed was measured spectrophotometrically (Lambda 15UV/VIS spectrophotometer, 

Perkin-Elmer, USA) at 532 nm. A calibration curve was plotted with 1,1,3,3-

tetraethoxypropane (Sigma Chemical Co., St. Louis, MO, USA) to obtain the 

malonaldehyde (MDA) concentration and results were expressed as mg MDA/kg of 

sample. TBARS determinations for each sample were performed in duplicate. 

 

2.4. Determination of residual nitrite  

Residual nitrite contents were determined using the flow injection analysis 

according to Ruiz-Capillas, Aller-Guiote and Jiménez-Colmenero (2007a). Results, 

expressed as mg/1000 g of sample, were averages of 3 determinations per sample.  

 

2.5. Microbiological analysis  

Samples were prepared in a vertical laminar-flow cabinet (model AV 30/70, 

Telstar, Madrid, Spain). For each sample, 10 g (in replicate) was taken and placed in a 

sterile plastic bag (Sterilin, Stone, Staffordshire, UK) with 90 ml of peptone water 

(0.1%) and 0.85% NaCl (Panreac Química, S.A. Barcelona, Spain). After 1 minute in a 
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stomacher blender (Colworth 400, Seward, London, UK), appropriate decimal dilutions 

were pour-plated on the following media: Plate Count Agar (PCA) (Merck, Germany) 

for total viable count (TVC) (30 °C for 72 h); De Man, Rogosa, Sharp Agar (MRS) 

(Merck, Germany) for lactic acid bacteria (LAB) (30°C for 3-5 days); and Violet Red 

Bile Glucose Agar (Merck, Germany) for Enterobacteriaceae (37°C for 24h). The 

results were expressed as logarithms of colony forming units per gram (Log cfu/g). 

 

2.6. Analysis of biogenic amines (BA) by ion-exchange chromatography  

Tyramine, phenylethylamine, histamine, putrescine, cadaverine, agmatine, 

spermidine and spermine were determined in an extract prepared by blending 25 g of 

each sample with 50 mL of 7.5% trichloroacetic acid in an ultraturrax homogenizer 

(IKA-Werke, Janke, & Kunkel, Staufen, Germany) (20000 rpm, 3 min) and centrifuged 

at 5000 g for 15 min at 4 C in a desktop centrifuge (Sorvall RTB6000B, DuPont, 

USA). The supernatants were filtered through a 0.45 m Millipore filter, and 10 L of 

this filtrate was injected into an HPLC model 1022 (Perkin Elmer) with a Pickering 

PCX 3100 post-column system (Pickering Laboratories, Mountain View, Ca, USA) 

following the methodology of Ruiz-Capillas and Moral (2001). The results are averages 

of at least 2 determinations from two extractions per sample.  

 

2.7. Statistical analysis 

The repeated measures test was used for statistical comparisons between 

samples (Delgado-Pando et al., 2010a). Data were analysed using SPSS Statistics 17.0 

(SPSS Inc, Chicago, USA) for one-way and two-way ANOVA. Least squares 

differences were used for comparison of mean values among treatments and Tukey’s 

HSD test to identify significant differences (P<0.05) between formulations and storage 

times.  

 

3. Results and Discussion 

It has been suggested that foods that are strategically or naturally enriched in 

healthier fatty acids can be used to achieve desired health benefits without the intake of 

supplements or changes in dietary habit. In a previous paper Delgado-Pando et al. 

(2010a) reported the proximate composition and fatty acid profile, sensory analyses and 

processing and purge losses, pH, texture profile analysis and colour of frankfurters as 

affected by the type of oil-in-water emulsion (used as functional ingredients) and 
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chilling storage (41 days at 2 °C). The following sections deal with different aspects 

relating to morphological, safety and shelf-life characteristics that are essential to gain a 

clearer understanding of these products.  

