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This work generalizes the recently introduced univariate multiscale entropy (MSE) analysis to
the multivariate case. This is achieved by introducing multivariate sample entropy (MSampEn) in
a rigorous way, in order to account for both within- and cross-channel dependencies in multiple
data channels, and by evaluating it over multiple temporal scales. The multivariate MSE (MMSE)
method is shown to provide an assessment of the underlying dynamical richness of multichannel
observations, and more degrees of freedom in the analysis than standard MSE. The benefits of the
proposed approach are illustrated by simulations on complexity analysis of multivariate stochastic
processes and on real world multichannel physiological and environmental data.
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I. INTRODUCTION

Recent advances in multimodal sensing have high-
lighted the need for more insight into the dynamical prop-
erties of the complex phenomena under observation. The
literature related to nonlinear and attractor dynamics
is extensive and typically each nonlinear analysis mea-
sure focuses on one particular aspect of the data, such
as complexity, dimensionality, regularity or irregularity,
randomness, predictability, self-similarity and synchrony.
Among them, the time delay embedded reconstruction [1]
provides a general framework for the estimation of in-
variant quantities (in terms of smooth transformations
of the state space of the attractor) of the original sys-
tem, such as attractor dimensions, Lyapunov exponents
and entropies [2][3][4]. Information theoretic measures of
structural complexity include effective measure complex-
ity (EMC) [5], excess entropy [6], and predictive infor-
mation [7][8].

However, there is neither a unique way of defining com-
plexity rigorously, nor is it used in a consistent way in the
literature. Some authors consider any signal that is not
constant or periodic as complex, while most agree that
neither strictly periodic nor completely random processes
should be deemed complex [2]. For example, traditional
entropy-based complexity measures, such as Shannon en-
tropy [9], Kolmogorov-Sinai (KS) entropy [10], approxi-
mate entropy (ApEn) [11], and sample entropy (Sam-
pEn) [12], are maximized for random sequences - they
thus suggest higher structural complexity for randomized
surrogate time series than for the original one. This is
misleading, especially when the signal comes from more
complex systems, with pronounced correlation structures
over multiple spatio-temporal scales.

In 2002, Costa et al. [13] introduced the multiscale en-
tropy (MSE) method to help resolve this issue by defining
a quantitative measure of complexity that is small for
both deterministic (predictable) and uncorrelated ran-
dom (unpredictable) signals and large for correlated (lin-
ear/nonlinear) stochastic processes, when evaluated over

larger scales. This is in agreement with the consensus
that the notion of dynamical complexity spans a whole
range between the properties of perfect regularity and
total randomness.

Multiscale entropy analysis is based on evaluating at
multiple time scales the sample entropy, a refinement of
approximate entropy which measures the degree of ran-
domness (or inversely, the degree of orderliness) of a time
series. Historically, correlation entropy was developed to
distinguish between deterministic systems by rates of in-
formation generation and was not developed for appli-
cations on stochastic data. In contrast, in [11] Pincus
introduced approximate entropy as a regularity statistic
to distinguish between finite, noisy, possibly stochastic
(or composite deterministic), and truly stochastic data
sets. It represents the conditional probability that se-
quences that are close (in the sense of some metric) to
one another over m consecutive data points will still ex-
hibit similarity when one more data point is added.

Approximate entropy was constructed along similar
lines as the correlation entropy but it has a different aim:
to provide a widely applicable and statistically valid en-
tropy formula. The justification is that, if joint proba-
bility measures for reconstructed dynamics that describe
the two systems are different, then their marginal prob-
ability distributions for a fixed partition, given by afore-
mentioned conditional probabilities, are likely to be dif-
ferent too. As a result, using approximate entropy one
need orders of magnitude fewer points to accurately es-
timate these marginal probabilities as compared to the
number of points needed to accurately reconstruct the
“attractor” measure as is the case with correlation en-
tropy.

Approximate entropy is applicable to noisy, typically
short, real-world time series and unlike the correlation
entropy, it can distinguish between correlated stochastic
processes. Sample entropy is a modification of approxi-
mate entropy, and is based on the definition of the dis-
tance between two vectors in a maximum norm sense,
when self-matches are excluded. As such, it represents



an unbiased estimator which is largely independent of
the length of the time series.

