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RNA recognition 

DOI: 10.1002/anie.200123456 

NMR-guided fragment-based approach for the 
design of tRNALys

3 ligands.∗∗ 

Florence Chung, Carine Tisné,∗ Thomas Lecourt, 
Frédéric Dardel∗ and Laurent Micouin∗ 

RNA is a key player in many cellular processes or in viral 
infection and is thus an attractive target in drug discovery.[1] The 
clinical utility of antibiotic drugs targeting the bacterial ribosome 
has demonstrated that RNA can indeed be a relevant target.[2] 
Among other druggable RNAs, functional sites within the genomic 
RNA of HIV-1, such as TAR, RRE or the dimerisation initiation site, 
have been selected as possible targets for new anti-viral strategies.[3] 

Like all retroviruses, HIV-1 uses a cellular tRNA, tRNA Lys
3 for 

priming reverse transcription.[4] In virions, the 18 3'-terminal 
nucleotides of tRNALys

3 are base-paired to the genomic RNA. This 
complex in turn specifically recruits the reverse transcriptase.[5] The 
aim of this study was to find molecules that bind to tRNALys

3 and 
serve as leads for inhibitors of the formation of the HIV-1 reverse 
transcription initiation complex. Indeed, destabilisation of this 
process by oligodeoxyribonucleotides has been reported to result in 
an efficient inhibition of reverse transcription, providing the proof of 
concept of a possible new antiviral strategy.[6]  

Despite recent breakthroughs in the understanding of the 
interaction between aminoglycosides and ribosomal RNAs,[7] the de 
novo design of new compounds that specifically bind to structured 
RNAs is still a standing challenge. A recent promising approach for 
the synthesis of shape-specific 2-deoxystreptamine  (2-DOS) dimers 
that can bind selectively to RNA loops has been reported.[8]  
Rational design of selective tRNALys

3 binder is however difficult 
because of the lack of known ligands[9] and of its shape-similarity to 
other tRNAs. A combinatorial approach only led to low-affinity 
structure-specific peptidic ligands.[10] However, the availability of 
crystallographic[11] and NMR data[12,13] and of an efficient 
expression system made it possible to undertake a fragment-based 
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approach.[14] We used NMR screening[15] to identify ligands from 
spectral changes induced by their binding on the target.[16] A 
primary screen was performed over a focussed collection of 50 in-
house or commercial organic compounds using 1D NMR on the 
RNA imino proton window (10-15 ppm), which is devoid of ligand 
signals. As result, compounds 1 and 2 were detected to bind to 
tRNALys

3 (Figure 1).  

 
Figure 1. Binding of a) compound 1 (2.1 mM) and b) kynuramine 2 
(0.6 mM) to tRNALys

3 monitored by NMR chemical shift perturbation of 
the RNA imino protons (top spectra). Bottom: reference tRNALys

3 
spectrum (0.3 mM).  

Their NMR footprints on the target were then determined on 2D 
HMQC spectra using 15N-labeled tRNA. Kynuramine 2 interacts 
with the D-stem (Figure 2), and 1 exhibits binding to at least two 
specific sites located in the T and D-stems.[17] From NMR titrations, 
the apparent dissociation constants of 1 and 2 for tRNALys

3 were 
estimated to be 2mM and 5mM, respectively.  

 

 

Figure 2. Superimposition of HMQC spectra of tRNALys
3 alone (0.8 

mM) in black and tRNALys
3 mixed with compound 2 (1.6 mM) in red. 

 
A qualitative specificity study was conducted with these two 

compounds by analysing their NMR footprints with two other 
tRNAs: E. coli tRNAf

Met and tRNAm
Met. 1 binds to both tRNA 

which have very similar T-arms sequences. Interestingly, 2 only 
binds to the D-arm of tRNAm

Met, showing that this compound, 
despite its moderate affinity, appears to interact in a sequence-
specific manner with tRNAm

Met and tRNALys
3 with identical D-

stems (Figure 4). Structural elements required for the binding of 
kynuramine 2 were then investigated (Scheme 1). Qualitative 
comparison of chemical shift perturbations indicated that binding 
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was improved when the aniline moiety was changed for other 
heterocycles, except for compounds 4, 12 and 16. Reduction of the 
carbonyl function to the corresponding alcohol led to the loss of 
interaction. Binding of 3 was not improved by introduction of an 
extra nitrogen atom on the side chain (compound 13).  
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Scheme 1. a) (CH2O)n, Me2NH.HCl, 35% aq. HCl, EtOH, Δ then 
K2CO3; b) CH3I, CH2Cl2, r.t., then R1R2NH, CH3Cl, 60 °C; c) H2, Pd/C, 
MeOH. 