 

3.1. Microstructure 

The morphology of the control sausages (Figure 1a) was characteristic of cooked 

gel/emulsion systems (Carballo, Fernandez, Barreto, Solas, & Jiménez-Colmenero, 1996a; 

Carballo, Fernández, Barreto, Solas, & Jiménez-Colmenero, 1996b; Katsaras & Peetz, 

1989) showing the formation of numerous cavities, producing structures with a spongy 

(honeycomb-like) appearance. The formation of these cavities may have been due to 

expansion of a number of constituents, mainly fat, water or air (Cavestany, Jiménez-

Colmenero, Solas, & Carballo, 1994; Katsaras & Peetz, 1989). 

The morphology of the reformulated frankfurters indicates that the characteristics 

of the continuous protein matrix and the fat globules are affected by the type of oil-in-

water emulsions used in the product formulation. Thus, the matrix generally becomes 

disorganized and loses some of its spongy appearance (few cavities), showing a more 

continuous and compact structure. This is particularly apparent in samples F/SC and F/SPI 

(For sample formulation see Table 2) (Fig. 1b-c). The microstructure of sample 

(F/SPI+SC+MTG) (For sample formulation see Table 2) formulated with oil-in-water 

emulsions stabilized using MTG (Fig. 1d) revealed more of a spongy structure (as 

compared with F/SC and F/SPI), with more cavity formation but was clearly 

morphologically different (generally smaller) from the control. Similar findings on 

microstructure have been reported using olive-oil-in-water emulsions as pork backfat 

replacers (Jiménez-Colmenero, Herrero, Pintado, Solas, & Ruiz-Capillas, 2010), these 

morphological differences were attributed to variations in the physicochemical 

characteristics of the oil-in-water emulsions. The morphological characteristics observed in 

the frankfurters containing the healthier oil combination conferred greater consistency on 

the product and promoted textural changes, so that these were harder and chewier than the 

control sample. However the physicochemical characteristics of the oil-in-water had no 

clear effect on textural properties of the frankfurters (Delgado-Pando et al., 2010b). Since 

all the frankfurters had very similar compositions (Delgado-Pando et al., 2010a), other 

factors associated with the nature of the matrix and dependent on meat batter 

characteristics must be implicated in the morphology-texture relationship (Carballo et al., 

1996b), in this case the type of lipid materials. Similar microstructural results have been 
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reported (Cáceres, García, & Selgas, 2008) as a result of addition of pre-emulsified fish oil 

(with caseinates) to bologna-type sausage.   

 

3.2. Lipid oxidation 

Lipid oxidation is a major cause of deterioration in the quality of stored meat 

products. One of the main potential problems associated with healthier lipid 

formulations in meat products is how they may influence the rate and extent of lipid 

oxidation, which in turn affects quality characteristics and has health implications. 

There are a number of factors determining the scale of this phenomenon. Susceptibility 

to lipid oxidation can be augmented by increasing concentrations of unsaturated fatty 

acids (particularly polyunsaturated), and also by some processing conditions like 

grinding, cooking, drying, etc. which entail exposure to high temperatures, 

decompartmentalization of prooxidants and antioxidants or enhanced access of oxygen 

to the substrate (Lee, Choi, & Moon, 2006).  

TBARS values were affected (P<0.05) by the formulation and storage (Table 3), 

with interaction (P<0.05) between both factors. From the outset of storage TBARS 

values were higher (P<0.05) in the reformulated samples than in the control (Table 3), 

indicating a higher rate and a greater extent of lipid oxidation in healthier lipid 

frankfurters (with higher levels of unsaturates). As reported previously (Delgado-Pando 

et al., 2010a), in the experimental conditions frankfurters produced with oil 

combinations had lower levels of saturated fatty acids (SFA) (19.3 %), similar levels of 

MUFA (46.9 %) and higher levels of PUFA (33.6 %) than control frankfurters (all pork 

fat) (39.3, 49.5 and 10.6 % respectively). PUFA/SFA and n-6/n-3 PUFA ratios in 

control sample were 0.27 and 9.27; in reformulated frankfurters the PUFA/SFA ratio 

was higher (1.7) and the n-6/n-3 PUFA ratio was lower (0.47). However, in these 

products the lipid oxidation varied according to the type of systems used to stabilize the 

oil (healthier lipid combination)-in-water emulsions used as pork backfat replacers 

