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Abstract 

 

This paper presents a method for individual tree crown extraction and characterisation from a 

Canopy Surface Model (CSM). The method is based on a conventional algorithm used for 

localising LM on a smoothed version of the CSM and subsequently for modelling the tree 

crowns around each maximum at the plot level. The novelty of the approach lies in the 

introduction of controls on both the degree of CSM filtering and the shape of elliptic crowns, 

in addition to a multi-filtering level crown fusion approach to balance omission and 

commission errors. The algorithm derives the total tree height and the mean crown diameter 

from the elliptic tree crowns generated. The method was tested and validated on a 

mountainous forested area mainly covered by mature and even-aged black pine (Pinus nigra 

ssp. nigra [Arn.]) stands. Mean stem detection per plot, using this method, was 73.97 %. 

Algorithm performance was affected slightly by both stand density and heterogeneity (i.e. 

tree diameter classes’ distribution). The total tree height and the mean crown diameter were 

estimated with root mean squared error values of 1.83 m and 1.48 m respectively. Tree 

heights were slightly underestimated in flat areas and overestimated on slopes. The average 

crown diameter was underestimated by 17.46 % on average. 

 

Keywords : lidar, airborne laser scanning; mountainous forests, tree extraction, canopy 

surface model 
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Introduction 

 

Acquiring detailed information on tree spatial distribution and tree crown characteristics is a 

crucial step when attempting to improve our understanding of the structure and function of 

forest ecosystems and to ensure their sustainable development. Traditional field-based 

inventories require time-consuming and labour-intensive work that can only be applicable to 

small areas (Avery and Burkhart, 2001). With the development of very high resolution 

remote sensing, single tree crowns can be identified, thus enabling an automatic extraction of 

some tree characteristics at operational scales (Leckie et al., 2005).  

 

Scanning laser altimetry or lidar (light detection and ranging) generates detailed and accurate 

information about forest 3D structure (Means et al., 2000; Popescu et al., 2003), and is used 

at an operational level in some coniferous forests (Næsset et al., 2004). Lidar systems 

combine a micropulse laser unit, a Global Positioning Systems (GPS) and Inertial 

Measurement Units (IMU) to produce high precision measurements of the Earth surface 

structure (Baltsavias, 1999). Due to the ability of the signal to partially penetrate canopies, 

lidar measurements, acquired as 3D point clouds or waveforms, can be used to produce 

detailed information on both ground topography and vegetation layer (Reutebush et al., 

2003). In the last decades high density lidar data - at least 5 points by squared meter (Næsset, 

2004) – were successfully used to retrieve forest parameters at the tree level including tree 

location, tree height, crown dimensions, tree biomass and even the tree species (Brandtberg, 

2007; Popescu, 2007; Rowell et al., 2006; Solberg et al., 2006). Such high densities are 

Author-produced version of the article published in International Journal of Applied Earth Observation and Geoinformation, 2011, 13(4), 646-656.
The original publication is available at http://www.elsevier.com
DOI: 10.1016/j.jag.2011.04.002



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 4 

required to describe the crown area in adequate detail (Hyyppä et al., 2001) and to increase 

the rate of tree apices effectively sampled (Leckie et al., 2003).  

 

Methods for deriving individual tree parameters from lidar data mainly rely on the processing 

of a canopy surface model (CSM) describing the outer canopy layer (Bongers, 2001). They 

were commonly based on techniques applied for the processing of optical imagery (Leckie et 

al., 2003; Falkowski et al., 2008). Widely used approaches are based on geometrical 

properties (i.e. height, slope, orientation) of CSMs and mainly consist in the identification of 

local maxima (LM) followed by the construction of crown segments (Morsdorff et al., 2004; 

Persson et al., 2002; Popescu et al., 2002).  

 

The accuracy of automated tree detection relies heavily on image spatial resolution (see 

Pouliot and King (2005) for review). Several methods were introduced to optimize LM 

identification i.e. to minimize either the level of commission (i.e. false tree detection) or 

omission errors. These include conventional image filtering (Persson et al., 2002), height-

based variable window size filtering (Popescu et al., 2004) or template matching (Brandtberg 

et al., 2003). Approaches used to extract segments from the set of LM include; watershed 

analysis (Kwak et al., 2007; Mei and Durrieu, 2004), region growing algorithms (Hyyppä et 

al., 2001; Persson et al., 2002), fitting functions (Popescu et al., 2002) or template matching 

(Pollock, 1996). As methods for deriving crown characteristics are mostly based on CSM 

geometry, the resulting crown shapes are directly impacted by the CSM optimization strategy 

(Rowell et al., 2006; Solberg et al., 2006).  
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On the whole, both LM detection and crown modelling approaches reveal high sensitivity to 

initial parameters (Pouliot and King, 2005) and optimisations are generally performed on a 

field knowledge basis, which hinders direct extendibility to different forest ecosystems 

(Popescu et al., 2002; Koch et al., 2006). While methods have been introduced to evaluate 

the reliability of either the LM or the crown segments (Brandtberg et al., 2003; Rowell et al., 

2006; Solberg et al., 2006) more generic and flexible approaches need to be developed to 

satisfactorily manage various forest types and structures. 