The fluorescent properties (λexc = 341 nm, λem = 478 nm) of 
compound 11 were used to estimate its dissociation constant to 
tRNALys

3 (Kd = 191 ± 86 μM), and its binding to tRNALys
3 D-arm 

was confirmed by a 2D TROSY experiment. 
The next step was to attempt to covalently link the two ligands 

in order to improve binding. 1 is a 2-DOS surrogate and hence an 
“RNA-friendly” compound, which probably binds to several sites on 
tRNA. As evidenced by the discrete NMR shifts, this multiple 
binding is nevertheless specific, resulting from the constrained 
amine geometry, a situation already described for 2-DOS with 16S 
ribosomal RNA.[18] This can be considered as an advantage for our 
strategy, as it should improve the chances to get a productive 
linkage.   
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Scheme 2. a) NaN3, H2O/Acetone; b) CuSO4, sodium ascorbate; c) 
HCl, MeOH then amberlyst resin, then NH3, MeOH. 

A library of connected fragments was prepared using a one-pot 
procedure leading to compounds 17a-h in 6-66% overall yield after 
a catch-and-release purification on sulfonic acid resin (Scheme 2). 
Binding of these compounds to tRNALys

3 was then monitored in a 
TROSY experiment, showing improved affinity and specificity with 
the D-arm region (Figure 3 for 17f) under stoichiometric conditions.  

 

 
Figure 3. Superimposition of TROSY spectra of tRNALys

3 alone (0.3 
mM) in black and tRNALys

3 mixed with compound 17f (0.3 mM) in red. 
 

 
Fluorescence binding assays were then conducted on tRNALys

3, 
tRNAm

Met and tRNAf
Met leading to a Kd of 1.8 μM for compound 

17f with tRNALys
3, at physiological ionic strength. Interestingly, 

compound 17f exhibited a significant sequence selectivity for the D-
arm of tRNALys

3 and tRNAm
Met against that of tRNAf

Met (Table 1 
and Figure 4). This specificity is correlated with a reduced ionic-
strength dependence of the interaction with tRNALys

3. The strong 
ionic-dependence of the affinity to tRNAf

Met reflects poorly 
selective binding, dominated by electrostatic effects.[19] 

 

 

 

Figure 4. Sequence and secondary structure of the various tRNA 
used in this study. 
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Table 1. Dissociation constants of compound 17f for three different 
tRNA at various ionic strengths. 

 tRNALys
3 

Kd (μM) 

tRNAf
Met 

Kd (μM) 

tRNAm
Met 

Kd (μM) 

KCl (150 mM) 1.8 ± 0.9 13.2 ± 5.9 4.1 ± 0.9 

KCl (50 mM) 1.1 ± 0.3 2.5 ± 0.8 1.1 ± 0.2 

no KCl  0.3 ± 0.1 - - 
 
In conclusion, a selective ligand of tRNALys

3 with micromolar 
dissociation constant has been synthesised for the first time. This 
study outlines the power of a fragment-based strategy in the field of 
RNA-ligand discovery, providing potential lead compounds for 
antiviral drug development. The use of compound 17f as an 
inhibitor of reverse transcription in cell-free assays will be 
investigated. Beside this important application, this work provides 
new information on the design of small RNA interacting molecules. 
This step is crucial for achieving a challenging goal: the cellular 
regulation at RNA level by small molecular effectors. 
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NMR-guided fragment-based 
approach for the design of tRNALys

3 
ligands 

An NMR-guided fragment-based 
approach has been used for the 
synthesis of a micromolar tRNALys

3 D-
stem binder from two millimolar ligands 
detected by flow-injection NMR 
screening. 
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Chemistry 
Compound 1 and its N-Boc derivative were prepared according to reported procedures.[1] Kynuramine 

2 was purchased from Sigma.  

