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Abstract

Over the past decade, f (R) theories have been extensively studied as one of the simplest
modifications to General Relativity. In this article we review various applications of f (R)
theories to cosmology and gravity – such as inflation, dark energy, local gravity constraints,
cosmological perturbations, and spherically symmetric solutions in weak and strong gravita-
tional backgrounds. We present a number of ways to distinguish those theories from General
Relativity observationally and experimentally. We also discuss the extension to other modified
gravity theories such as Brans–Dicke theory and Gauss–Bonnet gravity, and address models
that can satisfy both cosmological and local gravity constraints.
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f (R) Theories 5

1 Introduction

General Relativity (GR) [225, 226] is widely accepted as a fundamental theory to describe the
geometric properties of spacetime. In a homogeneous and isotropic spacetime the Einstein field
equations give rise to the Friedmann equations that describe the evolution of the universe. In fact,
the standard big-bang cosmology based on radiation and matter dominated epochs can be well
described within the framework of General Relativity.

However, the rapid development of observational cosmology which started from 1990s shows
that the universe has undergone two phases of cosmic acceleration. The first one is called infla-
tion [564, 339, 291, 524], which is believed to have occurred prior to the radiation domination
(see [402, 391, 71] for reviews). This phase is required not only to solve the flatness and horizon
problems plagued in big-bang cosmology, but also to explain a nearly flat spectrum of temperature
anisotropies observed in Cosmic Microwave Background (CMB) [541]. The second accelerating
phase has started after the matter domination. The unknown component giving rise to this late-
time cosmic acceleration is called dark energy [310] (see [517, 141, 480, 485, 171, 32] for reviews).
The existence of dark energy has been confirmed by a number of observations – such as super-
novae Ia (SN Ia) [490, 506, 507], large-scale structure (LSS) [577, 578], baryon acoustic oscillations
(BAO) [227, 487], and CMB [560, 561, 367].

These two phases of cosmic acceleration cannot be explained by the presence of standard matter
whose equation of state 𝑤 = 𝑃/𝜌 satisfies the condition 𝑤 ≥ 0 (here 𝑃 and 𝜌 are the pressure
and the energy density of matter, respectively). In fact, we further require some component of
negative pressure, with 𝑤 < −1/3, to realize the acceleration of the universe. The cosmological
constant Λ is the simplest candidate of dark energy, which corresponds to 𝑤 = −1. However, if the
cosmological constant originates from a vacuum energy of particle physics, its energy scale is too
large to be compatible with the dark energy density [614]. Hence we need to find some mechanism to
obtain a small value of Λ consistent with observations. Since the accelerated expansion in the very
early universe needs to end to connect to the radiation-dominated universe, the pure cosmological
constant is not responsible for inflation. A scalar field 𝜑 with a slowly varying potential can be a
candidate for inflation as well as for dark energy.

Although many scalar-field potentials for inflation have been constructed in the framework of
string theory and supergravity, the CMB observations still do not show particular evidence to
favor one of such models. This situation is also similar in the context of dark energy – there
is a degeneracy as for the potential of the scalar field (“quintessence” [111, 634, 267, 263, 615,
503, 257, 155]) due to the observational degeneracy to the dark energy equation of state around
𝑤 = −1. Moreover it is generally difficult to construct viable quintessence potentials motivated
from particle physics because the field mass responsible for cosmic acceleration today is very small
(𝑚𝜑 ≃ 10−33 eV) [140, 365].

While scalar-field models of inflation and dark energy correspond to a modification of the
energy-momentum tensor in Einstein equations, there is another approach to explain the accelera-
tion of the universe. This corresponds to the modified gravity in which the gravitational theory is
modified compared to GR. The Lagrangian density for GR is given by 𝑓(𝑅) = 𝑅− 2Λ, where 𝑅 is
the Ricci scalar and Λ is the cosmological constant (corresponding to the equation of state 𝑤 = −1).
The presence of Λ gives rise to an exponential expansion of the universe, but we cannot use it for
inflation because the inflationary period needs to connect to the radiation era. It is possible to use
the cosmological constant for dark energy since the acceleration today does not need to end. How-
ever, if the cosmological constant originates from a vacuum energy of particle physics, its energy
density would be enormously larger than the today’s dark energy density. While the Λ-Cold Dark
Matter (ΛCDM) model (𝑓(𝑅) = 𝑅− 2Λ) fits a number of observational data well [367, 368], there
is also a possibility for the time-varying equation of state of dark energy [10, 11, 450, 451, 630].

One of the simplest modifications to GR is the f (R) gravity in which the Lagrangian density
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6 Antonio De Felice and Shinji Tsujikawa

𝑓 is an arbitrary function of 𝑅 [77, 512, 102, 106]. There are two formalisms in deriving field
equations from the action in f (R) gravity. The first is the standard metric formalism in which the
field equations are derived by the variation of the action with respect to the metric tensor 𝑔𝜇𝜈 .
In this formalism the affine connection Γ𝛼

𝛽𝛾 depends on 𝑔𝜇𝜈 . Note that we will consider here and
in the remaining sections only torsion-free theories. The second is the Palatini formalism [481]
in which 𝑔𝜇𝜈 and Γ𝛼

𝛽𝛾 are treated as independent variables when we vary the action. These two
approaches give rise to different field equations for a non-linear Lagrangian density in 𝑅, while
for the GR action they are identical with each other. In this article we mainly review the former
approach unless otherwise stated. In Section 9 we discuss the Palatini formalism in detail.

The model with 𝑓(𝑅) = 𝑅+𝛼𝑅2 (𝛼 > 0) can lead to the accelerated expansion of the Universe
because of the presence of the 𝛼𝑅2 term. In fact, this is the first model of inflation proposed
by Starobinsky in 1980 [564]. As we will see in Section 7, this model is well consistent with the
temperature anisotropies observed in CMB and thus it can be a viable alternative to the scalar-
field models of inflation. Reheating after inflation proceeds by a gravitational particle production
during the oscillating phase of the Ricci scalar [565, 606, 426].