 

This paper presents a multi-level filtering approach to extract and characterise individual 

tree crown parameters from a lidar CSM. The segmentation is based on the extraction of LM 

and on the modelling of tree crown using ellipsis defined using the local geometrical 

properties of the CSM surrounding each LM. The method integrates algorithms to control 

both the degree of CSM filtering and tree crown shape, and to merge tree crown segments 

derived at various scales. In order to evaluate the extendibility potential of the method 

the study was conducted within a complex environment, a mountainous conifer forests 

characterized by steep slopes and diverse stand structures and densities. 

 

1. Material 

 

1.1. Study area 

 

The study site (Fig. 1) is a 108 ha area that was reforested at the end of the 19
th century. It is 

located in the southern French Alps, to the north of Digne-les-Bains (Alpes de Haute 
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Provence) and is part of an Observatory for Research on the Environment (ORE) dedicated to 

the monitoring of erosion and hydrological processes in mountainous areas. The site is 

mainly covered by mature and even-aged black pine (Pinus nigra ssp. nigra [Arn.]) stands 

growing at elevations ranging between 802 m and 1 263 m. The mean slope is about 53 % 

but can locally reach up to 100 %. The whole forest is currently subject to intensive 

management (selective cutting) to renew the forest and to contribute to the regeneration of 

native species. These activities have a direct impact on the forest mosaic characterized by 

varying stand structures.  

 

[Insert Fig. 1 about here] 

 

1.2. Field data 

 

Field inventory data were collected during December 2007 (14 plots) and November 2008 

(13 plots). The plots (N=27) were established to represent the whole range of stand 

conditions and were inventoried according to the French National Forest Inventory protocol 

(NFI, http://www.ifn.fr). Each plot comprised 3 concentric rings of 6, 9 and 15 m radius from 

the plot centre, in which trees to be inventoried were selected based on their diameter at 

breast height (dbh). Within the 6 m radius plot, all the trees having a dbh greater than 7.48 m 

were considered. The minimum dbh values were set to 22.44 cm and 34.7 cm respectively 

for the second (6-9 m) and the third (9-15m) rings. For each tree considered, the dbh, the 

total timber height, and the tree state (dead or alive) were recorded. The protocol was slightly 

modified for 2 plots characterized by gentle slopes. All the trees having a dbh greater than 

7.48 m were inventoried and additional measurements were collected for the crown diameter 
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(measurements taken in North-South and Est-West directions). Such limited crown 

measurements were established considering (1) the time available for field 

measurements, (2) the difficulty to have reliable field crown measurements on slope 

terrains and (3) the possibility to have a visual control of crown delineation quality 

using high resolution images complementary to field measurements.  

The structural diversity of the plot was estimated using the Gini diversity index (Lexerød and 

Eid, 2006, Ozdemir et al., 2008). The Gini coefficient (GC) was calculated as follows:  

 

   GC = å
=

n

j 1
(2j-n-1)baj / å

=

n

j 1
baj(n-1)     (1) 

 

where j is the rank of a tree according to size in ascending order, n is the total number of trees 

and baj the basal area for tree j. GC values are inside the [0-1] interval. A value of 0 indicates 

that all trees in a given area have exactly the same diameter. On the other hand, a value of 1 

characterises forest areas in which each tree has a unique dbh value.  

 

The exact plot centre positions were measured using differential GPS (DGPS) or a Leica total 

station (Leica, Switzerland) whenever the local slope conditions permitted this. Individual 

tree positions were derived from distance and angle measurements taken from the plot centre. 

Distance measurements were made at the tree base using a Vertex III clinometer (Hagloff, 

Sueden) with slope compensation. Azimuths and tree heights were measured using a Suunto 

compass (Suunto, Finland). Measurements of crown diameters and trunk circumference at 

breast height were performed using tapes. The dbh were derived from trunk circumferences. 

Due to low DGPS accuracy (around 2 m) within the area, the plot centre positions were 
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 8 

visually corrected in the laboratory by visually matching tree location with photo-interpreted 

tree crowns on the lidar data. Two plots were discarded because of insufficient positional 

accuracy and the impossibility to obtain a satisfactory matching within the close 

neighbourhood. 

 

[Insert Table 1 about here] 

 

In addition, a topographic survey was conducted in May 2009 to validate the quality of the 

lidar ground elevation model. Four forested plots located in areas with different 

topographical conditions were surveyed, comprising a total of 891 ground control points. 

Additional 502 points were collected in open areas leading to a total number NGCP of 1393. 

Measurements were made using a Leica total station.  

 

1.3. Lidar data acquisition and processing 

 

The lidar data were acquired by Sintegra (Grenoble, France) in April 2007 using a RIEGL 

LMS-Q560 instrument (Wagner et al., 2006). This small footprint fullwaveform airborne 

laser scanner operates at a pulse frequency of 111 kHz. The sampling was performed at about 

600 m above ground level leading to a mean footprint diameter of 0.25 m at the ground level. 

A 30 % overlap was set between adjacent flight lines to avoid slivers (Latipov, 2002). Point 

density obtained was close to 5.5 pts / m2.  