(Table 2). For instance, the use of SPI+SC+MTG produced the highest oxidation levels 

at all times throughout storage. Except in sample F/SPI+SC+MTG, the TBARS value 

increased (P<0.05) over storage time (up to day 13 for control and day 27 for F/SC and 

F/SPI), then decreased as from day 41. Thus, lipid oxidation was greater when MTG 

was included in the stabilization system of oil-in-water emulsion. The pattern of 

TBARS behaviour during storage (a peak followed by a decline of the TBARS value) 

has been reported during frozen storage of ground beef (Bhattacharya, Hanna, & 
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Mandigo, 1988; Brewer & Wu, 1993). It has been suggested that the decline in TBARS 

values may have been due to the formation of malonaldehyde as an intermediate 

product; up to a certain time, the rate of malonaldehyde formation was greater than the 

rate of disappearance of the product, and after that point the reverse was true. Thus, the 

rate of disappearance exceeded the rate of formation and hence the TBARS values 

decreased (Bhattacharya et al., 1988). Similarly, Jamora and Rhee (2002) reported that 

the malonaldehyde formed during storage of meat products might have undergone 

intermolecular reactions (polymerization) and reactions with other constituents, 

especially amino acids/proteins. Therefore the rate of malonaldehyde loss/disappearance 

during storage may have exceeded the rate of production through lipid oxidation.        

Lipid oxidation in healthier fat meat product formulations varies according to the 

nature of the product, the type, amount and means of addition of non-meat fats, and the 

antioxidative system used to control rancidity development (Jiménez-Colmenero, 2007). 

Generally no specific problems have been reported in connection with oxidative 

stability in gel/emulsion meat based products formulated with healthier lipid profiles. 

This fact has been put down to a variety of factors: the presence of a curing mixture 

ingredient containing substances such as nitrite, phosphate or ascorbate which act as 

antioxidants (Márquez, Ahmed, West, & Johnson, 1989); the natural presence of 

various antioxidant substances (tocopherols, phenolic compounds) in the plant oils 

used—for example olive oil (Bloukas, Paneras, & Fournitzis, 1997a) or corn oil (Bishop 

et al., 1993)–—or finally the absence of phospholipids in refined oils (Bishop et al., 

1993). Cáceres et al. (2008) reported a low level of lipid oxidation (TBARS value of 

0.37-0.52 mg MDA/kg) during chilling of bologna-type sausage prepared with fish oil. 

In the present experiment, although the use of a healthier oil combination to replace 

animal fat in frankfurter formulation promoted slightly (but significantly over storage) 

more lipid oxidation than in the control sample (Table 3), the observed TBARS values 

(< 0.5 mg/kg in all samples except F/SPI+SC+MTG, where it was <0.8) were lower 

than those described as the minimum needed to detect objectionable flavours in 

processed meat products (Cáceres et al., 2008; Liu, Lee, & Damodaran, 1999; 

Mercadante, Capitani, Decker, & Castro, 2010).  

Comminuted meat systems contain salt and relatively high concentrations of 

unsaturated fat. When subjected to thermal treatment, they become prone to lipid 

oxidation behaviour associated (among other factors) with the pro-oxidative activity of 

non-heme iron, which catalyzes lipid oxidation in this biological tissue (Bastida et al., 
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2009). There are several factors that may be implicated in the relatively low lipid 

oxidation of healthier reformulated frankfurters like the ones studied in this experiment. 

One may be related to the combined effect of the antioxidants used in sausage 

manufacture (nitrite) and included in the vegetable and fish (combination of 

tocopherols) oils used in product manufacture. Another may be related to the protective 

effect of sodium caseinate and soy protein isolate against lipid oxidation in oil-in-water 

emulsions through a combination of free radical scavenging and/or metal chelation 

(Faraji, McClements, & Decker, 2004). It has been reported that SPI has greater 

oxidative stability than SC, since other antioxidants associated with this protein (such as 

the isoflavone) could also act as antioxidants (Faraji et al., 2004). This would help to 

explain the lower rate of lipid oxidation in F/SPI frankfurter as compared to F/SC 

(Table 3), while the fact that oxidative activity was greatest in F/SPI+SC+MTG sample 

could be related to interference by transglutaminase in any of the antioxidative 

mechanisms of those proteins, limiting their ability to inhibit lipid oxidation. This effect 

may be more pronounced with SC (Table 3) since this protein appears to be a better 

substrate for MTG (formation of microbial transglutaminase-catalyzed protein 

crosslinking) than soy protein (Motoki & Seguro, 1998).      