The discovery of dark energy in 1998 also stimulated the idea that cosmic acceleration today may
originate from some modification of gravity to GR. Dark energy models based on f (R) theories
have been extensively studied as the simplest modified gravity scenario to realize the late-time
acceleration. The model with a Lagrangian density 𝑓(𝑅) = 𝑅−𝛼/𝑅𝑛 (𝛼 > 0, 𝑛 > 0) was proposed
for dark energy in the metric formalism [113, 120, 114, 143, 456]. However it was shown that
this model is plagued by a matter instability [215, 244] as well as by a difficulty to satisfy local
gravity constraints [469, 470, 245, 233, 154, 448, 134]. Moreover it does not possess a standard
matter-dominated epoch because of a large coupling between dark energy and dark matter [28, 29].
These results show how non-trivial it is to obtain a viable f (R) model. Amendola et al. [26]
derived conditions for the cosmological viability of f (R) dark energy models. In local regions
whose densities are much larger than the homogeneous cosmological density, the models need to
be close to GR for consistency with local gravity constraints. A number of viable f (R) models
that can satisfy both cosmological and local gravity constraints have been proposed in . [26, 382,
31, 306, 568, 35, 587, 206, 164, 396]. Since the law of gravity gets modified on large distances in
f (R) models, this leaves several interesting observational signatures such as the modification to the
spectra of galaxy clustering [146, 74, 544, 526, 251, 597, 493], CMB [627, 544, 382, 545], and weak
lensing [595, 528]. In this review we will discuss these topics in detail, paying particular attention
to the construction of viable f (R) models and resulting observational consequences.

The f (R) gravity in the metric formalism corresponds to generalized Brans–Dicke (BD) the-
ory [100] with a BD parameter 𝜔BD = 0 [467, 579, 152]. Unlike original BD theory [100], there
exists a potential for a scalar-field degree of freedom (called “scalaron” [564]) with a gravitational
origin. If the mass of the scalaron always remains as light as the present Hubble parameter 𝐻0,
it is not possible to satisfy local gravity constraints due to the appearance of a long-range fifth
force with a coupling of the order of unity. One can design the field potential of f (R) gravity
such that the mass of the field is heavy in the region of high density. The viable f (R) models
mentioned above have been constructed to satisfy such a condition. Then the interaction range of
the fifth force becomes short in the region of high density, which allows the possibility that the
models are compatible with local gravity tests. More precisely the existence of a matter coupling,
in the Einstein frame, gives rise to an extremum of the effective field potential around which the
field can be stabilized. As long as a spherically symmetric body has a “thin-shell” around its
surface, the field is nearly frozen in most regions inside the body. Then the effective coupling
between the field and non-relativistic matter outside the body can be strongly suppressed through
the chameleon mechanism [344, 343]. The experiments for the violation of equivalence principle as
well as a number of solar system experiments place tight constraints on dark energy models based
on f (R) theories [306, 251, 587, 134, 101].
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f (R) Theories 7

The spherically symmetric solutions mentioned above have been derived under the weak gravity
backgrounds where the background metric is described by a Minkowski space-time. In strong
gravitational backgrounds such as neutron stars and white dwarfs, we need to take into account
the backreaction of gravitational potentials to the field equation. The structure of relativistic stars
in f (R) gravity has been studied by a number of authors [349, 350, 594, 43, 600, 466, 42, 167].
Originally the difficulty of obtaining relativistic stars was pointed out in [349] in connection to the
singularity problem of f (R) dark energy models in the high-curvature regime [266]. For constant
density stars, however, a thin-shell field profile has been analytically derived in [594] for chameleon
models in the Einstein frame. The existence of relativistic stars in f (R) gravity has been also
confirmed numerically for the stars with constant [43, 600] and varying [42] densities. In this
review we shall also discuss this issue.

It is possible to extend f (R) gravity to generalized BD theory with a field potential and an
arbitrary BD parameter 𝜔BD. If we make a conformal transformation to the Einstein frame [213,
609, 408, 611, 249, 268], we can show that BD theory with a field potential corresponds to the
coupled quintessence scenario [23] with a coupling 𝑄 between the field and non-relativistic matter.
This coupling is related to the BD parameter via the relation 1/(2𝑄2) = 3+ 2𝜔BD [343, 596]. One
can recover GR by taking the limit𝑄→ 0, i.e., 𝜔BD → ∞. The f (R) gravity in the metric formalism
corresponds to 𝑄 = −1/

√
6 [28], i.e., 𝜔BD = 0. For large coupling models with |𝑄| = 𝒪(1) it is

possible to design scalar-field potentials such that the chameleon mechanism works to reduce the
effective matter coupling, while at the same time the field is sufficiently light to be responsible for
the late-time cosmic acceleration. This generalized BD theory also leaves a number of interesting
observational and experimental signatures [596].

In addition to the Ricci scalar 𝑅, one can construct other scalar quantities such as 𝑅𝜇𝜈𝑅
𝜇𝜈

and 𝑅𝜇𝜈𝜌𝜎𝑅
𝜇𝜈𝜌𝜎 from the Ricci tensor 𝑅𝜇𝜈 and Riemann tensor 𝑅𝜇𝜈𝜌𝜎 [142]. For the Gauss–