 

Waveform processing was performed using RiAnalyze © solftware from Riegl (Riegl, 

Austria) based on a Gaussian pulse estimation technique. The method combines the rapid 
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 9 

calculation of the gravity centre of the echo pulse with the accuracy of a multiple Gaussian 

pulse fitting method (Riegl, 2007). During this processing step a set of 3D points are derived 

from the waveforms, describing the position of targets having interacted with the laser signal 

(Chauve et al., 2009).  

 

The resulting point cloud was classified as vegetation or ground elements to create a DTM 

and a CSM representing the shape of the canopy surface. To match the average point spacing, 

the DTM and the CSM were computed at 1 m and 0.5 m resolutions respectively.  

 

The points corresponding to the ground level were extracted by the data provider from the 

last returns using a TIN-iterative algorithm (Axelsson, 2000) applied with Terrascan software 

(Terrasolid, http://www.terrasolid.fi/en/products/terrascan). The resulting Triangulated 

Irregular Network was then converted into a 1 m cell grid.  

 

The “non-ground” returns were interpolated into a Digital Surface Model (DSM) using a 

two-step method. First, the point cloud was converted into a regular grid with a 0.5 m 

resolution using neighbouring statistics. Each DSM cell was assigned the maximum height 

value of the points within it. The Inverse Distance Weighting (IDW) method was used to 

compute empty cell values by interpolating the point values selected at the previous stage. A 

CSM at a 0.5 m spatial resolution was finally calculated by subtracting the DTM from the 

DSM.  

 

2. Methods 
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2.1. General principle of the method 

 

The method we propose to extract individual tree crowns is based on conventional algorithms 

used to locate LM on a smoothed version of the CSM and to subsequently model the tree 

crowns around each maximum at the plot level (Fig. 2, Segmentation box). The segmentation 

included the following 5 steps: 1) Hole-filling 2) Gaussian filtering of the CSMHF, 3) 

Extraction of LM, 4) Modelling of elliptic crown shapes, 5) Cleaning of LM and 

corresponding crowns. The latter step involved filtering out LM and corresponding crowns to 

keep a single LM per crown (priority given to the LM associated with the largest crown) (see 

section 3.3.4).  

 

The novelty of the approach lies in the introduction of i) a hole filling algorithm to locally 

improve the CSM quality, ii) a threshold-based method to control the degree of CSM 

filtering, ii) a control of the shape of elliptic crowns and iii) a multi-level filtering crown 

fusion to balance omission and commission errors (Fig. 2). 

 

[Inset Fig. 2 about here] 

 

2.2. Hole-filling algorithm 

 

Lidar CSMs are commonly beset by pit problems due to both lidar sampling design and post-

processing of the raw data including point classification and interpolation (Ben-Aries et al., 

2009). We developed a straightforward and automatic algorithm to improve both CSM 
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filtering quality and segmentation accuracy (either with or without CSM filtering). We opted 

for this solution instead of the semi-automated method proposed by Ben-Aries et al. (2009) 

as it would have been more complex to parameterize. 

The algorithm first calculates if a given pixel value is lower than a given threshold (fixed to 

0.5 m here) compared to its 8-connected pixels. If the condition is fulfilled, the pixel tested 

value is replaced by the mean value of its 8 neighbours. Otherwise, the algorithm tests if the 

condition could by fulfilled using 4-connected pixels (vertical cross, oblique cross). This 

meant that holes of more than 1 pixel were filled. Again, if a neighbouring configuration 

matched the height condition, the tested pixel value is replaced by the corresponding mean 

value of those 4 connected pixels. The algorithm iterates until no pixel value is modified. 

This hole-filled CSM (CSMHF) was used as a starting point for the segmentation process 

(Fig. 2).  

 

2.3. Segmentation method 

 

The algorithm was coded using Python 2.4 (http://www.python.org/) with Numpy 1.2.1 

(http://www.scipy.org/) and the ArcGIS 9.2 geoprocessing tools (www.esri.com/).  

 

2.3.1. Filtering of the CSMHF 

 

The CSMHF was smoothed using a Gaussian low-pass 3 × 3 filter (Hyyppä et al., 2001). The 

filter weights were 1/4 for the central pixel, 1/8 for the 4 nearest pixels (Y and Y direction) 
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and 1/16 for the diagonal ones. The number of Gaussian runs was optimized for every plot 

according to a user defined threshold (see section 3.5.1).  

 

2.3.2. Locating local maxima 

 

LMs were created by extracting the centre coordinates of pixels having a higher height value 

than their 8 connected neighbours. Only the LMs above 3 m in height were considered.  

 

2.3.3. Extracting elliptic tree crowns 

 

Tree crowns around each LM were modelled as ellipsis. The algorithm was based on the 

measurement of the crown size in the 8 cardinal directions. The measurements were made 

downwards from the LM, starting from each of the 8 pixels connected to the LM. For any 

given direction, a pixel was considered as part of the crown if, and only if, its height value 

and those of two of its neighbours were lower than the last connected pixel fulfilling that 

condition. The position of the two “constraining” neighbours was set depending on the tested 

direction as illustrated in Fig. 3. An additional constraint was set to fix the minimum height 

of the crown outer limit. A 2 m threshold was used for trees exceeding 10 m, and a threshold 

of 0.5 m otherwise. Such very similar thresholds were set to accurately model tree crowns in 

open areas and to improve calculation efficiency. The number of pixels composing a crown 

radius was then translated into distance based on pixel size.  