 
 Typical procedure for the synthesis of Mannich Base: 

 Paraformaldehyde (1.43 g, 1 equiv.), dimethylamine hydrochloride (11.64 g, 3 equiv.) and 

acetophenone (13 mL, 2.3 equiv.) were dissolved in ethanol (10 mL). Hydrochloric acid 35% (0.2 mL) 

was added and the mixture refluxed for 5 hours. The yellowish solution was diluted with cold acetone 

(50 mL) and chilled for several hours at 0 °C. The crystals were filtrated, washed with acetone (2x20 

mL), dissolved in water (20 mL) and then extracted in ethyl acetate (2x35 mL). The aqueous layer was 

treated with potassium carbonate (pH=10) and extracted in ethyl acetate (5x35 mL). The organic 

phases were dried over sulphate magnesium and concentrated under reduced pressure to give the 

Mannich base as an oil (77%). 

 
O

NMe2

3

 

1
H NMR δ 2.19 (s, 6H), 2.66 (t, 2H, J = 7.3 Hz), 3.05 (t, 2H, J = 7.3 Hz), 7.35 (t, 2H, J = 7.4 Hz), 

7.44 (t, 1H, J = 7.4 Hz), 7.86 (d, 2H, J = 7.1 Hz); 
13

C NMR δ 36.9, 45.5, 54.4, 128.1, 128.6, 133.0, 

137.0, 199.0, MS (ESI): 178 [M+H]+. 

 
O

NMe2

4

NO2

 
 

1
H NMR (CDCl3) δ 2.21 (s, 6H), 2.70 (t, 2H, J = 7.2 Hz), 2.94 (t, 2H, J = 7.2 Hz), 7.42 (dd, 1H, J = 

7.5, 1.3 Hz), 7.58 (td, 1H, J = 7.5, 1.3 Hz), 7.70 (td, 1H, J = 7.5, 1.0 Hz), 8,1 (dd, 1H, J = 7.5, 1.0 

Hz); 
13

C NMR (CDCl3) δ 41.3, 45.3, 54.2, 124.4, 127.7, 130.5, 134.4, 138.0, 145.6, 201.8; MS (ESI): 

223 [M+H]+. 
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O

NMe2

5MeO

 

1
H NMR (CDCl3) δ 2.25 (s, 6H), 2.73 (t, 2H, J = 7.4 Hz), 3.08 (t, 2H, J = 7.4 Hz), 3.13 (s, 3H), 6.89 

(d, 2H, J = 8.9 Hz), 7.90 (d, 2H, J = 8.9 Hz); 
13

C NMR (CDCl3) δ 36.0, 45.0, 54.1, 55.0, 113.2-113.3, 

129.6-129.9, 130.1, 163.0, 196.9; MS (ESI): 208 [M+H]+. 

 

  

O

NMe2

6
O

 
 

1
H NMR (CDCl3) δ 2.17 (s, 6H), 2.64 (t, 2H, J = 7.3 Hz), 2.91 (t, 2H, J = 7.3 Hz), 6.45 (dd, 1H, J = 

3.5, 1.6 Hz), 7.12 (d, 1H, J = 3.5 Hz), 7.51 (d, 1H, J = 1.6 Hz); 
13

C NMR (CDCl3) δ 36.7, 45.4, 54.2, 

112.3, 117.1, 146.4, 152.7 188.2; MS (ESI): 168 [M+H]+. 

 
O

NMe2

7
S

 

1
H NMR (CDCl3) δ 2.10 (s, 6H), 2.61 (t, 2H, J = 7.3 Hz), 2.95 (t, 2H, J = 7.3 Hz), 6.99 (dd, 1H, J = 

4.9, 3.8 Hz), 7.49 (dd, 1H, J = 4.9, 0.9 Hz), 7.60 (dd, 1H, J = 3.8, 0.9 Hz); 
13

C NMR (CDCl3) δ 37.6, 

45.4, 54.5, 128.2, 131.9, 133.7, 144.3, 191.9; MS (ESI): 184 [M+H]+. 

 
O

NMe2

8

N

S

 

1
H NMR (CDCl3) δ 2.25 (s, 6H), 2.77 (t, 2H, J = 7.1 Hz), 3.30 (t, 2H, J = 7.1 Hz), 7.65 (d, 1H, J = 3.1 

Hz), 7.97 (d, 1H, J = 3.1 Hz); 
13

C NMR (CDCl3) δ 36.6, 45.3, 54.0, 126.3, 144.7, 167.0, 192.8; MS 

(ESI): 185 [M+H]+. 