Standard entropies are based on a ‘one step difference’
(e.g., Hn+1 −Hn) and hence do not account for features
related to structure and organization over a range of time
scales, other than the shortest one. To that end, multi-
scale entropy analysis aims at quantifying the interdepen-
dence between entropy and scale, achieved by evaluating
sample entropy of univariate time series coarse grained at
multiple temporal scales. This facilitates the assessment
of the dynamical complexity of a system; in biology this
is associated with the ability of living systems to adjust
to a changing environment. The underlying integrative
multiscale functionality is interpreted by non-diminishing
entropy values across increasing time scales. A detailed
analyis of MSE for correlated and uncorrelated noises
with Gaussian and inverse Gaussian distributions can be
found in [14] and [15].

There exist several improvements of MSE, especially
regarding the definition of the time scales [16][17][18],
contributing to its theoretical foundations. The method
has been successfully applied across biomedical research,
such as in fluctuations of the human heartbeat under
pathologic conditions [13], EEG and MEG in patients
with Alzheimer’s disease [19], complexity of human gait
under different walking conditions [20], variations in
EEG complexity related to aging [21], and human red
blood cell flickering [22]. These results strongly support
the general ‘complexity-loss’ theory for systems under
‘stress’, for instance, through aging and disease [23].

The existing MSE algorithm has been designed for the
analysis of scalar time series, and is not suited for mul-
tivariate time series that are routinely measured in ex-
perimental and biological systems. Standard MSE treats
multivariate time series as a set of individual time series
by considering each variable separately, however, this is
only applicable if all the data channels are statistically
independent or uncorrelated at the very least (which is
often not the case). For example, measurements of the
z -coordinate of the Lorenz system cannot reconstruct the
dynamics of the Lorenz system, because they do not re-
solve the x-y symmetry [24]. In addition, there are sub-
stantial advantages in simultaneously analysing several
variables observed from the same phenomenon, especially
if there is a large degree of uncertainty and coupling un-
derlying the system dynamics or data acquisition.

The multivariate extension of MSE in this work is
based on our novel definition of multivariate sample en-
tropy (MSampEn). The proposed multivariate MSE
(MMSE) evaluates MSampEn over different time scales
and deals with the different embedding dimensions, time
lags, and amplitude ranges of data channels in a rigor-
ous and unified way. The method is shown to cater for
linear and/or nonlinear within- and cross-channel corre-
lations as well as for complex dynamical couplings and
various degrees of synchronization over multiple scales,
thus allowing for direct analysis of multichannel data.
The advantages of the proposed multivariate approach,

in contrast to analyzing each data channel separately,
are illustrated for both synthetic stochastic processes and
real world gait, wind, and physiological data.

II. MULTIVARIATE MULTISCALE ENTROPY

The multivariate multiscale entropy (MMSE) analysis
is performed through the following two steps:

1. Define temporal scales of increasing length
by coarse-graining the multivariate time series
{xk,i}

N
i=1, k = 1, 2, . . . , p, where p denotes the num-

ber of variates (channels) and N the number of
samples in each variate. Then, for a scale factor
ǫ, the elements of the multivariate coarse-grained
time series are calculated as:

yǫk,j =
1

ǫ

jǫ
∑

i=(j−1)ǫ+1

xk,i, (1)

where 1 ≤ j ≤ N
ǫ
and k = 1, . . . , p.

2. Calculate the multivariate sample entropy,
MSampEn for each coarse-grained multivariate
yǫk,j , and plot MSampEn as a function of the scale
factor ǫ.

Multivariate sample entropy is therefore a prerequisite
for performing multiscale entropy (MMSE) analysis si-
multaneously over a number of data channels, however,
such approaches are still missing in the open literature.

Recall from multivariate embedding theory [24] that
the multivariate embedded reconstruction for a p-variate
time series {xk,i}

N
i=1, k = 1, 2, . . . , p generated from the

same system and observed through p measurement func-
tions hk(yi), is based on the composite delay vector

Xm(i) = [x1,i, x1,i+τ1 , . . . , x1,i+(m1−1)τ1 ,

x2,i, x2,i+τ2 , . . . , x2,i+(m2−1)τ2 , . . . ,

xp,i, xp,i+τp , . . . , xp,i+(mp−1)τp ], (2)

where M = [m1,m2, . . . ,mp] ∈ R
p is the embedding vec-

tor, τ = [τ1, τ2, . . . , τp] the time lag vector, and Xm(i) ∈
R

m (m =
∑p

k=1 mk).