 

The condition for including a point within a crown radius was relaxed when no Gaussian 

filtering was used (i.e. iteration 1) to balance the effect of noise within the CSMHF. To 
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include a point within the crown radius measurement, only one out of the two constraining 

pixels must fulfil the height condition (“or” criteria instead of “and”).  

 

[Insert Fig. 3 about here] 
 

As the accuracy of crown radius measurement may vary depending on the local structure of 

the CSM, the 8 measured radii of a crown were compared to identify suspicious 

measurements and to retain the most reliable ones for the elliptic crown shape computation. 

First, the crown diameters were computed for the four directions (N-S; E-W; NE-SW; NW-

SE) by adding the corresponding crown radii. Then, the radii corresponding to orthogonal 

diameters having the smallest distance difference were selected as master radii of the crown 

ellipse. Finally, the four remaining radii values were individually compared to their two 

encircling master ones. If the tested radius was within the interval of the mean of the two 

encircling master radii ± twice their standard deviation (SD), then it was integrated within the 

ellipse definition. Otherwise, the radius was removed. At the end of the process, 4 to 8 radii 

remained and were used to define the ellipse approximating the crown.  

 

Such elliptic representations of tree crown shapes were obtained by 1) converting the radii 

into points representing the outer limit of the crown using distance and angle measurement 

from the LM coordinates and 2) applying a standard deviational ellipse algorithm to the 

resulting point cloud provided within the ArcGis spatial Analyst toolbox 

(http://webhelp.esri.com/).  

 

2.3.4. Cleaning of local maxima and corresponding crowns 
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Depending on the spatial arrangement of LMs the elliptic crowns associated with each 

LM may partially overlap. The algorithm authorized crown overlapping under the 

condition that overlapping areas did not included any LM (i.e. a LM could only be 

inside a unique crown). The later rule lies on the hypothesis that a LM falling within the 

crown of a neighbouring LM may be a false apex detection. Each LM located within at 

least 2 crowns were tested and false apex detection were set for LM whose 

corresponding crown had a lower area than the other considered crowns. Therefore, the 

cleaning step consisted in removing such identified LM and their corresponding crown. Note 

that only the crowns having at least a 5 m2 area were considered. Such a threshold was set 

according to field data and visual analysis of the CSM.  

 

2.4. Estimating tree parameters 

 

The algorithm recorded the crown area as well as the height of the tree. The latter is defined 

as the maximum height of the original CSM within the crown.  

 

2.5. Optimisation of the segmentation 

 

2.5.1. Controlling the degree of CSM filtering 

 

This step relies on the hypothesis that there is a specific CSMHF filtering degree at which the 

balance between omission and commission errors would be optimized. Such an optimal 

filtering degree is expected to vary according to the both the plot structure and the 
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canopy texture. In the present study, these later parameters were controlled 

introducing to empirically defined parameters hereafter refereed to as “structural 

parameter” and “segmentation parameter”.  

 

The “structural parameter” was used to assess the plot structure. It lies on the 

hypothesis that the relation between the number of extracted LM and the filtering 

intensity is closely related to the plot structure. In the present study, the “structural 

parameter” was defined as the rate of LM suppression between the number of extracted LM 

using 0 and 1 iteration of the Gaussian filter. As illustrated in Fig. 4, such a parameter was 

found to be a good estimator of the plot density of homogeneous stands (plot having at least 

75% of stems in a same dbh class). Threshold values of 80 and 70 were used to classify plots 

within three structural classes according to the point clusters (Fig. 4). 

 

The “segmentation parameter” was introduced to measure the proportion of noise 

within a set of identified LM and was calculated after each segmentation iteration as the 

ratio between the number of LM remaining after the cleaning step (step 5 of the segmentation 

process) and the number of LM before the cleaning step. Such a parameter lies on the 

hypothesis that above a particular threshold value, the selected set of LM offers a good 

approximation of the spatial structure of dominant trees within a given area. For 

example, a segmentation parameter threshold set to a value of 0.9 implied that 90 % of the 

extracted LM had to be converted into tree apices to reach the optimal number of Gaussian 

run. The threshold values were estimated for each structural class based on a trial-error 

experiment using 20 randomly selected plots. In the present study, values of 0.98, 0.90 and 
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0.80 were used respectively for high, medium and low values of the structural parameter, as 

illustrated on Table 2.  

 

Note that the minimum number of Gaussian runs was set at 1, and the maximum to 6 

according to Solberg et al. (2006) and to experimental results. 

 

[Insert Table 2 about here] 

 

 

 

2.5.2. Multi-level filtering crown fusion 

 

The multi-level filtering crown fusion approach was introduced to improve segmentation 

results, considering that the ideal filtering level of the CSM would vary depending on the 

crown size distribution within a given area. Filtering the CSMHF with an increasing number 

of Gaussian runs tends to progressively improve segmentation results on dominant tree 

crowns to the detriment of the smaller ones. Such an effect may dominate within 

heterogeneous stands leading to underestimation of plot density.  