 
O

NMe2

9
NMe

 

1
H NMR (CDCl3) δ 2.26 (s, 6H), 2.69 (t, 2H, J = 7.4 Hz), 2.94 (t, 2H, J = 7.4 Hz), 3.9 (s, 3H), 6.11 

(dd, 1H, J = 4.1, 2.4 Hz), 6.78 (dd, 1H, J = 2.4, 1.6 Hz), 6.97 (dd, 1H, J = 4.1, 1.6 Hz); 
13

C NMR 

(CDCl3) δ 37.2, 45.4, 55.1, 107.9, 119.2, 130.7, 131.1, 189.8; MS (ESI): 181 [M+H]+. 

 



7 

O

NMe2

10
N

 

1
H NMR (CDCl3) δ 2.29 (s, 6H), 2.78 (t, 2H, J = 7. 2 Hz), 3.40 (t, 2H, J = 7.2 Hz), 7.47 (td, 1H, J = 

7.7, 1.1 Hz), 7.83 (td, 1H, J = 7.7, 1.7 Hz), 8.05 (dd, 1H, J = 7.7, 1.1 Hz), 8.68 (dd, 1H, J = 7.7, 1.7 

Hz); 
13

C NMR (CDCl3) δ 35.8, 45.5, 54.5, 121.9, 127.2, 136.9, 149.0, 153.4, 200.7; MS (ESI): 179 

[M+H]+. 

 
O

NMe2

11  

 

 

1
H NMR (CDCl3) δ 2.47 (s, 6H), 3.02 (t, 2H, J = 7.3 Hz), 3.46 (t, 2H, J = 7.3 Hz), 7.59 (m, 2H), 7.89 

(m, 2H), 8.01 (m, 2H), 8.52 (s, 1H); 
13

C NMR (CDCl3) δ 37.0, 45.6, 54.5, 123.8, 126.8, 127.8, 128.5, 

129.6, 129.7, 132.5, 134.2, 135.6, 199.0; MS (ESI): 228 [M+H]+. 

 
 

 Typical procedure for transamination 

 Compound 3 (213 mg, 1 equiv.) and methyl iodide (374 µL, 5 equiv.) were dissolved in 

dichloromethane (4 mL) and stirred at room temperature for 3 hours. The mixture was concentrated, 

dissolved in chloroform (4 mL) and stirred with N,N,N’-trimethylethyldiamine (305 μL, 2 equiv.) at 

60 °C for 18 hours. The crude product was washed with AcOEt (10 mL), H2O (2x 25 mL) and dried 

over MgSO4. Purification by silica gel column chromatography (AcOEt/MeOH (98/2), AcOEt/MeOH 

(95/5), AcOEt/MeOH (90/10)) afforded the compound (24%). 

 
O

N
Me

13

NMe2

 
 

1
H NMR (CDCl3) δ 2.23 (s, 6H), 2.31 (s, 3H), 2.42-2.54 (2t, 4H, J = 6.8 Hz), 2.87 (t, 2H, J = 7.4 Hz), 

3.18 (t, 2H, J = 7.4 Hz), 7.47 (t, 2H, J = 7.4 Hz), 7.55 (t, 1H, J = 7.4 Hz), 7.97 (d, 2H, J = 7.4 Hz); 
13

C NMR (CDCl3) δ 36.3, 42.4, 45.6, 52.7, 55.3, 57.1, 127.9, 128.5, 133.0, 136.9, 199.3; MS (ESI): 

235 [M+H]+. 
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O

N

NO2
O

12

 

1
H NMR (CDCl3) δ 2.44 (d, 4H, J = 4.5 Hz), 2.79 (t, 2H, J = 7.0 Hz), 2.98 (t, 2H, J = 7.0 Hz), 3.67 (d, 

4H, J = 4.5 Hz), 7.46 (dd, 1H, J = 7.5, 1.3 Hz), 7.61 (td, 1H, J = 7.5, 1.3 Hz), 7.73 (td, 1H, J = 7.5, 

1.0 Hz), 8.14 (dd, 1H, J = 7.5, 1.0 Hz); 
13

C NMR (CDCl3) δ 40.2, 53.4, 66.8, 124.2, 127.6, 130.4, 

134.2, 138.0, 180.9, 201.6; MS (ESI): 265 [M+H]+. 