For illustration, consider a wind signal recorded us-
ing a 2D anemometer, where the wind speed time se-
ries from the east-west and north-south directions are
denoted respectively by x(t) = {x1, x2, . . . , xN} and
y(t) = {y1, y2, . . . , yN}, with each time series of N data
points. For the time lag vector τ = [2, 1] and the embed-
ding vector M = [2, 2], some of the composite delay vec-
tors are [x1, x3, y1, y2], [x2, x4, y2, y3], and [x3, x5, y3, y4].
Section II-B evaluates this issue further and provides a
geometric interpretation.



A. The multivariate sample entropy method

Richman & Moorman [12] introduced sample entropy
(SampEn) as a conditional probability that two se-
quences of m consecutive data points, which are similar
to within a tolerance level r, will remain similar when the
next data point is included, provided that self-matches
are not considered in calculating the probability. When
extending univariate sample entropy to the multivariate
case, we need to consider the following issues.
First, it is important to notice that multivariate data

do not necessarily have the same amplitude range among
the data channels, so that the distances calculated on em-
bedded vectors may be biased towards the variates with
largest amplitude ranges. To that end, we propose to
scale all the data channels to the same amplitude range,
and choose the range [0, 1] as a preferred choice. As
shown later, other choices will not affect the multivariate
sample entropy calculation.
Secondly, for a fixed embedding dimension m, sample

entropy calculates the average number of delay vector
pairs that are within a fixed threshold r, and repeats the
same for dimension (m + 1). There are p ways in which
we can evolve from the space of dimension m described
by the embedding vector [m1,m2, . . . ,mk, . . . ,mp] to any
space of dimension (m+ 1) described by the embedding
vector [m1,m2, . . . ,mk +1, . . . ,mp] where k = 1, . . . , p is
the index of data channel. It is important to notice that
the average number of delay vector pairs that are within
a fixed threshold for dimension (m+1) can be calculated
in two ways. A naive approach would be, if for each of
the k -th subspaces of the (m+ 1)-dimensional space, we
calculate the average number of delay vector pairs that
are within a fixed threshold, and then average over all
the p subspaces. A rigorous approach would be to take
into account all the delay vectors in all the subspaces and
then compare the delay vectors both within and across
the p subspaces. This way, along with time correlations,
we have means to cater for linear and/or nonlinear spa-
tial correlations. This is crucial in situations where the
measurements come from similar physical quantities, si-
multaneously recorded at different positions in a spatially
extended system, like in the case of geophysical sensors or
scalp EEG. For heterogeneous data channels (i.e. heart
beat interval series and respiratory signals), this makes it
possible to cater for the dynamical couplings and various
degrees of synchronization over multiple scales.
Thirdly, as sample entropy is a relative measure and

the threshold parameter is set as some percentage of the
standard deviation of the observed time series, we also
need a multivariate generalization of the univariate no-
tion of variance. Though the covariance matrix, S, is
one such generalization, we still need a single number
to measure the multivariate scatter in the data. Two
such common measures are the generalized variance, |S|,
and the total variation, tr(S); in this work we use total
variation. To maintain the same total variation for all
the multivariate series under consideration, we normalize

each data channel to unit variance so that the total varia-
tion becomes equal to the number of channels/variables.
This way, differences in the variance among the multi-
variate time series under consideration do not influence
the calculation of multivariate sample entropy.
Finally, in univariate approximate (sample) entropy

methods, the time delay, τ , is not used as a parameter
(a unit time delay is assumed), thus assuming that the
phase space representation of a time series is independent
of the value of the time lag τ . However, this is only the
case for an infinite amount of data. In digital signal pro-
cessing, both embedding dimension, m, and time lag, τ ,
ought to be considered for determining the optimal tap
input length of an adaptive filter or a time-delay neural
network. For instance, if the temporal span (m × τ) is
too small, the signal variation within the delay vector is
largely governed by noise and either m or τ should be
increased. There is no established criterion for choosing
which of the two parameters to modify, and it is common
to have a fixed time lag τ (sampling rate) and to adjust
the embedding dimension m (length of a filter) accord-
ingly. In the multivariate case, different observed vari-
ables are likely to have different embedding dimensions
and time lags, and we need to use different mk and τk
values for different channels/variables. In our approach,
both M and τ are varying (vector parameter) and can
be optimized either separately or simultaneously [25].
Multivariate sample entropy calculation. For a p-
variate time series {xk,i}

N
i=1, k = 1, 2, . . . , p, we introduce

MSampEn through the following procedure:

• Form (N − n) composite delay vectors Xm(i) ∈
R

m, where i = 1, 2, . . . , N − n and n = max{M} ×
max{τ}.