 

3.3 Residual nitrite 

 Recently, interest in nitrite and its reaction has re-emerged because of its 

implications for human health (Cassens, 1997). Residual nitrite was affected (P<0.05) 

by the formulation and storage (Table 4), with interaction (P<0.05) between both 

factors. As expected, residual nitrite levels decreased over storage in all samples. Only 

51-61% of the added nitrite was detectable in the final product after processing and 17-

46% after storage for 41 days at 2 °C (Table 4). Of the healthier lipid formulations, 

F/SPI+SC+MTG frankfurter had the highest (P<0.05) residual nitrite level over storage. 

Many studies have demonstrated that the added nitrite is rapidly depleted in meat 

products since nitrite reacts with or binds to constituents (lipids, proteins, etc) of the 

meat (Carballo, Cavestany, & Jiménez-Colmenero, 1991; Cassens, Greaser, Ito, & Lee, 

1979; EFSA, 2003). The rate of loss of nitrite in a product is dependent on a number of 

factors including the heat process used, the pH of the product, the storage temperature 

and the addition of ascorbic acid or other reducing agents (Cassens, 1997; EFSA, 2003). 

In our experimental conditions the lipid material is the main differences in sample 

formulations (Delgado-Pando et al., 2010a) and the nitrite reacts with lipid components 
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of meat (Cassens et al., 1979), and therefore the lipid profile can be related to the 

differences in the residual nitrite behaviour in frankfurters. Several studies have 

reported the influence of aspects associated with the content and characteristics of the 

lipid in meat products. Higher residual nitrite levels have been reported in low-fat 

sausages as compared with high-fat products (Ayo et al., 2007; Jiménez-Colmenero, 

Carballo, Fernandez, Cofrades, & Cortes, 1997; Jiménez-Colmenero et al., 2010). Unlike 

the present experiment (Table 4), others have reported that replacement of pork fat by 

olive oil reduced the residual nitrite as compared with all pork fat sample (López-López, 

Cofrades, Ruiz-Capillas, & Jiménez-Colmenero, 2009). However, Paneras and Bloukas 

(1994) found no differences in the nitrite content of frankfurters with vegetable oils. 

   

3.4 Microbiological analysis  

Microbiological considerations during chilling storage are known to affect the 

stability and shelf life of meat products, but there has been hardly any research on 

reformulated meat products with oils added (Bloukas, Paneras, & Fournitzis, 1997b). 

Microbial counts were affected by the storage and formulation (Fig. 2). The initial 

levels of TVC were very low (< 3 Log cfu/g) in all samples (Fig. 2a). This flora 

consisted mainly of LAB (Fig. 2b), which traditionally predominate in vacuum-packed 

cooked meat products (Andrés, García, Zaritzky, & Califano, 2006; Holley, 1997; Ruiz-

Capillas, Carballo, & Jiménez-Colmenero, 2007b). Enterobacteriaceae levels were 

lower than 1 Log cfu/g over storage. The levels of these microorganisms were within 

the legal limits and comparable to those detected in other assays on frankfurter and 

bologna (Andrés et al., 2006; Holley, 1997; Ruiz-Capillas et al., 2007b). This result 

shows that the mode of product preparation follows good manufacturing practice.  