 

To balance this effect, some of the crowns extracted using lower Gaussian filtering levels 

and stored within temporary data bases, were reintroduced, in descending filtering order, 

to make up the final set of tree crowns. Only crowns, whose corresponding LM were not 

inside the existing set of crowns, were added.  
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2.6. Statistical analysis 

 

The modelled tree crowns were matched with their corresponding ground measured trees 

according to tree location and height. If more than one field-measured tree position was 

found in a modelled crown, the tree having the highest height was considered.  

 

Due to the presence of a significant amount of leaning trees on the field, a certain proportion 

of modelled crowns could not be easily paired with any field-measured tree. In such cases, 

the modelled crowns were associated with their closest field-measured tree provided that the 

latter was not already associated to a crown. Otherwise the modelled crown was deemed a 

false detection.  

 

Statistical analysis involved estimating the proportion of omission and commission errors at 

the plot level. Because of the specificities of the NFI plots, the analysis was made for each 

tree size category (small, medium and large diameters). For the matched trees, the accuracy 

of CSM derived tree heights and, when field measurements were available, of crown 

diameters, were assessed by calculating the mean difference and the root mean squared error 

(RMSE) of the difference between field and lidar derived measurements. Further 

investigations were carried out to account for both plot structure and terrain slope 

characteristics.  

 

3. Results and Discussion 

 

Author-produced version of the article published in International Journal of Applied Earth Observation and Geoinformation, 2011, 13(4), 646-656.
The original publication is available at http://www.elsevier.com
DOI: 10.1016/j.jag.2011.04.002



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 18 

3.1. DTM and Hole-filled CSM quality 

 

DTM quality was assessed using the 1393 ground control points. Over open areas (mainly 

roads), the average difference between field and lidar (i.e. field minus lidar) data was - 0.05 

m (± 0.36 m SD). The minimum and maximum error values were - 0.57 and 4.77 m 

respectively. Over forested areas (N =891), the average difference was 0.24 m (± 0.81 m 

SD), minimum and maximum values were -2.88 and 4.22 m respectively. The plot-level 

DTM error increased as a function of slope from 0.02 m (± 0.3 m SD) to 0.65 m (±0.86 m 

SD) for plot-averaged mean slopes of 59.42 % and 86.03 %. Such increased slope related 

errors were explained by the difficulties involved in filtering algorithms to work within rough 

and forested terrain due to the underlying assumption regarding the bare Earth structure in a 

local neighbourhood (Sithole and Vosselman, 2004). These errors were also caused by issues 

linked to algorithm parameter optimisation over large and topographically complex areas 

(Kobler et al., 2007). Underestimation of terrain elevation over a slope may be explained by 

the propensity of TIN-iterative methods to be influenced by low points. A detailed discussion 

on filtering algorithms limitations and possible ways of improving them is available in 

Sithole and Vosselman (2004). 

Fig. 5 illustrated the results of the hole-filing algorithm. The resulting CSMHF was only 

qualitatively evaluated through visual comparison with the original CSM. As expected, pits 

localized within tree crowns were mostly removed while gaps between trees were well 

preserved. Such characteristics are required prior to CSM filtering and for extracting trees 

crowns (Rowell et al., 2006).  
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[Insert Fig. 5 about here] 
 

3.2. Tree detection 

 

The segmentation results are illustrated Fig. 6 for three plots having different densities and 

slopes. The optimal number of Gaussian runs was found to range from 1 (i.e. the minimal 

authorized value) to 4 with an average value of 1.8 (± 0.96 SD) (Table 3). Half of the plots 

(52 %) were segmented using a unique Gaussian filter, 20 % needed two filtering 

iterations and another 20% 3 iterations. The remaining plots were segmented using 4 

Gaussian filters. From all the identified tree stems by plots, 90.3 % of the crowns were 

obtained from the CSM smoothed with the optimized number of Gaussian filter runs. The 

multi-level filtering crown fusion approach to crown detection generated about 10 % of 

overall results, thus, emphasizing how important it is to consider multiple filtering levels 

when refining tree crown detection as underlined by Rowell et al. (2006). According to the 

plot the contribution of crowns derived from lower filtering level varied from 0 to 50% 

of the total number of extracted crowns. 

 

[Insert Table 3 about here] 

 

[Insert Fig. 6 about here] 
 

Overall, the performance of the algorithm correlated with plot density, the latter parameter 

explaining 64 % of result variance (Fig. 7). Up to 800 stem/ha, segmentation accuracy was 

superior to 90 % for 9 plots over 11 and was obtained with significant filtering efforts (i.e. 2 

to 4 Gaussian runs) (Fig. 7) which meant that the density and crown dimensions were 

Author-produced version of the article published in International Journal of Applied Earth Observation and Geoinformation, 2011, 13(4), 646-656.
The original publication is available at http://www.elsevier.com
DOI: 10.1016/j.jag.2011.04.002



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 20 

correctly modelled (Fig. 6A). With increasing plot densities, the number of Gaussian filters 

tended to decrease to efficiently match plot structure. Similarly, Rowell et al. (2006) reported 

both an overestimation of stem count without filtering in low density and thinned plots, and 

an underestimation of stem count with filtering in dense ones. 