• Define the distance between any two compos-
ite delay vectors Xm(i) and Xm(j) as the max-
imum norm [26], that is, d[Xm(i), Xm(j)] =
maxl=1,...,m{|x(i+ l − 1)− x(j + l− 1)|}.

• For a given composite delay vector Xm(i) and a
threshold r, count the number of instances Pi where
d[Xm(i), Xm(j)] ≤ r, j 6= i, then calculate the fre-
quency of occurrence, Bm

i (r) = 1
N−n−1Pi, and de-

fine a global quantity

Bm(r) =
1

N − n

N−n
∑

i=1

Bm
i (r). (3)

• Extend the dimensionality of the multivariate de-
lay vector in (2) from m to (m + 1). This
can be performed in p different ways, as from
a space defined by the embedding vector M =
[m1,m2, . . . ,mk, . . . ,mp] the system can evolve
to any space for which the embedding vector is
[m1,m2, . . . ,mk+1, . . . ,mp] (k=1, 2, . . . , p). Thus,
a total of p× (N −n) vectors Xm+1(i) in R

m+1 are
obtained, where Xm+1(i) denotes any embedded



vector upon increasing the embedding dimension
from mk to (mk + 1) for a specific variable k. In
the process, the embedding dimension of the other
data channels is kept unchanged, so that the over-
all embedding dimension of the system undergoes
the change from m to (m+ 1).

• For a given Xm+1(i), calculate the number of vec-
tors Qi, such that d[Xm+1(i), Xm+1(j)] ≤ r, where
j 6= i, then calculate the frequency of occurrence,
Bm+1

i (r) = 1
p(N−n)−1Qi, and define the global

quantity

Bm+1(r) =
1

p(N − n)

p(N−n)
∑

i=1

Bm+1
i (r). (4)

• This way, Bm(r) represents the probability that
any two composite delay vectors are similar in di-
mension m, whereas Bm+1(r) is the probability
that any two composite delay vectors will be similar
in dimension (m+ 1).

• Finally, for a tolerance level r, MSampEn is cal-
culated as the negative of a natural logarithm of
the conditional probability that two composite de-
lay vectors close to each other in an m dimensional
space will also be close to each other when the di-
mensionality is increased by one, and is given by

MSampEn(M, τ , r, N) = −ln

[

Bm+1(r)

Bm(r)

]

. (5)

B. Geometric Interpretation

Fig. 1 illustrates the principle behind multivariate sam-
ple entropy calculation. Consider a two-dimensional
recording of wind speed, shown in Fig. 1(a), where the
eastward component is denoted by x(t) (solid blue line)
and the northward component by y(t) (dotted red line).
Assume the time lag vector τ = [1, 1] and the embed-
ding vector M = [1, 1]; then the composite delay vec-
tors will be [x(t), y(t)] where t denotes the time index,
as shown in Fig. 1(b). For any such vector (e.g. [x(64),
y(64)]), we need to find the number of neighbors which
are within a distance r (tolerance level), illustrated by
a circle centered at [x(64), y(64)] with radius r. For an
m-dimensional space, the set of neighboring vectors is
enclosed by an m-sphere if the distance is calculated us-
ing the Euclidean norm and by an m-cube if we use a
maximum distance norm. The average number of vectors
that are within a fixed threshold r in this two-dimensional
space is next calculated. The number of r -neighbors of an
embedded vector is an estimate of the local probability
density, and is also a measure of their joint probability, as
all the m-components of the neighboring vector have to
be simultaneously similar to those of the vector in hand.