Bonnet (GB) curvature invariant defined by 𝒢 ≡ 𝑅2 − 4𝑅𝛼𝛽 𝑅
𝛼𝛽 +𝑅𝛼𝛽𝛾𝛿 𝑅

𝛼𝛽𝛾𝛿, it is known that
one can avoid the appearance of spurious spin-2 ghosts [572, 67, 302] (see also [98, 465, 153, 447,
110, 181, 109]). In order to give rise to some contribution of the GB term to the Friedmann
equation, we require that (i) the GB term couples to a scalar field 𝜑, i.e., 𝐹 (𝜑)𝒢 or (ii) the
Lagrangian density 𝑓 is a function of 𝒢, i.e., 𝑓(𝒢). The GB coupling in the case (i) appears in low-
energy string effective action [275] and cosmological solutions in such a theory have been studied
extensively (see [34, 273, 105, 147, 588, 409, 468] for the construction of nonsingular cosmological
solutions and [463, 360, 361, 593, 523, 452, 453, 381, 25] for the application to dark energy). In
the case (ii) it is possible to construct viable models that are consistent with both the background
cosmological evolution and local gravity constraints [458, 188, 189] (see also [165, 180, 178, 383,
633, 599]). However density perturbations in perfect fluids exhibit negative instabilities during
both the radiation and the matter domination, irrespective of the form of 𝑓(𝒢) [383, 182]. This
growth of perturbations gets stronger on smaller scales, which is difficult to be compatible with
the observed galaxy spectrum unless the deviation from GR is very small. We shall review such
theories as well as other modified gravity theories.

This review is organized as follows. In Section 2 we present the field equations of f (R) gravity
in the metric formalism. In Section 3 we apply f (R) theories to the inflationary universe. Section 4
is devoted to the construction of cosmologically viable f (R) dark energy models. In Section 5 local
gravity constraints on viable f (R) dark energy models will be discussed. In Section 6 we provide
the equations of linear cosmological perturbations for general modified gravity theories including
metric f (R) gravity as a special case. In Section 7 we study the spectra of scalar and tensor
metric perturbations generated during inflation based on f (R) theories. In Section 8 we discuss
the evolution of matter density perturbations in f (R) dark energy models and place constraints
on model parameters from the observations of large-scale structure and CMB. Section 9 is devoted
to the viability of the Palatini variational approach in f (R) gravity. In Section 10 we construct
viable dark energy models based on BD theory with a potential as an extension of f (R) theories.
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8 Antonio De Felice and Shinji Tsujikawa

In Section 11 the structure of relativistic stars in f (R) theories will be discussed in detail. In
Section 12 we provide a brief review of Gauss–Bonnet gravity and resulting observational and
experimental consequences. In Section 13 we discuss a number of other aspects of f (R) gravity
and modified gravity. Section 14 is devoted to conclusions.

There are other review articles on f (R) gravity [556, 555, 618] and modified gravity [171, 459,
126, 397, 217]. Compared to those articles, we put more weights on observational and experimental
aspects of f (R) theories. This is particularly useful to place constraints on inflation and dark energy
models based on f (R) theories. The readers who are interested in the more detailed history of
f (R) theories and fourth-order gravity may have a look at the review articles by Schmidt [531] and
Sotiriou and Faraoni [556].

In this review we use units such that 𝑐 = ~ = 𝑘𝐵 = 1, where 𝑐 is the speed of light, ~ is reduced
Planck’s constant, and 𝑘𝐵 is Boltzmann’s constant. We define 𝜅2 = 8𝜋𝐺 = 8𝜋/𝑚2

pl = 1/𝑀2
pl,

where 𝐺 is the gravitational constant, 𝑚pl = 1.22 × 1019 GeV is the Planck mass with a reduced
value 𝑀pl = 𝑚pl/

√
8𝜋 = 2.44× 1018 GeV. Throughout this review, we use a dot for the derivative

with respect to cosmic time 𝑡 and “,𝑋” for the partial derivative with respect to the variable 𝑋, e.g.,
𝑓,𝑅 ≡ 𝜕𝑓/𝜕𝑅 and 𝑓,𝑅𝑅 ≡ 𝜕2𝑓/𝜕𝑅2. We use the metric signature (−,+,+,+). The Greek indices
𝜇 and 𝜈 run from 0 to 3, whereas the Latin indices 𝑖 and 𝑗 run from 1 to 3 (spatial components).
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f (R) Theories 9

2 Field Equations in the Metric Formalism

We start with the 4-dimensional action in f (R) gravity:

𝑆 =
1

2𝜅2

∫︁
d4𝑥

√
−𝑔 𝑓(𝑅) +

∫︁
d4𝑥ℒ𝑀 (𝑔𝜇𝜈 ,Ψ𝑀 ) , (2.1)

where 𝜅2 = 8𝜋𝐺, 𝑔 is the determinant of the metric 𝑔𝜇𝜈 , and ℒ𝑀 is a matter Lagrangian1 that
depends on 𝑔𝜇𝜈 and matter fields Ψ𝑀 . The Ricci scalar 𝑅 is defined by 𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈 , where the
Ricci tensor 𝑅𝜇𝜈 is

𝑅𝜇𝜈 = 𝑅𝛼
𝜇𝛼𝜈 = 𝜕𝜆Γ

𝜆
𝜇𝜈 − 𝜕𝜇Γ

𝜆
𝜆𝜈 + Γ𝜆

𝜇𝜈Γ
𝜌
𝜌𝜆 − Γ𝜆

𝜈𝜌Γ
𝜌
𝜇𝜆 . (2.2)

In the case of the torsion-less metric formalism, the connections Γ𝛼
𝛽𝛾 are the usual metric connec-

tions defined in terms of the metric tensor 𝑔𝜇𝜈 , as

Γ𝛼
𝛽𝛾 =

1

2
𝑔𝛼𝜆

(︂
𝜕𝑔𝛾𝜆
𝜕𝑥𝛽

+
𝜕𝑔𝜆𝛽
𝜕𝑥𝛾

− 𝜕𝑔𝛽𝛾
𝜕𝑥𝜆

)︂
. (2.3)

This follows from the metricity relation, ∇𝜆𝑔𝜇𝜈 = 𝜕𝑔𝜇𝜈/𝜕𝑥
𝜆 − 𝑔𝜌𝜈Γ

𝜌
𝜇𝜆 − 𝑔𝜇𝜌Γ

𝜌
𝜈𝜆 = 0.