The general decrease in segmentation accuracy observed with increasing plot density was 

expected because high plot densities often lead to higher crown closure, the appearance of 

merged crowns that are difficult to isolate, and an increasing proportion of overtopped trees 

(Koch et al. 2006, Rowell et al. 2006, Solberg et al., 2006). However, by considering the 

performance of the algorithm by diameter classes, the rates of correctly identified tree crowns 

were respectively 98.18 % (±6,03 % SD), 92.63% (±11.61 % SD) and 45.66 % (±34,41% 

SD) for large, medium and small diameter classes (Table 3). The high percentage of trees 

identified for both large and medium diameter classes underline the utility of the method for 

management purposes. Indeed forest managers are particularly interested in the estimation of 

dominant and codominant tree crowns (Koch et al., 2006). Finally, while most of the non 

detection of tree crowns was due to overtopping, a proportion of error may be attributed to 

the 5 squared meter threshold used to define an ellipse as a tree crown. However this 

threshold level was retained, as experimental results gave an increased number of 

commission errors when using lower values. 

Despite generally satisfactory performance, the algorithm produced inconsistent results for 

some plots characterized by variable densities and structural characteristics as reflected by 

the GC values ploted as labels on Fig. 7. These results concern  poorly textured canopies 

(i.e. canopy with fused or/and relatively flat crowns). Within such plots, the structural 

parameter failed to optimize the number of filtering iterations, leading to over filtering of the 

CSMHF and under-segmentation of the tree crowns that could not be counterbalanced by 
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multi-level filtering crown fusion (see for example Fig. 6 D). Similar underestimations due 

to low height variance and poor CSM texture were found for different forests structures and 

types (Koch et al., 2006; Kwak et al., 2007). In the present study, such poor results can be 

attributed to a failure to optimize the filtering process and might be mostly explained 

by the underlying hypothesis of the “segmentation parameter” regarding the modelling 

of dominant tree crowns. This weakness of the method could be over passed by 

introducing approaches using fully textural indices to control the degree of filtering of the 

CSMHF, e.g. indices derived either from wavelets transforms (Falkowski et al., 2006) or 

textural ordination based on Fourier spectral decomposition (Couteron et al., 2006), as both 

methods can be used to approximate crown size distribution. In the same way, texture-

based segmentation approaches such as the one proposed by Lucieer and Stein (2005) 

may also improve the robustness of the method by both minimizing effects of plot local 

structure on the optimization process and extending the method from the plot to the 

stand level.  

 

[Insert Table 4 about here] 

 

[Insert Fig. 7 about here] 
 

3.3. Height and crown characteristics 

 

Tree heights were evaluated for 245 stems (Table 5). Lidar tree heights were on average 0.84 

m (± 1.63 m SD) above the field measurements. Minimum and maximum absolute 
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differences were 0 m and 8.26 m respectively. The RMSE was 1.83 m. Overall the linear 

relationship accounted for 94 % of the total variance (Fig. 8). 

Average difference was found to increase slightly with diameter, but converse results were 

found for standard deviation (Table 5). Nevertheless, height errors were closely correlated 

with slope.  

A 0.1 m (± 0.65 m SD) tree height underestimation was found for terrain slopes lower than 

25 %. The RMSE was 0.65 m. Such an underestimation was reported in most previous 

studies (Persson et al., 2002; Næsset and Økland, 2002) and was explained both by the 

discrete nature of the lidar sampling – increased density resulted in a higher proportion of 

sampled tree apices (Næsset and Økland, 2002) – and a partial penetration of the lidar signal 

within the canopy before a return could be detected by the lidar receiver (Gaveau and Hill, 

2003).  

Tree heights were overestimated for the 3 other terrain slope classes. Average values were 

respectively 0.18 m (± 0.65 m), 0.83 m (± 1.31 m SD) and 1.58 m (± 0.65 m SD) for [25 – 50 

%[, [50 – 75 %[, and [75 - ∞] terrain slope classes. Corresponding RMSE were 0.97 m, 1.54 

m and 2.5 m respectively. Similar results were reported in other studies related to 

mountainous environments (Hollaus et al., 2006; Takahashi et al. 2005). Heurich et al. (2003) 

suggested that lidar-derived tree height measurements must be corrected above 20° terrain 

slopes (e.g. 36.4 %). Such overestimations may be explained by several factors. One source 

of tree height overestimation may be attributed to DTM errors. As reported in section 4.1, 

DTM error differences around 0.7 m were found between roads and steep wooded areas. 

DTM underestimation contributed significantly to tree height measurement errors for steep 

terrain. Another source of tree height overestimation may be explained by a difference 

between field and lidar tree heights. In the field, tree height was defined as the vertical 
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distance from the tree apex to the upslope root crown (Fig. 9). The lidar-derived tree heights 

were simply calculated as the maximum value of the CSM within the crown area. Such 

calculation differences may lead to tree height overestimations for slopes as indicated by 

Takahashi et al. (2005). A 1 m horizontal difference between the tree apex and the tree base 

within a 100 % terrain slope produces a 1 m error in height measurement. Heurich et al. 