When increasing the embedding dimension m, we there-
fore inherently involve joint probabilities covering larger
time spans.
For the example in Fig. 1, upon increasing the em-

bedding dimension from two to three, we have two sub-
spaces of dimension three: (i) the subspace of all the
vectors [x(t), x(t+1), y(t)] (Fig. 1(c)) and (ii) the sub-
space of all the vectors [x(t), y(t), y(t+1)] (Fig. 1(d)).
A naive approach would be to calculate the number of
vectors that are within a fixed threshold r in each three-
dimensional subspace and then average over both sub-
spaces [27]. Instead, we employ a rigorous approach and
compare composite delay vectors (to find the neighbours)
not only within each subspace but also across all the sub-
spaces, thus fully catering for both within- and cross-
channel correlations. This allows us to calculate the con-
ditional probability that two sequences of m data points
(or two composite delay vetors in m-dimensional space),
which are similar to within a tolerance level r, will re-
main similar in the same sense, when the next data point
is included (or the dimension of the composite delay vec-
tor is increased by one), provided that self-matches are
not considered. A negative logarithm of this conditional
probability defines the multivariate sample entropy.

III. MULTIVARIATE COMPLEXITY ANALYSIS

The multivariate MSE (MMSE) plots, that is, multi-
variate sample entropy represented as a function of the
scale factor, are next used to assess relative complexity
of normalized multi-channel temporal data. The inter-
pretation of the MMSE analysis is as follows:

• The multivariate time series X is considered more
dynamically complex than the multivariate time se-
ries Y, if for the majority of time scales the mul-
tivariate sample entropy values for signal X are
higher than those for signal Y.

• A monotonic decrease in the multivariate entropy
values with the scale factor indicates that the sig-
nal in hand only contains useful information at the
smallest scales, this is typical for both completely
random and fully predictable signals.

• A multivariate system exhibiting long range corre-
lations and complex generating dynamics is char-
acterized by either a constant multivariate sample
entropy or it exhibits a monotonic increase in mul-
tivariate sample entropy with the scale factor.

A. Validation on synthetic data

The univariate MSE analysis has shown [13][14] that
for random white noise (uncorrelated), the sample en-
tropy values decrease monotonically with scale, whereas
for a 1/f noise (long-range correlated) sample entropy
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FIG. 1. (Color online) Geometry behind the calculation of MSampEn

remains constant over multiple time scales. This indi-
cates that the univariate 1/f noise is structurally more
complex than uncorrelated random signals.

To illustrate the corresponding behaviour for the mul-
tivariate case, we generated a trivariate time series, where
originally all the data channels were realisations of mu-
tually independent white noise. We then gradually de-
creased the number of variates that represent white noise
(from 3 to 0) and simultaneously increased the number
of data channels that represent independent 1/f noise
(from 0 to 3), so that the total number of variates was
always three. Fig. 2 shows the MMSE curves for the cases
considered; notice that as the number of variates repre-
senting 1/f noises increased, MSampEn at higher scales
also increased, and when all the three data channels con-
tained 1/f noise, the complexity at larger scales was the
highest. The analysis in Fig. 2 therefore confirms that, as
desired, the more variables/channels within a multivari-
ate time series exhibit long range correlations, the higher
the overall complexity of the underlying multivariate sys-
tem.

Recall that the original univariate MSE algorithm ac-

counts for long term correlations within a single data
channel, however, due to its univariate nature, it cannot
model the cross-channel information present in multivari-
ate recordings. On the other hand, MMSE is designed
for multivariate data. To illustrate this difference, we
first generated independent realizations of white and 1/f
noise, and the three channels of trivariate white and 1/f
noise were constructed using combinations of those in-
dependent realizations, thus making the channels corre-
lated. Fig. 3 illustrates the ability of MMSE to model
both within- and cross-channel properties in multivari-
ate data. Fig. 3(a) shows that the naive multivariate ap-
proach accounts for within-channel correlations but not
for cross-channel correlations, and was not able to distin-
guish between uncorrelated and correlated trivariate ran-
dom and 1/f noises. Fig. 3(b) shows that, as desired, the
proposed multivariate MSE fully caters for both within-
and cross-channel correlations. Indeed, based on MMSE
the complexity of the correlated trivariate 1/f noise at
large scales was the highest, followed by the uncorrelated
1/f noise, and correlated and uncorrelated white noise.
This conforms with the underlying physics and validates
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the proposed MMSE method, as the complexity of the
considered multivariate processes exhibiting both within-
and cross-channel correlations is higher than that of un-
correlated multivariate white noise and uncorrelated mul-
tivariate 1/f noise (where long range correlations only
exist within single channels).
The usefulness of the MMSE analysis is further illus-

trated for the analysis of scalar and vector autoregressive
(AR) processes [28]. The AR processes were designed so
as to have an increasing correlation span with the model
order. Fig. 4 shows the standard univariate MSE anal-
ysis for the scalar AR processes considered and Fig. 5
the MMSE analysis for the corresponding bivariate vec-
tor AR (VAR) processes. As desired, in both cases, as
the model order increased, the complexity of the corre-
sponding signals measured by MSE and MMSE increased
too.