2.1 Equations of motion

The field equation can be derived by varying the action (2.1) with respect to 𝑔𝜇𝜈 :

Σ𝜇𝜈 ≡ 𝐹 (𝑅)𝑅𝜇𝜈(𝑔)−
1

2
𝑓(𝑅)𝑔𝜇𝜈 −∇𝜇∇𝜈𝐹 (𝑅) + 𝑔𝜇𝜈�𝐹 (𝑅) = 𝜅2𝑇 (𝑀)

𝜇𝜈 , (2.4)

where 𝐹 (𝑅) ≡ 𝜕𝑓/𝜕𝑅. 𝑇
(𝑀)
𝜇𝜈 is the energy-momentum tensor of the matter fields defined by the

variational derivative of ℒ𝑀 in terms of 𝑔𝜇𝜈 :

𝑇 (𝑀)
𝜇𝜈 = − 2√

−𝑔
𝛿ℒ𝑀

𝛿𝑔𝜇𝜈
. (2.5)

This satisfies the continuity equation

∇𝜇𝑇 (𝑀)
𝜇𝜈 = 0 , (2.6)

as well as Σ𝜇𝜈 , i.e., ∇𝜇Σ𝜇𝜈 = 0.2 The trace of Eq. (2.4) gives

3�𝐹 (𝑅) + 𝐹 (𝑅)𝑅− 2𝑓(𝑅) = 𝜅2𝑇 , (2.7)

where 𝑇 = 𝑔𝜇𝜈𝑇
(𝑀)
𝜇𝜈 and �𝐹 = (1/

√
−𝑔)𝜕𝜇(

√
−𝑔𝑔𝜇𝜈𝜕𝜈𝐹 ).

Einstein gravity, without the cosmological constant, corresponds to 𝑓(𝑅) = 𝑅 and 𝐹 (𝑅) = 1,
so that the term �𝐹 (𝑅) in Eq. (2.7) vanishes. In this case we have 𝑅 = −𝜅2𝑇 and hence the
Ricci scalar 𝑅 is directly determined by the matter (the trace 𝑇 ). In modified gravity the term
�𝐹 (𝑅) does not vanish in Eq. (2.7), which means that there is a propagating scalar degree of
freedom, 𝜙 ≡ 𝐹 (𝑅). The trace equation (2.7) determines the dynamics of the scalar field 𝜙
(dubbed “scalaron” [564]).

1 Note that we do not take into account a direct coupling between the Ricci scalar and matter (such as 𝑓1(𝑅)ℒ𝑀 )
considered in [439, 80, 81, 82, 248].

2 This result is a consequence of the action principle, but it can be derived also by a direct calculation, using the
Bianchi identities.
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10 Antonio De Felice and Shinji Tsujikawa

The field equation (2.4) can be written in the following form [568]

𝐺𝜇𝜈 = 𝜅2
(︁
𝑇 (𝑀)
𝜇𝜈 + 𝑇 (𝐷)

𝜇𝜈

)︁
, (2.8)

where 𝐺𝜇𝜈 ≡ 𝑅𝜇𝜈 − (1/2)𝑔𝜇𝜈𝑅 and

𝜅2𝑇 (𝐷)
𝜇𝜈 ≡ 𝑔𝜇𝜈(𝑓 −𝑅)/2 +∇𝜇∇𝜈𝐹 − 𝑔𝜇𝜈�𝐹 + (1− 𝐹 )𝑅𝜇𝜈 . (2.9)

Since ∇𝜇𝐺𝜇𝜈 = 0 and ∇𝜇𝑇
(𝑀)
𝜇𝜈 = 0, it follows that

∇𝜇𝑇 (𝐷)
𝜇𝜈 = 0 . (2.10)

Hence the continuity equation holds, not only for Σ𝜇𝜈 , but also for the effective energy-momentum

tensor 𝑇
(𝐷)
𝜇𝜈 defined in Eq. (2.9). This is sometimes convenient when we study the dark energy

equation of state [306, 568] as well as the equilibrium description of thermodynamics for the horizon
entropy [53].

There exists a de Sitter point that corresponds to a vacuum solution (𝑇 = 0) at which the Ricci
scalar is constant. Since �𝐹 (𝑅) = 0 at this point, we obtain

𝐹 (𝑅)𝑅− 2𝑓(𝑅) = 0 . (2.11)

The model 𝑓(𝑅) = 𝛼𝑅2 satisfies this condition, so that it gives rise to the exact de Sitter so-
lution [564]. In the model 𝑓(𝑅) = 𝑅 + 𝛼𝑅2, because of the linear term in 𝑅, the inflationary
expansion ends when the term 𝛼𝑅2 becomes smaller than the linear term 𝑅 (as we will see in
Section 3). This is followed by a reheating stage in which the oscillation of 𝑅 leads to the gravi-
tational particle production. It is also possible to use the de Sitter point given by Eq. (2.11) for
dark energy.

We consider the spatially flat Friedmann–Lemâıtre–Robertson–Walker (FLRW) spacetime with
a time-dependent scale factor 𝑎(𝑡) and a metric

d𝑠2 = 𝑔𝜇𝜈d𝑥
𝜇d𝑥𝜈 = −d𝑡2 + 𝑎2(𝑡) d𝑥2 , (2.12)

where 𝑡 is cosmic time. For this metric the Ricci scalar 𝑅 is given by

𝑅 = 6(2𝐻2 + 𝐻̇) , (2.13)

where 𝐻 ≡ 𝑎̇/𝑎 is the Hubble parameter and a dot stands for a derivative with respect to 𝑡. The
present value of 𝐻 is given by

𝐻0 = 100ℎ km sec−1 Mpc−1 = 2.1332ℎ× 10−42 GeV , (2.14)

where ℎ = 0.72± 0.08 describes the uncertainty of 𝐻0 [264].