The microbiological changes taking place in stored low-fat frankfurters was 

most noticeable in F/SC and F/SPI products. The greatest increase in microorganism 

growth in F/SC and F/SPI products was observed after 27 days, when TVC values 

exceeded 5 Log cfu/g and LAB levels exceeded 4 Log cfu/g. These were also the 

products that presented the highest microorganism levels at the end of storage, 

contrasting with F/SPI+SC+MTG and control samples, where microorganism levels 

remained low (< 3 Log cfu/g). Similarly, Ruiz-Capillas et al. (2007b) reported no 

changes in the low microorganism levels in vacuum-packed frankfurter until day 48 of 

chilling storage at 2 ºC. Andrés et al. (2006) reported microorganism levels of less than 

7 log cfc/g in low fat chicken after 50 days of chilling storage at 4 ºC. According to 
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these authors, low fat associated with high moisture provides a better environment for 

bacterial growth. Bloukas et al. (1997b), observed similar microbial behaviour to that 

reported in the present experiment in low fat frankfurters with olive oil during chilling 

storage. 

Processing (thermal treatment and storage (vacuum-packed, at 2 °C)) conditions 

account for the fact that the microbial quality of these products was generally adequate. 

 

3.5 Biogenic amines 

Biogenic amines (BA) occur in a wide range of foods, among them meat and 

meat products. These compounds are of interest for two reasons: firstly as possible 

quality indicators, and secondly because high levels of dietary BA can present a toxic 

risk to certain consumers (Ruiz-Capillas & Jiménez-Colmenero, 2004). There are 

numerous studies of BA in meat products (fresh, fermented, cooked, etc) (Ruiz-Capillas 

et al., 2007b), but the authors know of no studies that analyse the formation of BA in 

healthier lipid meat products. Factors associated with the reformulation process 

(ingredient modifications, handling conditions, etc.) decisively influence the factors 

responsible for the formation of BA such as microorganisms (Lactic acid bacteria, 

enterobacteriaceae, micrococaceae), pH, free amino acids, etc., and hence their profile 

and final concentrations. It is essential to understand how BA formation is affected by 

the reformulation process in order to assess its potential presence in these healthy meat 

products.  

BA contents in frankfurters (Table 5) were affected (P<0.05) by the storage and 

formulation, with interaction (P<0.05) between both factors. Putrescine levels were very 

low, less than 0.5 mg/kg, in all samples. Low putrescine levels have been reported in 

cooked products such as frankfurters and meat batters (Ruiz-Capillas, Aller-Guiote, 

Carballo, & Jiménez-Colmenero, 2006; Ruiz-Capillas et al., 2007b). Spermine was the 

most abundant BA (19-20 mg/kg), and there were generally no differences (P>0.05) in 

levels between formulations (Table 5). One factor that may explain this is that spermine 

comes chiefly from the meat that is used. Similar levels of spermine have been found in 

frankfurters and meat batters (Ruiz-Capillas et al., 2006; Ruiz-Capillas et al., 2007b). In 

the case of spermidine, initial levels were very low, < 0.80 mg/kg, as compared to 

control sample, but levels in the reformulated products were lower (P<0.05) (Table 5). 

There were high levels of agmatine and phenylethylamine, as is usual in meat and 

frankfurter-type meat products (Ruiz-Capillas et al., 2006), although the agmatine levels 
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were lower than reported in other studies (Ruiz-Capillas et al., 2007b). The initial levels 

of tyramine and cadaverine were low (around 2 and 1 mg/kg respectively). Also low 

was histamine (<1 mg/kg), which is not found in appreciable quantities in meat products 

(Halász, Barath, Simonsarkadi, & Holzapfel, 1994; Ruiz-Capillas et al., 2006; Ruiz-

Capillas et al., 2007b; Ruiz-Capillas & Jiménez-Colmenero, 2004). 

The most appreciable changes in the course of storage occurred in tyramine and 

cadaverine levels, especially at the end of storage (Table 5), mainly as a consequence of 

microbial activity (Figure 2). For instance, F/SC and F/SPI frankfurters, the ones with 

the highest TVC levels (Figure 2), presented higher (P<0.05) levels of tyramine and 

cadaverine at the end of storage. On the other hand, the control and F/SPI+SC+MTG 

samples present similar patterns to one another throughout storage (Table 5), and TVC 

and LAB levels were also similar (Figure 2). Similar behaviour has been reported in 

other experiments with frankfuters (Ruiz-Capillas et al., 2006; Ruiz-Capillas et al., 

2007b) 

 