IV. APPLICATIONS FOR REAL WORLD

MULTIVARIATE PROCESSES

The multivariate multiscale entropy analysis is next
evaluated for three multivariate real world recordings:
human stride interval analysis, three-dimensional wind
measurements from different dynamical regimes, and bi-
variate physiological data (breathing and heart beats)
from young and elderly subjects.

A. Stride interval characterization

The data used were from [29], where stride interval
fluctuations were recorded from ten healthy subjects who
walked for 1 hour at their usual, slow, and fast paces.
The participants were further asked to walk following
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FIG. 3. (Color online) Multivariate multiscale entropy
(MMSE) analysis for trivariate white and 1/f noise, each with
10,000 data points. The curves represent an average of 20 in-
dependent realizations and error bars the standard deviation
(SD).

a metronome which was set to each participant’s mean
stride interval.
To assess the differences in relative complexity be-

tween the unconstrained (slow, normal, fast) and the
corresponding constrained (metronomically-paced) con-
ditions, we considered the three walking paces as different
variables from the same system, and used MMSE to dis-
criminate between the ‘self-paced’ and ‘metronomically-
paced’ walk.
To test the hypothesis that the complexity of such time

series is encoded into the sequential ordering of the sam-
ples of stride intervals, we also produced the correspond-
ing surrogate time series by shuffling (randomly reorder-
ing) the sequence of data points. In this way, in sur-
rogates the correlations among the data samples were
destroyed, while preserving statistical properties of the
distributions (particularly the first and second moment),
and the complexity of the surrogates is lower or equal
(if the original is completely random) than that of the
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original signal.

The values of the parameters used to calculate MSam-
pEn were mk = 2, τk = 1 and r = 0.15×(standard devi-
ation of the normalized time series) for each data chan-
nel; these parameters were chosen on the basis of pre-
vious studies indicating good statistical reproducibility
for SampEn [12]. For MSE/MMSE, the length of each
coarse-grained sequence was ǫ (scale factor) times shorter
than the length of the original series, so the highest scale
factor considered in the analysis was ǫ=7.

The top panel in Fig. 6 shows the results obtained by
the univariate MSE performed for the normal speed time
series [20] - the univariate MSE was not able to per-
form statistically significant discrimination between self-
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FIG. 6. (Color online) Multivariate multiscale entropy
(MMSE) analysis for self-paced (solid red square) vs
metronomically-paced (solid cyan circle) stride interval (hu-
man gait) time series and for their corresponding randomized
surrogates (dashed line). Top: univariate MSE analysis; Mid-
dle: bivariate MMSE analysis; Bottom: Trivariate MMSE
analysis. The curves represent an average of trials from 10
subjects and error bars the standard deviation (SD).

paced and metronomically-paced walk as the error bars
overlapped. The middle and bottom panels in Fig. 6
show that when the walking conditions are considered
within the multivariate approach (bivariate for any two
walking conditions or trivariate for all the three walking
conditions), the proposed MMSE was able to discrimi-
nate between self-paced and metronomically-paced walk.
This opens completely new analysis possibilities, since
the MMSE method was able to consider all the walking
conditions within one unifying model, directly benefit-
ing from the multivariate approach. Fig. 6 also indicates
the presence of persistent serial correlations, which are
long-range dependent in self-paced walking, and the lack
of any correlations in metronomically-paced walking; in
this case the shape of the MMSE curve is similar to that
for multivariate white noise. As expected, the surrogate
series (randomly shuffled) showed similar pattern to that
for white noise (dashed line in Fig. 6).
To evaluate the statistical difference of the entropy

statistics between self-paced and metronomically-paced
sets, Student’s t-test and the Mann-Whitney U test (also
known as Wilcoxon rank sum test) were applied. Stu-
dent’s t-test is a parametric approach that tests the null
hypothesis that the means of normally distributed popu-



lations are equal. On the other hand, the Mann-Whitney
U test is a nonparametric test where the null hypothesis,
that independent samples come from identical (similar
shape) continuous (not necessarily normal) distributions
with equal medians, is tested against the alternative that
they do not have equal medians.