The energy-momentum tensor of matter is given by 𝑇𝜇(𝑀)
𝜈 = diag (−𝜌𝑀 , 𝑃𝑀 , 𝑃𝑀 , 𝑃𝑀 ), where

𝜌𝑀 is the energy density and 𝑃𝑀 is the pressure. The field equations (2.4) in the flat FLRW
background give

3𝐹𝐻2 = (𝐹𝑅− 𝑓)/2− 3𝐻𝐹̇ + 𝜅2𝜌𝑀 , (2.15)

−2𝐹𝐻̇ = 𝐹 −𝐻𝐹̇ + 𝜅2(𝜌𝑀 + 𝑃𝑀 ) , (2.16)

where the perfect fluid satisfies the continuity equation

𝜌̇𝑀 + 3𝐻(𝜌𝑀 + 𝑃𝑀 ) = 0 . (2.17)
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f (R) Theories 11

We also introduce the equation of state of matter, 𝑤𝑀 ≡ 𝑃𝑀/𝜌𝑀 . As long as 𝑤𝑀 is constant,
the integration of Eq. (2.17) gives 𝜌𝑀 ∝ 𝑎−3(1+𝑤𝑀 ). In Section 4 we shall take into account both
non-relativistic matter (𝑤𝑚 = 0) and radiation (𝑤𝑟 = 1/3) to discuss cosmological dynamics of
f (R) dark energy models.

Note that there are some works about the Einstein static universes in f (R) gravity [91, 532].
Although Einstein static solutions exist for a wide variety of f (R) models in the presence of a
barotropic perfect fluid, these solutions have been shown to be unstable against either homogeneous
or inhomogeneous perturbations [532].

2.2 Equivalence with Brans–Dicke theory

The f (R) theory in the metric formalism can be cast in the form of Brans–Dicke (BD) theory [100]
with a potential for the effective scalar-field degree of freedom (scalaron). Let us consider the
following action with a new field 𝜒,

𝑆 =
1

2𝜅2

∫︁
d4𝑥

√
−𝑔 [𝑓(𝜒) + 𝑓,𝜒(𝜒)(𝑅− 𝜒)] +

∫︁
d4𝑥ℒ𝑀 (𝑔𝜇𝜈 ,Ψ𝑀 ) . (2.18)

Varying this action with respect to 𝜒, we obtain

𝑓,𝜒𝜒(𝜒)(𝑅− 𝜒) = 0 . (2.19)

Provided 𝑓,𝜒𝜒(𝜒) ̸= 0 it follows that 𝜒 = 𝑅. Hence the action (2.18) recovers the action (2.1) in
f (R) gravity. If we define

𝜙 ≡ 𝑓,𝜒(𝜒) , (2.20)

the action (2.18) can be expressed as

𝑆 =

∫︁
d4𝑥

√
−𝑔
[︂

1

2𝜅2
𝜙𝑅− 𝑈(𝜙)

]︂
+

∫︁
d4𝑥ℒ𝑀 (𝑔𝜇𝜈 ,Ψ𝑀 ) , (2.21)

where 𝑈(𝜙) is a field potential given by

𝑈(𝜙) =
𝜒(𝜙)𝜙− 𝑓(𝜒(𝜙))

2𝜅2
. (2.22)

Meanwhile the action in BD theory [100] with a potential 𝑈(𝜙) is given by

𝑆 =

∫︁
d4𝑥

√
−𝑔
[︂
1

2
𝜙𝑅− 𝜔BD

2𝜙
(∇𝜙)2 − 𝑈(𝜙)

]︂
+

∫︁
d4𝑥ℒ𝑀 (𝑔𝜇𝜈 ,Ψ𝑀 ) , (2.23)

where 𝜔BD is the BD parameter and (∇𝜙)2 ≡ 𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙. Comparing Eq. (2.21) with Eq. (2.23),
it follows that f (R) theory in the metric formalism is equivalent to BD theory with the parameter
𝜔BD = 0 [467, 579, 152] (in the unit 𝜅2 = 1). In Palatini f (R) theory where the metric 𝑔𝜇𝜈 and
the connection Γ𝛼

𝛽𝛾 are treated as independent variables, the Ricci scalar is different from that in
metric f (R) theory. As we will see in Sections 9.1 and 10.1, f (R) theory in the Palatini formalism
is equivalent to BD theory with the parameter 𝜔BD = −3/2.

2.3 Conformal transformation

The action (2.1) in f (R) gravity corresponds to a non-linear function 𝑓 in terms of 𝑅. It is possible
to derive an action in the Einstein frame under the conformal transformation [213, 609, 408, 611,
249, 268, 410]:

𝑔𝜇𝜈 = Ω2 𝑔𝜇𝜈 , (2.24)
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12 Antonio De Felice and Shinji Tsujikawa

where Ω2 is the conformal factor and a tilde represents quantities in the Einstein frame. The Ricci
scalars 𝑅 and 𝑅̃ in the two frames have the following relation

𝑅 = Ω2(𝑅̃+ 6�̃𝜔 − 6𝑔𝜇𝜈𝜕𝜇𝜔𝜕𝜈𝜔) , (2.25)

where

𝜔 ≡ ln Ω , 𝜕𝜇𝜔 ≡ 𝜕𝜔

𝜕𝑥̃𝜇
, �̃𝜔 ≡ 1√

−𝑔
𝜕𝜇(
√︀
−𝑔 𝑔𝜇𝜈𝜕𝜈𝜔) . (2.26)

We rewrite the action (2.1) in the form

𝑆 =

∫︁
d4𝑥

√
−𝑔
(︂

1

2𝜅2
𝐹𝑅− 𝑈

)︂
+

∫︁
d4𝑥ℒ𝑀 (𝑔𝜇𝜈 ,Ψ𝑀 ) , (2.27)

where

𝑈 =
𝐹𝑅− 𝑓

2𝜅2
. (2.28)

Using Eq. (2.25) and the relation
√
−𝑔 = Ω−4

√
−𝑔, the action (2.27) is transformed as

𝑆 =

∫︁
d4𝑥
√︀
−𝑔
[︂

1

2𝜅2
𝐹Ω−2(𝑅̃+ 6�̃𝜔 − 6𝑔𝜇𝜈𝜕𝜇𝜔𝜕𝜈𝜔)− Ω−4𝑈

]︂
+

∫︁
d4𝑥ℒ𝑀 (Ω−2 𝑔𝜇𝜈 ,Ψ𝑀 ) .