Conclusions 

Low-fat frankfurters can be manufactured using a healthier oil (from plant and 

marine sources) combination stabilized with different non meat protein systems as pork 

backfat replacers, to give a product with healthy lipid content (amount and fatty acid 

profile). The reformulation process and chilling storage affect product characteristics 

such as matrix morphology, lipid oxidation, residual nitrite, microbial population and 

BA formation, but they do not produce safety issues or shelf-life constraints in 

frankfurters. This in addition to the nutritional advantages (fatty acid profile), sensory 

attributes and technological properties (Delgado-Pando et al., 2010a) suggests that this 

can be a suitable strategy for the manufacture healthier frankfurters (potential functional 

food). 
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Figure legends.  

 

Figure  1.  Scanning  electron micrograph  of  the  different  frankfurters:  a)  Control,  b)  F/SC,  c) 

F/SPI, d) F/SPI+ SC+MTG. Bar represents 10 µm. 

 

 

Figure 2. Microorganism counts  (a: Total viable count. b: Lactic acid bacteria)  in  frankfurters 

during chilling storage.  
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Figure 1. Delgado‐Pando et al., 
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Figure 2. Delgado‐Pando et al., 
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Table 1. Formulation (g) of different oil-in-water emulsions. 

Samples Oil combination Water SPI† MTG† SC† 

O/SC 789.47 631.58 - - 78.95 

O/SPI 789.47 631.58 78.95 - - 

O/SPI+SC+MTG 789.47 631.58 78.95 5.37 14.21 

O: oil combination (44.39 % olive oil, 37.87 % linseed oil and 17.74 % fish oil); SC: 
sodium caseinate; SPI: soy protein isolate; MTG: microbial transglutaminase. 
 

 

 

Table 2. Formulation (g) of frankfurters made with pork backfat and the different oil-in-
water emulsions. 

Oil-in-water emulsion Sample Meat Backfat 
O/SC O/SPI O/SPI+SC+MTG 

Water 

Control 2569.4 477.4 - - - 840.6 
F/SC 2569.4 - 805.1 - - 513.0 
F/SPI 2569.4 - - 805.1 - 513.0 
F/ SPI+SC+MTG 2569.4 - -  805.1 513.0 
Control: frankfurter formulated with pork backfat. F/SC, F/SPI and F/SPI+SC+MTG: 
frankfurters formulated with oil-in-water emulsion (O/SC, O/SPI and O/SPI+SC+MTG 
respectively) as pork backfat replacer. The following were also added to all samples: 2.0 
g/100 g NaCl; 0.30 g/100 g sodium tripolyphosphate; 0.012 g/100 g sodium nitrite; 0.50 
g/100 g flavouring. 
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Table 3. Lipid oxidation (TBARS values, expressed as mg MDA/kg sample) of 
frankfurters during chilling storage  

Storage (days) 
Sample 

1 13 27 41 
Control 0.037±0.018aA 0.120±0.015aC 0.064±0.009aB 0.022±0.010aA 

F/SC 0.164±0.022cA 0.424±0.023cB 0.498±0.011cC 0.419±0.005cB 

F/SPI 0.102±0.012bA 0.352±0.011bC 0.400±0.013bD 0.313±0.023bB 

F/SPI+SC+MTG 0.296±0.050dA 0.625±0.024dB 0.756±0.013dC 0.754±0.006dC 

For sample formulation see Table 2. Mean ± SD. Different letters in the same column 
(a,b,c…) and in the same row (A,B,C,..) indicate significant differences (P<0.05). 
 

 

Tabla 4- Concentration of residual nitrite (mg/kg of sample) in frankfurters during 
chilling storage. 