TABLE I. Statistical significance tests for the univariate, bi-
variate and trivariate human stride interval analysis. Shown
are scales for which the differences are statistically significant

Conditions taken Student’s t-test Mann-Whitney U test

Normal No scale No scale
Fast No scale No scale
Slow No scale No scale
Fast and Normal 6,7 6,7
Fast and Slow 4,5,6,7 4,5,6,7
Normal and Slow 5,6,7 5,6,7
Fast, Normal and Slow 3,4,5,6,7 3,4,5,6,7

Entries in Table I represent the scales at which MSam-
pEn measures between self-paced and metronomically-
paced walking are significantly different according to the
above two statistical tests. When all three walking con-
ditions were simultaneously considered, both the sta-
tistical significance tests revealed significant differences
(p < 0.01) in MSampEn measures at all scales except for
ǫ = {1, 2} and the corresponding null hypothesis (equal
mean or median) was rejected. On the other hand, for the
univariate MSE there were no statistically significant dif-
ferences between self-paced walking and metronomically-
paced walking at any scales.
This result also indicates that for metronomically-

paced walking in slow, normal and fast conditions, the
time series share uncorrelated random underlying dy-
namics both within- and cross-channel, whereas for free
walking, the time series for slow, normal and fast condi-
tions are correlated both within- and cross-channel. That
explains why at larger scales the complexity for the mul-
tivariate measurements was highest for self-paced walk-
ing (cf. metronomically-paced walking), and the sepa-
ration was statistically significant over more scales when
we considered all the available walking conditions. The
MMSE therefore offers a significant improvement over
the previous studies [20][29] and also supports the more
general concept of multiscale complexity loss with age-
ing and disease or when a system is under constraints
(metronomically-paced), which all reduce the adaptive
capacity of biological organization at all levels [23].

B. Complexity analysis of physiological signals

We shall now apply the MMSE method to the Fantasia
database [30] to simultaneously analyse the complexity of
interbeat interval (R-R) and interbreath interval series.
The presence of long-range correlations in both cardiac
and respiratory dynamics was previously established us-
ing detrended fluctuation analysis (DFA) in [31] and [32].

A subset of the Fantasia database was chosen con-
sisting of ten young (21 - 34 years old) and ten elderly
(68 - 85 years old) rigorously-screened healthy subjects
who underwent 120 minutes of continuous supine resting
while continuous electrocardiographic (ECG) and respi-
ration signals were collected. Each subgroup of subjects
included seven women and three men. The continuous
ECG and respiration signals were digitized at 250 Hz,
and the Interbeat interval (R-R) time series and inter-
breath interval time series were generated; for more de-
tails see [31] and [32]. The values of the parameters
used to calculate MSampEn were mk = 2, τk = 1 and
r = 0.15×(standard deviation of the normalized time se-
ries) for each variate.
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FIG. 7. (Color online) Univariate multiscale entropy (MSE)
analysis for the cardiac and respiratory dynamics. The curves
represent an average of 10 subjects and error bars the stan-
dard deviation (SD).

First, the univariate MSE was applied separately to the
interbeat interval (R-R) series (Fig. 7(a)) and interbreath
interval series (Fig. 7(b)). For rigour, the correspond-
ing surrogate time series were also produced by shuffling
(randomly reordering) the sequence of data points. In



both cases, although, as desired, for some scales phys-
iological signals from healthy young subjects exhibited
higher complexity than those of healthy elderly subjects,
the complexity values were lower than those of the ran-
domized surrogates. This behaviour wrongly suggests a
lack of long term correlations in both cardiac and respira-
tory dynamics, illustrating that the univariate approach
was not able to produce robust estimates.
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FIG. 8. (Color online) Multivariate multiscale entropy
(MMSE) analysis of the bivariate (R-R, Interbreath interval)
signal. The curves represent an average of 10 subjects and
error bars the standard deviation (SD).

Next, MMSE was applied to a bivariate time series con-
sisting of the R-R and interbreathing intervals. Fig. 8 re-
veals long range correlations in both cardiac and respira-
tory dynamics, illustrated by the fact that the MSampEn
values for larger scales were higher than those of the ran-
domized surrogates, which have no temporal structure.
Fig. 8 also indicates lower complexity of physiological
responses of elderly subjects than the young ones, con-
forming with the complexity loss theory with aging [31].