(2.29)
We obtain the Einstein frame action (linear action in 𝑅̃) for the choice

Ω2 = 𝐹 . (2.30)

This choice is consistent if 𝐹 > 0. We introduce a new scalar field 𝜑 defined by

𝜅𝜑 ≡
√︀

3/2 ln 𝐹 . (2.31)

From the definition of 𝜔 in Eq. (2.26) we have that 𝜔 = 𝜅𝜑/
√
6. Using Eq. (2.26), the integral∫︀

d4𝑥
√
−𝑔 �̃𝜔 vanishes on account of the Gauss’s theorem. Then the action in the Einstein frame

is

𝑆𝐸 =

∫︁
d4𝑥
√︀
−𝑔
[︂

1

2𝜅2
𝑅̃− 1

2
𝑔𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑− 𝑉 (𝜑)

]︂
+

∫︁
d4𝑥ℒ𝑀 (𝐹−1(𝜑)𝑔𝜇𝜈 ,Ψ𝑀 ) , (2.32)

where

𝑉 (𝜑) =
𝑈

𝐹 2
=
𝐹𝑅− 𝑓

2𝜅2𝐹 2
. (2.33)

Hence the Lagrangian density of the field 𝜑 is given by ℒ𝜑 = − 1
2𝑔

𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑 − 𝑉 (𝜑) with the
energy-momentum tensor

𝑇 (𝜑)
𝜇𝜈 = − 2√

−𝑔
𝛿(
√
−𝑔ℒ𝜑)

𝛿𝑔𝜇𝜈
= 𝜕𝜇𝜑𝜕𝜈𝜑− 𝑔𝜇𝜈

[︂
1

2
𝑔𝛼𝛽𝜕𝛼𝜑𝜕𝛽𝜑+ 𝑉 (𝜑)

]︂
. (2.34)

The conformal factor Ω2 = 𝐹 = exp(
√︀

2/3𝜅𝜑) is field-dependent. From the matter ac-
tion (2.32) the scalar field 𝜑 is directly coupled to matter in the Einstein frame. In order to
see this more explicitly, we take the variation of the action (2.32) with respect to the field 𝜑:

−𝜕𝜇
(︂
𝜕(
√
−𝑔ℒ𝜑)

𝜕(𝜕𝜇𝜑)

)︂
+
𝜕(
√
−𝑔ℒ𝜑)

𝜕𝜑
+
𝜕ℒ𝑀

𝜕𝜑
= 0 , (2.35)
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that is

�̃𝜑− 𝑉,𝜑 +
1√
−𝑔

𝜕ℒ𝑀

𝜕𝜑
= 0 , where �̃𝜑 ≡ 1√

−𝑔
𝜕𝜇(
√︀

−𝑔 𝑔𝜇𝜈𝜕𝜈𝜑) . (2.36)

Using Eq. (2.24) and the relations
√
−𝑔 = 𝐹 2√−𝑔 and 𝑔𝜇𝜈 = 𝐹−1𝑔𝜇𝜈 , the energy-momentum

tensor of matter is transformed as

𝑇 (𝑀)
𝜇𝜈 = − 2√

−𝑔
𝛿ℒ𝑀

𝛿𝑔𝜇𝜈
=
𝑇

(𝑀)
𝜇𝜈

𝐹
. (2.37)

The energy-momentum tensor of perfect fluids in the Einstein frame is given by

𝑇𝜇(𝑀)
𝜈 = diag(−𝜌𝑀 , 𝑃𝑀 , 𝑃𝑀 , 𝑃𝑀 ) = diag(−𝜌𝑀/𝐹 2, 𝑃𝑀/𝐹

2, 𝑃𝑀/𝐹
2, 𝑃𝑀/𝐹

2) . (2.38)

The derivative of the Lagrangian density ℒ𝑀 = ℒ𝑀 (𝑔𝜇𝜈) = ℒ𝑀 (𝐹−1(𝜑)𝑔𝜇𝜈) with respect to 𝜑 is

𝜕ℒ𝑀

𝜕𝜑
=
𝛿ℒ𝑀

𝛿𝑔𝜇𝜈
𝜕𝑔𝜇𝜈

𝜕𝜑
=

1

𝐹 (𝜑)

𝛿ℒ𝑀

𝛿𝑔𝜇𝜈
𝜕(𝐹 (𝜑)𝑔𝜇𝜈)

𝜕𝜑
= −

√︀
−𝑔 𝐹,𝜑

2𝐹
𝑇 (𝑀)
𝜇𝜈 𝑔𝜇𝜈 . (2.39)

The strength of the coupling between the field and matter can be quantified by the following
quantity

𝑄 ≡ − 𝐹,𝜑

2𝜅𝐹
= − 1√

6
, (2.40)

which is constant in f (R) gravity [28]. It then follows that

𝜕ℒ𝑀

𝜕𝜑
=
√︀
−𝑔 𝜅𝑄𝑇 , (2.41)

where 𝑇 = 𝑔𝜇𝜈𝑇
𝜇𝜈(𝑀) = −𝜌𝑀 + 3𝑃𝑀 . Substituting Eq. (2.41) into Eq. (2.36), we obtain the field

equation in the Einstein frame:
�̃𝜑− 𝑉,𝜑 + 𝜅𝑄𝑇 = 0 . (2.42)