Storage (days) Samples 
1 13 27 41 

Control 62.80± 3.26aD 53.17±0.39aC 46.93±0.34aB 21.16±0.79aA 

F/SC 68.57±0.86bD 62.69±0.41bC 56.09±0.33bcB 50.18±0.44bA 

F/SPI 71.01±1.25cC 64.49±0.51bB 55.23±0.63bA 54.41±0.42cA 

F/SPI+SC+MTG 73.24±1.77dC 67.78±0.00cB 57.31±1.25cA 55.54±1.91cA 

For sample formulation see Table 2. Mean ± SD. Different letters in the same column 
(a,b,c…) and in the same row (A,B,C,..) indicate significant differences (P<0.05). 
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Table 5. Biogenic amines content (mg/kg) in frankfurters during chilled storage. 
Storage (days) 

Biogenic amines Sample 
1 13 27 41 

Control 2.48±0.53aA 2.57±0.29bA 2.08±0.22bA 1.86±0.03aBC 
F/SC 2.32±0.49aC 1.67±0.02aAB 1.28±0.10aA 3.46±0.159bB

F/SPI 2.41±0.28aB 2.07±0.19abAB 1.82±0.02abA 5.65±0.05cC 
Tyramine 

F/ SPI+SC+MTG 1.93±0.31aA 2.17±0.22abA 2.12±0.07bA 1.80±0.02aA 
Control 7.97±0.11bD 5.68±0.03bC 1.78±0.01aA 2.96±0.06aB 
F/SC 9.68±0.29cC 5.81±0.03bB 13.31±0.16dD 5.01±0.22cA 
F/SPI 7.21±0.02aC 5.87±0.07bB 8.14±0.16cD 3.37±0.02bA 

Phenylethylamine 

F/ SPI+SC+MTG 9.60±0.07cD 4.81±0.01aB 2.40±0.21bA 7.11±0.05dC 
Control 1.45±0.06aC 0.90±0.05aB 0.00±0.00aA 0.08±0.01aA 
F/SC 2.15±0.01bC 0.97±0.08aB 2.95±0.47cD 0.39±0.04aA 
F/SPI 1.27±0.04aBC 0.98±0.07aB 1.56±0.24bC 0.12±0.01aA 

Histamine 

F/ SPI+SC+MTG 2.22±0.00bD 0.69±0.05aB 0.08±0.01aA 1.05±0.01bC 
Control 1.18±0.06bA 2.01±0.34bB 2.82±0.34bC 3.57±0.21aD 
F/SC 1.53±0.10bA 1.94±0.05bA 3.46±0.11cB 5.33±0.06bC 
F/SPI 1.15±0.07bA 2.46±0.30cB 3.71±0.31cC 5.90±0.10cD 

Cadaverine 

F/ SPI+SC+MTG 0.38±0.02aA 0.85±0.01aB 1.85±0.06aC 3.89±0.06aD 
Control 7.06±0.01aBC 6.66±0.07aA 7.04±0.03aB 7.22±0.02aC 
F/SC 9.37±0.24dC 9.17±0.09dB 8.90±0.03cA 8.96±0.07cA 
F/SPI 8.17±0.04cAB 8.06±0.01cA 8.60±0.03bC 8.31±0.05bB 

Agmatine 

F/ SPI+SC+MTG 7.25±0.00bB 7.51±0.07bC 7.03±0.05aA 7.20±0.05aAB 
Control 0.78±0.07bB 0.69±0.01bB 0.59±0.16bAB 0.48±0.01aA 
F/SC 0.52±0.02aA 0.37±0.09aA 0.37±0.00aA 0.51±0.04aA 
F/SPI 0.50±0.03aA 0.73±0.01bB 0.78±0.01cBC 0.92±0.01bC 

Spermidine 

F/ SPI+SC+MTG 0.55±0.19aA 0.62±0.13bA 0.53±0.07abA 0.85±0.02bB 
Control 20.55±0.07abAB 19.32±0.23aA 21.04±0.91bB 20.48±0.98aAB

F/SC 21.68±0.52bA 21.28±0.45bA 21.30±1.05bA 20.77±0.76aA

F/SPI 20.05±0.17aA 19.95±0.13abA 22.24±1.05bB 21.54±0.19aB 
Spermine 

F/ SPI+SC+MTG 19.36±0.04aA 19.58±0.37aAB 19.40±0.69aA 20.94±0.38aB 
For sample formulation see Table 2. Mean ± SD. Different letters in the same column 
(a,b,c…) and in the same row (A,B,C,..) indicate significant differences (P<0.05). 
 

  

 

 

 