(2003) also pointed out that increased leaning trees and/or steeper terrain slopes generated 

increased systematic tree height errors.  

 

[Insert Table 5 about here] 

 

[Insert Fig. 8 about here] 

 

Quality of crown diameter estimations was evaluated for 53 trees (Table 6). The plots were 

located in gentle terrain slopes having average values of 6 % (plot 1, Fig. 6A) and 13 % (plot 

2, Fig. 6B). Plot densities were respectively 313 and 746 stem/ha for plot 1 (NCrown = 13) and 

2 (NCrown = 40). 

Plot 1 was segmented using a CSMHF obtained after 3 Gaussian runs against a unique one for 

plot 2. Overall, lidar-derived values underestimated field measurements by 0.95 m (± 1.14 m 

SD) representing 17.45 % of the field measured values. Minimum and maximum values were 

-2.08 m and 6.02 m respectively. The 1.48 m RMSE was of the same range as mentioned in 

Popescu et al. (2003), which reported a 1.36 m RMSE for dominant trees of various pine 

trees species using a similar method. The Pearson correlation between field and lidar derived 

values was r = 0.63. 

Author-produced version of the article published in International Journal of Applied Earth Observation and Geoinformation, 2011, 13(4), 646-656.
The original publication is available at http://www.elsevier.com
DOI: 10.1016/j.jag.2011.04.002



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 24 

The error measurement increased slightly with density. While plot 1 showed a 0.79 m (± 1.14 

m SD, 12.34%) mean underestimation, it reached 1 m (± 1.21 m SD, 19.11%) for plot 2. A 

asymmetry was also found when considering measurement direction (Table 6). The 

underestimation may be explained by both the field measurement strategy and the plot 

structure. In mountainous areas tree crowns are often dissymmetric and characterized by long 

branches exceeding the crown that may lead to an overestimation of the crown diameter. 

With increasing densities, the spatial arrangement of trees can generate a high level of 

merged crowns (Maier et al., 2008). Such characteristics could not be efficiently modelled 

using CSM geometrical properties. The reported varying error levels as a function of 

measurement direction highlight the impact of plot structure on crown measurement 

accuracy. The more compact a set of crown is, the greater the individual crown 

underestimation. Possible ways of improvements may include the use of more sophisticated 

filtering methods as suggested by Koch et al. (2006). 

 

[Insert Table 6 about here] 

 

[Insert Fig. 9 about here] 

 

4. Conclusion 

 

This research presents a method for extracting tree crown parameters from a lidar CSM 

acquired over mountainous areas. The method was based on conventional algorithms used to 

detect tree apices and model crown shape. The novelty of the approach lies in 1) the 
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introduction of a hole-filling algorithm to improve the initial CSM quality, 2) the 

optimization of the CSM filtering via the introduction of 2 parameters to quantitatively 

evaluate the plot spatial structure, 3) the introduction of a control method to optimize the 

shape of the identified tree crowns and 4) the application of a multi-level filtering crown 

fusion approach to improve the performance of the algorithm. The method performed quite 

well for most plots but failed to optimize filtering for some plots due to the complex structure 

or spatial organisation of the latter. This was partly due to the fact that the optimization 

procedure was based on the presupposed behaviour of the identified dominant tree 

number when Gaussian iteration number increases. To account for this problem future 

developments will focus on textural indices to improve both the description of the forest 

structure at the stand level and the robustness of the filtering process. Taking into account 

the variability of the forest structure within the study site, we are confident that the 

method can be used in various forests conditions. However in very dense even aged 

young stands the canopy height patterns will probably not allow a correct crown 

segmentation, even with very high lidar point density, since intra-crown height 

variations can be for some species similar to inter-crown ones. Furthermore, this research 

confirms some inconsistencies in height and crown width measurement regarding terrain 

slope and vegetation density. This issue would be addressed in future work dedicated to 

producing robust models of forest parameters and to improving management strategies within 

mountainous environments.  
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Figure captions list 

 
Fig. 1: 3D view of the study site.  
 
Fig. 2: Workflow of the proposed segmentation method (i and j are iteration variables used to 
control Gaussian smoothing and crown fusion respectively). 
 
Fig. 3: Position of the constraining pixels according to the measurement direction. 
 
Fig. 4: Variation of the structural parameter according to field measured plot density (N=12). 
 
Fig. 5: Subset (66 m x 56 m) of the CSM before (left) and after (right) hole-filling. Numbered 
squares show examples of correction using 8-connected pixels (1), and 4 connected pixels (2: 
oblique cross, 3-4: vertical cross).  
 
Fig. 6: Examples of tree crown segmentation for 3 plots of varying densities. Crowns are 
displayed depending on the Gaussian run in which they were extracted. Crosses represent the 
position of the extracted local maxima. Dots represent the field stem positions according to 
their dbh classes (small, medium, large). 
 
Fig. 7: Performance of the crown detection according to plot density. Symbols represented 
the optimized number of Gaussian runs (N = 25). Color scale indicated the dominant dbh 
class (white: small; grey: medium; black: large) and labels the GC index. 
 