This shows that the field 𝜑 is directly coupled to matter apart from radiation (𝑇 = 0).
Let us consider the flat FLRW spacetime with the metric (2.12) in the Jordan frame. The

metric in the Einstein frame is given by

d𝑠2 = Ω2d𝑠2 = 𝐹 (−d𝑡2 + 𝑎2(𝑡) d𝑥2) ,

= −d𝑡2 + 𝑎̃2(𝑡) d𝑥2 , (2.43)

which leads to the following relations (for 𝐹 > 0)

d𝑡 =
√
𝐹d𝑡 , 𝑎̃ =

√
𝐹𝑎 , (2.44)

where
𝐹 = 𝑒−2𝑄𝜅𝜑 . (2.45)

Note that Eq. (2.45) comes from the integration of Eq. (2.40) for constant 𝑄. The field equa-
tion (2.42) can be expressed as

d2𝜑

d𝑡2
+ 3𝐻̃

d𝜑

d𝑡
+ 𝑉,𝜑 = −𝜅𝑄(𝜌𝑀 − 3𝑃𝑀 ) , (2.46)

where

𝐻̃ ≡ 1

𝑎̃

d𝑎̃

d𝑡
=

1√
𝐹

(︃
𝐻 +

𝐹̇

2𝐹

)︃
. (2.47)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2010-3

http://www.livingreviews.org/lrr-2010-3


14 Antonio De Felice and Shinji Tsujikawa

Defining the energy density 𝜌𝜑 = 1
2 (d𝜑/d𝑡)

2 + 𝑉 (𝜑) and the pressure 𝑃𝜑 = 1
2 (d𝜑/d𝑡)

2 − 𝑉 (𝜑),
Eq. (2.46) can be written as

d𝜌𝜑

d𝑡
+ 3𝐻̃(𝜌𝜑 + 𝑃𝜑) = −𝜅𝑄(𝜌𝑀 − 3𝑃𝑀 )

d𝜑

d𝑡
. (2.48)

Under the transformation (2.44) together with 𝜌𝑀 = 𝐹 2𝜌𝑀 , 𝑃𝑀 = 𝐹 2𝑃𝑀 , and 𝐻 = 𝐹 1/2[𝐻̃ −
(d𝐹/d𝑡)/2𝐹 ], the continuity equation (2.17) is transformed as

d𝜌𝑀

d𝑡
+ 3𝐻̃(𝜌𝑀 + 𝑃𝑀 ) = 𝜅𝑄(𝜌𝑀 − 3𝑃𝑀 )

d𝜑

d𝑡
. (2.49)

Equations (2.48) and (2.49) show that the field and matter interacts with each other, while the
total energy density 𝜌𝑇 = 𝜌𝜑+ 𝜌𝑀 and the pressure 𝑃𝑇 = 𝑃𝜑+𝑃𝑀 satisfy the continuity equation

d𝜌𝑇 /d𝑡 + 3𝐻̃(𝜌𝑇 + 𝑃𝑇 ) = 0. More generally, Eqs. (2.48) and (2.49) can be expressed in terms of
the energy-momentum tensors defined in Eqs. (2.34) and (2.37):

∇̃𝜇𝑇
𝜇(𝜑)
𝜈 = −𝑄𝑇 ∇̃𝜈𝜑 , ∇̃𝜇𝑇

𝜇(𝑀)
𝜈 = 𝑄𝑇 ∇̃𝜈𝜑 , (2.50)

which correspond to the same equations in coupled quintessence studied in [23] (see also [22]).
In the absence of a field potential 𝑉 (𝜑) (i.e., massless field) the field mediates a long-range

fifth force with a large coupling (|𝑄| ≃ 0.4), which contradicts with experimental tests in the solar
system. In f (R) gravity a field potential with gravitational origin is present, which allows the
possibility of compatibility with local gravity tests through the chameleon mechanism [344, 343].

In f (R) gravity the field 𝜑 is coupled to non-relativistic matter (dark matter, baryons) with a
universal coupling 𝑄 = −1/

√
6. We consider the frame in which the baryons obey the standard

continuity equation 𝜌𝑚 ∝ 𝑎−3, i.e., the Jordan frame, as the “physical” frame in which physical
quantities are compared with observations and experiments. It is sometimes convenient to refer
the Einstein frame in which a canonical scalar field is coupled to non-relativistic matter. In both
frames we are treating the same physics, but using the different time and length scales gives rise
to the apparent difference between the observables in two frames. Our attitude throughout the
review is to discuss observables in the Jordan frame. When we transform to the Einstein frame for
some convenience, we go back to the Jordan frame to discuss physical quantities.
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3 Inflation in f (R) Theories

Most models of inflation in the early universe are based on scalar fields appearing in superstring and
supergravity theories. Meanwhile, the first inflation model proposed by Starobinsky [564] is related
to the conformal anomaly in quantum gravity3. Unlike the models such as “old inflation” [339, 291,
524] this scenario is not plagued by the graceful exit problem – the period of cosmic acceleration
is followed by the radiation-dominated epoch with a transient matter-dominated phase [565, 606,
426]. Moreover it predicts nearly scale-invariant spectra of gravitational waves and temperature
anisotropies consistent with CMB observations [563, 436, 566, 355, 315]. In this section we review
the dynamics of inflation and reheating. In Section 7 we will discuss the power spectra of scalar
and tensor perturbations generated in f (R) inflation models.