 
O

N
Me

14

NMe2

O

1
H NMR (CDCl3) δ 2.21 (s, 3H), 2.25 (s, 6H), 2.46-2.48 (2 t, 4H, J = 9.7 Hz), 2.78 (t, 1H, J = 7.2 Hz), 

2.95 (t, 1H, J = 7.2 Hz), 6.46 (dd, 1H, J = 3.6, 1.7 Hz), 7.15 (dd, 1H, J = 3.6, 0.6 Hz), 7.52 (dd, 1H, J 

= 1.7, 0.6 Hz); 
13

C NMR (CDCl3) δ 36.1, 42.4, 45.6, 52.5, 55.0, 56.9, 112.4, 117.6, 146.8, 152.7, 

188.6; MS (ESI): 225 [M+H]+. 

 
 
 
 Typical procedure for nitro reduction 

 Compound 4 hydrochloride (69 mg, 0.27 mmol) was dissolved in methanol (4 mL) and stirred 

with 10% palladium hydroxide (7 mg) under H2 atmosphere for 2 hours. The mixture was filtrated 

through celite and concentrated under vacuum (92%). 

 
O

NMe2

15
NH2

 

1
H NMR (CD3OD) δ 2.94 (s, 6H), 3.53 (m, 4H), 6.61 (td, 1H, J = 7.1, 0.9 Hz), 6.79 (dd, 1H, J = 7.1, 

0.9 Hz), 7.27 (td, 1H, J = 7.1, 1.4 Hz), 7.78 (dd, 1H, J = 7.1, 1.4 Hz); 
13

C NMR (CD3OD) δ 34.6, 42.8, 

52.7, 124.7, 134.8, 198.8; MS (ESI): 193 [M+H]+. 

 
 

O

N

16
NH2

O

 

1
H NMR (CD3OD) δ 2.54 (t, 4H, J = 4 Hz), 2.83 (t, 2H, J = 7.2 Hz), 3.17 (t, 2H, J = 7.2 Hz), 3.73 (t, 

4H, J = 4 Hz), 6.65 (m, 2H), 7.27 (td, 1H, J = 7.0, 1.3 Hz), 7.74 (dd, 1H, J = 7.0, 1.3 Hz); 
13

C NMR 
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(CD3OD) δ 36.0, 53.1,54.0, 66.9, 115.8, 117.4, 131.0, 134.4, 150.4, 178.8, 201.1; MS (CI): 235 

[M+H]+. 

 

Protected diaminocyclopentanol (100 mg, 0.32 mmol) and propargyl bromide (105 μL, 0.96 mmol) 

were dissolved in 2.5 mL of anhydrous THF under argon atmosphere at 0 °C. After the slow addition 

of KHMDS (0.5M in toluene, 640 μL, 0.32 mmol) the mixture was stirred at room temperature for 18 

hours. H2O (10 mL) was then added and the crude was extracted by EtOAc (2x 25 mL). The organic 

phases were washed with brine and dried with MgSO4. After purification by silica gel column 

chromatography (EtOAc:Cyclohexane 20:80, 30:70) the product was obtained as an oil (60%). 

O

BocHN
NHBoc

 

 

 

1
H NMR (CDCl3) δ 1.47 (brs, 19H), 1.93 (m, 1H), 2.04 (m, 1H), 2.42 (t, 1H, J = 2.4 Hz), 2.52 (dt, 1H, 

J = 13.9 Hz, 8.2 Hz), 3.82 (m, 1H), 4.01 (m, 2H), 4.20 (m, 2H), 4.98 (m, 1H), 5.19 (m, 1H); 
13

C NMR 

(CDCl3) δ 28.5, 37.1, 49.3, 55.9, 56.7, 74.3, 79.5, 80.1, 83.5, 155.4; MS (ESI): 377 [M+Na]+. 