C. Complexity analysis of different wind regimes

Evidence of long-range correlations in wind speed
recordings exists, and was evaluated using e.g.
Hurst parameters and detrended fluctuation analysis
(DFA) [33][34][35]. We shall now illustrate that the
MMSE method allows us to characterize different wind
regimes in terms of the underlying dynamical complexity.

The data set was recorded using a 3D ultrasonic
anemometer (measurements taken in the north-south,
east-west and vertical direction) at a sampling frequency
of 50Hz in the courtyard of Institute of Industrial Science
(IIS) of the University of Tokyo. To reduce the effects
of high frequency noise, the data was preprocessed by a
moving average filter. Fig. 9 shows that throughout the
day, the wind dynamics was changing, and the three wind
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FIG. 9. (Color online) Magnitude of the 3D wind signal. The
wind dynamics regimes are identified as ‘low’, ‘medium’, and
‘high’.

regimes of different dynamics were identified and labelled
as ‘low’, ‘medium’, and ‘high’. The values of the parame-
ters used to calculate MSampEn weremk = 2, τk = 1 and
r = 0.20×(standard deviation of the normalized time se-
ries), for each three data channels. The univariate multi-
scale entropy analysis was first applied separately to data
channels representing the eastward, northward, and ver-
tical direction, as well as to the modulus of the 3D wind.
For rigour, the corresponding surrogate time series were
also produced by shuffling (randomly reordering) the se-
quence of data points.
Fig. 10 shows the univariate complexity profiles for the

three channels and for different wind regimes. For the
eastward wind (Fig. 10(a)), the high dynamics regime
exhibited highest univariate complexity, followed by the
medium and low dynamics regime. This is contrary to the
intuition and the underlying physics, and is attributed
to the shortcomings of univariate MSE, as it represents
the variability in each univariate regime (identified in
Fig 9) and not true complexity. For the vertical wind
(Fig. 10(c)), same interpretation applies. Only the anal-
ysis of northward wind (Fig. 10(b)) and the modulus of
the 3D wind (Fig. 10(d)) behaved in the expected way,
that is, medium wind dynamics has fewest constraints,
and is thus most complex [36] as mild winds come from
a wide range of directions. For each direction, the wind
data showed lower complexity than their corresponding
surrogate series, wrongly suggesting that the wind data
set considered had no long-range correlations.
Fig. 11 shows the corresponding multivariate mul-

tiscale entropy analysis, performed by considering the
three wind directions as variables in a trivariate model.
Observe that the multivariate approach was capable of
detecting long-range correlations in the wind speed for
all wind regimes as the MMSE curves were similar to
that of 1/f noise (cf. Fig. 2), conforming with the ex-
isting results [33][34][35]. Fig. 11 also shows that, as
desired, the medium dynamics regime had higher com-
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(b) Northward wind speed
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(c) Vertical wind speed
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FIG. 10. (Color online) Univariate multiscale entropy (MSE) analysis of 3D wind speed data. The curves represent an average
of 6 trials and error bars the standard deviation (SD).
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FIG. 11. (Color online) Multivariate multiscale entropy
(MMSE) analysis of 3D wind speed data. The curves rep-
resent an average of 6 trials and error bars the standard de-
viation (SD).

plexity than either high or low dynamics regime. This
trend can also be seen in the MSE curves of the modulus
of the 3D wind (Fig. 10(d)), but there the complexity did
not exceed that of surrogate data. Since we can consider
the wind with medium dynamics as the least constrained
system, as opposed to the high or low dynamics regimes
which are constrained [36], this interpretation also agrees
with the general complexity loss theory with constraints.

V. CONCLUSION

This paper has generalized the recently introduced
multiscale entropy (MSE) method to the multivariate
case, to suit real world biological and physical systems
which are typically of multivariate, correlated and noisy
natures. The inherent complexity of such structures and
their coupled dynamics also make the proposed multivari-
ate multiscale entropy (MMSE) method naturally suited
to reveal the long range within- and cross-channel corre-
lations present. The MMSE method has been validated



on both illustrative benchmark data and on real world
multivariate gait, physiological, and wind data.
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