Fig. 8: Field versus Lidar measured tree height (m) (N = 245) according to slope classes. 

Fig. 9: Difference between field-derived and lidar-derived tree height on steep slope.  
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Table 1 

Descriptive statistics of the mean plot values field inventory data (N=25). Note that statistics 

were computed according to the IFN protocol. 

 
Density  

(stem/ha) 

Dbh 

(cm) 

Height 

(m) 

GC 

Minimum 78.59 12.34 5.86 0.03 

Mean 960 23,62 14.54 0.28 

Median 874.36 24.03 16.35 0.27 

Maximum 2234.45 37.48 23 0.58 

Standard Deviation 632.55 6.93 5.11 0.12 
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Table 2 

Threshold parameter values used to constrain the segmentation 

 

Structural parameter > 80 <=80 and =>70 < 70 

Segmentation parameter 0.98 0.85 0.8 
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Table 3 

Statistics of the segmentation parameters for the 25 plots 

 

Nb of Gaussian 

filter runs 
Nb LM/Crown 

Crowns from 

optimized filtering 

Crowns from lower 

filtering levels 

Min 1 1 50 0 

Mean 1.8 1.12 90.28 9.72 

Max 4 1.37 100 50 

SD 0.96 0.12 11.12 11.12 

 

 

Table 3 Author-produced version of the article published in International Journal of Applied Earth Observation and Geoinformation, 2011, 13(4), 646-656.
The original publication is available at http://www.elsevier.com
DOI: 10.1016/j.jag.2011.04.002



Table 4 

This table presents results of the segmentation performance for the 25 field plots. Note that 

commission errors were evaluated within a 6 m radius from the plot centre.  

 

Diameter class All Large Medium Small 

Nb of stems 391 32 156 203 

Detection (%) Min 30.76 80 14 0 

 Mean 73.97 98.18 92.63 45.66 

 Max 100 100 100 100 

 SD 23.66 6.03 11.61 34.41 

Omission (%) Min 0 0 0 0 

 Mean 21.02 1.81 6.54 54.33 

 Max 69.23 20 36.36 100 

 SD 23.66 6.03 11.61 34.41 

Commission (%) (6 m 

radius) 

Min 0 - - - 

 Mean 5.91 - - - 

 Max 25 - - - 

 SD 8.41 - - - 
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Table 5 

Differences between lidar and field measurements (ΔH = field – lidar) for the 245 identified 

trees (NStem). Statistics are reported for all trees, dbh classes and terrain slope classes. 

 

dbh classes (cm) 
All Large 

[ 34.7 – α [ 

Medium 

[ 22.44 – 34.7 [ 

Small 

[ 7.48 – 22.44 [ 

  ΔH |ΔH| ΔH |ΔH| ΔH |ΔH| ΔH |ΔH| 

 NStem 245 245 29 29 130 130 86 86 

 Mean (m) -0.84 1.23 -1.30 1.37 -0.83 1.19 -0.70 1.22 

 Min (m) -8.26 0 -4.57 0.07 -6.48 0 -8.26 0.02 

 max (m) 3.16 8.26 0.85 4.57 2.24 6.48 3.16 8.26 

 SD (m) 1.63 1.36 1.24 1.15 1.51 1.24 1.89 1.59 

 RMSE (m) 1.83 - 1.78  1.72  2.00  

slope classes (%) <=25 >25 & <=50 >50 & <=75 >75 

  ΔH |ΔH| ΔH |ΔH| ΔH |ΔH| ΔH |ΔH| 

 N 40 40 54 54 51 51 100 100 

 Mean (m) 0.10 0.38 -0.18 0.72 -0.83 1.13 -1.58 1.88 

 Min(m) -0.78 0.03 -3.8 0.02 -3.7 0.02 -8.26 0 

 max(m) 3.16 3.16 2.04 3.8 1.15 3.7 2.72 8.26 

 SD (m) 0.65 0.53 0.96 0.66 1.31 1.06 1.95 1.67 

 RMSE (m) 0.65  0.97  1.54  2.50  
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Table 6 

Evaluation of the lidar derived crown diameters (NCrown = 53): difference between ground 

truth and lidar-derived values. NS and EW represent the North-South and the East-West 

directions respectively. The Mean Diameter is the mean of the two later values.  

 

 All directions North-South Est-West 

 All Plot 1 Plot 2 All Plot 1 Plot 2 All Plot 1 Plot 2 

Min -2.08 -0.68 -2.08 -1.36 -0.68 -1.36 -2.08 -0.48 -2.08 

Mean (m) 0.95 0.79 1.00 1.19 0.62 1.37 0.72 0.96 0.63 

Mean (%) 17.46 12.34 19.11 21.90 11.53 25.26 13.02 13.15 12.97 

Max 6.02 2.84 6.02 6.02 2.48 6.02 2.84 2.84 2.66 

SD 1.14 0.88 1.21 1.18 0.77 1.23 1.07 0.98 1.09 

RMSE 1.48 1.17 1.57 1.66 0.97 1.83 1.27 1.34 1.25 
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