 

 

 Typical procedure for the synthesis of triazoles:  

 α-bromo-2’-acetonaphtone (225 mg, 2 equiv.) and sodium azide (61 mg, 2.05 equiv.) were stirred 

at room temperature in a 1/2 water/acetone mixture (4.5 mL) for 1 hour. Alkyne (160 mg, 1 equiv.) in 

acetone (1.5 mL) was then added, followed by the addition of sodium ascorbate (0.5 equiv.) and 

copper sulfate (0.5 equiv.). The resultant mixture was then stirred at room temperature until complete 

consumption of the alkyne (2 days) monitored by TLC (AcOEt:Cyclohexane 1:1). The precipitate was 

filtrated, rinsed with water and dried under vacuum. The crude product was then stirred for 1 hour in a 

2M solution of methanolic hydrochloride (6 mL). After evaporation of the solvent, Amberlyst 15 resin 

(380 mg, 4 equiv.) and MeOH (6 mL) were added and stirred overnight. The resin was filtrated, rinsed 

with MeOH (5x5 mL), and stirred for 3 hours in a 2M solution of methanolic ammonia (6 mL). The 

resin was filtrated and rinsed with MeOH. Evaporation of the organic phase led to compound 17f as an 

oil (46%). 

 

O

H2N

NH2N
NN

O
17f  

 

 

1
H NMR (CD3OD) δ 1.23 (dt, 1H, J = 12.8, 8.5 Hz), 2.00 (m, 1H), 1.85 (m, 1H), 2.32 (dt, 1H, J = 

12.8, 6.7 Hz), 3.19 (m, 1H), 3.43 (m, 1H), 3.79 (m, 1H), 4.65 (2d, 2H, J = 12.3 Hz), 7.62-7.71 (m, 2H), 

7.95-8.11 (m, 5H), 8.73 (s, 1H); 
13

C NMR (CD3OD) δ 38.8, 40.9, 48.7, 57, 62.1, 86, 122.9, 125.6, 
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126.9, 127.6, 128.5, 128.9, 129.5, 130.2, 131.5, 132.5, 136.1, 144.9, 191.4; HRMS (ESI) m/z calcd for 

C20H24N5O2 [M+H]+: 366.1930. Found: 366.1921. 

 

O

H2N
NH2

N NN

OSN

17a  

 

 

1
H NMR (CD3OD) δ 1.95 (m, 1H), 2,35 (m, 2H), 2.78 (m, 1H), 3.73(m, 1H), 3.91 (m, 1H), 4.47 (m, 

1H), 4.90 (2d, 2H, J = 12,6 Hz), 6.41 (m, 2H), 8.11 (m, 1H), 8.30 (m, 1H), 8.50-8.40 (m, 2H), 8.53 (m, 

1H), 8.72 (m, 1H), 8.91 (m, 1H); 
13

C NMR (CD3OD) δ 32.7, 34, 48.5, 55.1, 57, 61.5, 80.5, 125.7, 

126.4, 132.0, 134.8, 140.6, 142.4, 144.9, 147.3, 184; MS (ESI): 399 [M+H]+. 

 

O

H2N

NH2
N

NN

ON
N

17b  

 

 

1
H NMR (400 MHz, CD3OD, 50°C) δ 2.07 (m, 1H), 2.57 (m, 2H), 2.80 (s, 3H), 3.00 (dt, J = 13.6, 6.9 

Hz), 3.94 (m, 1H), 4.13 (m, 1H), 4.69 (m, 1H), 5.11 (2d, 2H, J = 12.9 Hz), 6.32 (s, 2H), 7.74-7.83 (m, 

5H), 8.62 (s, 2H); 
13

C NMR (75 MHz, CD3OD) δ 11.1, 32.6, 33.9, 47.2, 55.0, 57.0, 61.5, 80.3, 117.4, 

125.5, 129.3, 134.0, 141.0, 144.6, 185.4; HRMS (ESI) m/z calcd for C20H26N7O2 [M+H]+: 396.2148. 

Found: 396.2172. 

 

17c

O

H2N
NH2

N
NN

O  

 

 

1
H NMR (CD3OD) δ 1.21 (dt, 1H, J = 13 Hz, 8.5 Hz), 1.83 (m, 1H), 2.01 (m, 1H), 2.33 (dt, 1H, J = 

13.0, 6.5 Hz), 3.20 (m, 1H), 3.43 (m, 1H), 3.80 (m, 1H), 4.66 (2d, 2H, J = 12.3 Hz), 7.47 (m, 3H), 

7.71 (m, 2H), 7.83 (m, 2H), 8.03 (s, 1H), 8.15 (m, 2H); 
13

C NMR (CD3OD) δ 38.8, 41.0, 48.5, 57, 62.1, 

86.0, 125.5, 127.1, 126.9, 128.3, 128.8, 128.6, 132.8, 139.3, 144.9, 146.8, 191.0; HRMS (ESI) m/z 

calcd for C22H26N5O2 [M+H]+: 392.2087. Found: 392.2103. 
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O

H2N

NH2

N

NNO

S

17d  

 

 

1
H NMR (CD3OD) δ 1.17 (dt, 1H, J = 13.0, 8.7 Hz), 1.78 (m, 1H), 1.97 (m, 1H), 2.31 (dt, 1H, J = 

13.0, 6.5 Hz), 3.15 (m, 1H), 3.38 (m, 1H), 3.76 (m, 1H), 4.65 (2d, 2H, J = 12.2 Hz), 7.29 (dd, 1H, J = 

4.9, 3.7 Hz), 7.98 (d, 1H, J = 4.9 Hz), 8.06 (s, 1H), 8.09 (d, 1H, J = 3.7 Hz); 
13

C NMR (75 MHz, 

CD3OD) δ 39.1, 41.4, 49.1, 57.0, 62.0, 86.2, 125.5, 128.5, 133.7, 135.5, 140.3, 144.9, 184.5; HRMS 

(ESI) m/z calcd for C14H20N5O2S [M+H]+: 322.1338. Found: 322.1307. 

 

O

H2N

NH2N
NN

ON
O

17e  

 

 

1
H NMR (CD3OD, 50°C) δ 2.18 (m, 1H), 2.55 (m, 2H), 3.00 (m, 1H), 3.10 (s, 3H), 3.92 (m, 1H), 4.13 

(m, 1H), 4.67 (m, 1H), 5.06 (d+m, 2H, J = 12.7 Hz), 5.75 (s, 2H), 7.98 (m, 3H), 8.41 (m, 2H), 8.64 (s, 

1H); 
13

C NMR (CD3OD) δ 12.8, 29.3, 33.9, 49.5, 55.0, 58.3, 61.9, 80.0, 114.3, 126.8, 128.6, 129.1, 

143, 130.2, 161.7, 176.7, 185.6; HRMS (ESI) m/z calcd for C20H25N6O3 [M+H]+: 397.1988. Found: 

397.1981. 

 

17g

O

H2N

NH2N
NN

OS
 

 

 

1
H NMR (CD3OD) δ 1.30 (dt, 1H, J = 13.3, 7.9 Hz), 2.03 (m, 1H), 1.91 (m, 1H), 2.31 (dt, 1H, J = 

13.3, 6.7 Hz), 3.24 (m, 1H), 3.49 (m, 1H), 3.83 (m, 1H), 4.68 (2d, 2H, J = 11.6 Hz), 7.57 (d, 1H, J = 

5.4 Hz), 7.75 (d, 1H, J = 5.4 Hz), 8.04 (m, 3H), 8.63 (s, 1H); 
13

C NMR (CD3OD) δ 37.9, 39.9, 48.5, 

22.6, 56.8, 62.1, 84.0, 122.7, 124.1, 124.4, 125.6, 128.5, 130.6, 139.7, 144.8, 145.4, 191.4; HRMS 

(ESI) m/z calcd for C18H22N5O2S [M+H]+: 372.1494. Found: 372.1463. 
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O

H2N

NH2

N

NNO

17h  

 

 

1
H NMR (300 MHz, CD3OD) δ 1.87 (dt, 1H, J = 13.1, 8.9 Hz), 2.27 (m, 2H), 2.70 (dt, 1H, J = 13.1, 

7.7 Hz), 3.66 (m, 1H), 3.86 (m, 1H),  4.37 (m, 1H), 4.81 (2d, 2H, J = 12.6 Hz), 6.25 (s, 2H), 7.62 (m, 

2H), 7.75 (m, 1H), 8.11 (m, 2H), 8.26 (s, 1H); 
13

C NMR (75 MHz, CD3OD) 32.5, 33.9, 47.1, 55.0, 

56.4, 61.9, 80.1, 126.7, 128, 128.8, 134.0, 134.2, 191.1; HRMS (ESI) m/z calcd for C16H22N5O2 

[M+H]+: 316.1774. Found: 316.1764. 

 

Biologicals 

Sample preparation 

Human tRNALys3 was expressed in vivo in E. coli from a recombinant plasmid and purified as 

previously described.[2]  

 

NMR experiments 

Experiments were recorded on a Bruker Avance DRX 600 spectrometer equipped with a 3mm 

triple-resonance flow-injection probe. The probe was connected to a Gilson 215 liquid handler 

controlled by the NMR console (Bruker BEST system). For tRNA:ligand mixtures, solvent 

suppression was achieved by using the ‘jump-and-return’ sequence to avoid the saturation of imino 

protons.[3] All NMR experiments were conducted at 15°C. Samples for 1D NMR screening contained 

0.3 mM of tRNA and 1.2 mM of ligand in 10mM phosphate buffer pH 6.5, in a total volume of 200 μl 

in 96-well plates. The injected sample volumes were 160 μl. For ligands identified in the primary 

screen, 1H-15N HMQC spectra[4] or TROSY spectra[5] were recorded using a sample containing 0.2 

mM to 0.4 mM 15N labelled tRNA for equivalent of ligand concentration (1, 2, 4 and 7) in 10mM 

phosphate buffer pH 6.5. For the measurement of the dissociation constant (Kd) between kynuramine 

or 1 and tRNALys3, a sample containing 0.55 mM of tRNALys3 in 10mM phosphate buffer pH 6.5 

was titrated by increasing concentrations of ligand in the same buffer : 2, 4, 5, 7, 10, 15 and 20 mM. 

Kd values were extracted by non-linear least square fitting of the variation of imino proton chemical 

shifts to a single-site binding hyperbolic function. Confidence limits on the Kd were estimated by 

Monte-Carlo sampling using the MC-fit program.[6]  
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Figure 1: NMR titration of tRNALys3 (0.55 mM) by kynuramine 2. The NMR signal of G24 

imino proton is followed in 1D NMR experiment at 15°C.[3] 

 

 
 

 
Figure 2: Superimposition of HMQC spectra of tRNALys

3 alone (0.2 mM) in black and tRNALys
3 

mixed with compound 1 (1.4 mM) in red, no KCl. A preferential affinity for the T-arm can be 
observed at a 7/1 ligand/target ratio, but shift of G15 shows a possible secondary binding site on the 
D-arm. 
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Figure 3: Superimposition of HMQC spectra of tRNALys

3 alone (0.8 mM) in black and tRNALys
3 

mixed with compound 2 (1.6 mM) in red, no KCl . 
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Figure 4: Superimposition of TROSY spectra of tRNALys

3 alone (0.3 mM) in black and tRNALys
3 

mixed with compound 17f (1.2 mM) in red, 150 mM KCl . 
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Figure 5: Superimposition of TROSY spectra of tRNALys

3 alone (0.3 mM) in black and tRNALys
3 

mixed with compound 17f (0.3 mM) in red, 150 mM KCl . 
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 Fluorescence titrations 

 Fluorescence titrations were conducted at 25.0°C on a JASCO spectrofluorimeter. Excitation and 

emission wavelengths were 341 nm and 478 nm respectively. The excitation and emission bandwidths 

were 5 nm. 

Fluorescence titrations experiments were performed by adding increasing concentrations of nucleic 

acid to a fixed amount of ligand (2 μM) in buffers with different ionic strength (10 mM KPO4 pH 6.5, 

for three salt concentrations, 0 mM, 50 and 150 mM NaCl). Fluorescence intensities were corrected 

for dilution and were fitted using equation (1). Confidence limits on the Kd were estimated by Monte-

Carlo sampling using the MC-Fit program.[6] 
 

I = I0 −
I0 − I∞

2nNt

Kd + Lt + nNt − Kd + Lt + nNt( )2 − 4LtnNt
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟   (1) 

where I0: Fluorescence intensity without RNA, I: fluorescence intensity at a given concentration of 

RNA, I∞: fluorescence intensity at the plateau, n: number of RNA binding sites on the ligand, Lt: total 

concentration of RNA, Nt: total concentration of ligand. 

 

 

 
 
Figure 6: Comparison of fluorescence titration of compound 17f with tRNALys3 (in blue) and 
tRNAfMet (in red) at 150 mM KCl. 
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Figure 7: Fluorescence titration of compound 17f with tRNALys

3, tRNAf
Met and tRNAm

Met at various 
ionic strengths.  
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