3.1 Inflationary dynamics

We consider the models of the form

𝑓(𝑅) = 𝑅+ 𝛼𝑅𝑛 , (𝛼 > 0, 𝑛 > 0) , (3.1)

which include the Starobinsky’s model [564] as a specific case (𝑛 = 2). In the absence of the matter
fluid (𝜌𝑀 = 0), Eq. (2.15) gives

3(1 + 𝑛𝛼𝑅𝑛−1)𝐻2 =
1

2
(𝑛− 1)𝛼𝑅𝑛 − 3𝑛(𝑛− 1)𝛼𝐻𝑅𝑛−2𝑅̇ . (3.2)

The cosmic acceleration can be realized in the regime 𝐹 = 1 + 𝑛𝛼𝑅𝑛−1 ≫ 1. Under the approxi-
mation 𝐹 ≃ 𝑛𝛼𝑅𝑛−1, we divide Eq. (3.2) by 3𝑛𝛼𝑅𝑛−1 to give

𝐻2 ≃ 𝑛− 1

6𝑛

(︃
𝑅− 6𝑛𝐻

𝑅̇

𝑅

)︃
. (3.3)

During inflation the Hubble parameter 𝐻 evolves slowly so that one can use the approximation
|𝐻̇/𝐻2| ≪ 1 and |𝐻̈/(𝐻𝐻̇)| ≪ 1. Then Eq. (3.3) reduces to

𝐻̇

𝐻2
≃ −𝜖1, 𝜖1 =

2− 𝑛

(𝑛− 1)(2𝑛− 1)
. (3.4)

Integrating this equation for 𝜖1 > 0, we obtain the solution

𝐻 ≃ 1

𝜖1𝑡
, 𝑎 ∝ 𝑡1/𝜖1 . (3.5)

The cosmic acceleration occurs for 𝜖1 < 1, i.e., 𝑛 > (1+
√
3)/2. When 𝑛 = 2 one has 𝜖1 = 0, so that

𝐻 is constant in the regime 𝐹 ≫ 1. The models with 𝑛 > 2 lead to super inflation characterized
by 𝐻̇ > 0 and 𝑎 ∝ |𝑡0 − 𝑡|−1/|𝜖1| (𝑡0 is a constant). Hence the standard inflation with decreasing
𝐻 occurs for (1 +

√
3)/2 < 𝑛 < 2.

In the following let us focus on the Starobinsky’s model given by

𝑓(𝑅) = 𝑅+𝑅2/(6𝑀2) , (3.6)

3 There are some other works about theoretical constructions of f (R) models based on quantum gravity, super-
gravity and extra dimensional theories [341, 345, 537, 406, 163, 287, 288, 518, 519].
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where the constant 𝑀 has a dimension of mass. The presence of the linear term in 𝑅 eventually
causes inflation to end. Without neglecting this linear term, the combination of Eqs. (2.15) and
(2.16) gives

𝐻̈ − 𝐻̇2

2𝐻
+

1

2
𝑀2𝐻 = −3𝐻𝐻̇ , (3.7)

𝑅̈+ 3𝐻𝑅̇+𝑀2𝑅 = 0 . (3.8)

During inflation the first two terms in Eq. (3.7) can be neglected relative to others, which gives
𝐻̇ ≃ −𝑀2/6. We then obtain the solution

𝐻 ≃ 𝐻𝑖 − (𝑀2/6)(𝑡− 𝑡𝑖) , (3.9)

𝑎 ≃ 𝑎𝑖 exp
[︀
𝐻𝑖(𝑡− 𝑡𝑖)− (𝑀2/12)(𝑡− 𝑡𝑖)

2
]︀
, (3.10)

𝑅 ≃ 12𝐻2 −𝑀2 , (3.11)

where 𝐻𝑖 and 𝑎𝑖 are the Hubble parameter and the scale factor at the onset of inflation (𝑡 = 𝑡𝑖),
respectively. This inflationary solution is a transient attractor of the dynamical system [407]. The
accelerated expansion continues as long as the slow-roll parameter

𝜖1 = − 𝐻̇

𝐻2
≃ 𝑀2

6𝐻2
, (3.12)

is smaller than the order of unity, i.e., 𝐻2 &𝑀2. One can also check that the approximate relation
3𝐻𝑅̇ +𝑀2𝑅 ≃ 0 holds in Eq. (3.8) by using 𝑅 ≃ 12𝐻2. The end of inflation (at time 𝑡 = 𝑡𝑓 )
is characterized by the condition 𝜖𝑓 ≃ 1, i.e., 𝐻𝑓 ≃ 𝑀/

√
6. From Eq. (3.11) this corresponds

to the epoch at which the Ricci scalar decreases to 𝑅 ≃ 𝑀2. As we will see later, the WMAP
normalization of the CMB temperature anisotropies constrains the mass scale to be𝑀 ≃ 1013 GeV.
Note that the phase space analysis for the model (3.6) was carried out in [407, 24, 131].

We define the number of e-foldings from 𝑡 = 𝑡𝑖 to 𝑡 = 𝑡𝑓 :

𝑁 ≡
∫︁ 𝑡𝑓

𝑡𝑖

𝐻 d𝑡 ≃ 𝐻𝑖(𝑡𝑓 − 𝑡𝑖)−
𝑀2

12
(𝑡𝑓 − 𝑡𝑖)

2 . (3.13)

Since inflation ends at 𝑡𝑓 ≃ 𝑡𝑖 + 6𝐻𝑖/𝑀
2, it follows that

𝑁 ≃ 3𝐻2
𝑖

𝑀2
≃ 1

2𝜖1(𝑡𝑖)
, (3.14)

where we used Eq. (3.12) in the last approximate equality. In order to solve horizon and flatness
problems of the big bang cosmology we require that 𝑁 & 70 [391], i.e., 𝜖1(𝑡𝑖) . 7×10−3. The CMB
temperature anisotropies correspond to the perturbations whose wavelengths crossed the Hubble
radius around 𝑁 = 55 – 60 before the end of inflation.

3.2 Dynamics in the Einstein frame

Let us consider inflationary dynamics in the Einstein frame for the model (3.6) in the absence of
matter fluids (ℒ𝑀 = 0). The action in the Einstein frame corresponds to (2.32) with a field 𝜑
defined by

𝜑 =

√︂
3

2

1

𝜅
ln𝐹 =

√︂
3

2

1

𝜅
ln

(︂
1 +

𝑅

3𝑀2

)︂
. (3.15)
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Figure 1: The field potential (3.16) in the Einstein frame corresponding to the model (3.6). Inflation is
realized in the regime 𝜅𝜑 ≫ 1.

Using this relation, the field potential (2.33) reads [408, 61, 63]

𝑉 (𝜑) =
3𝑀2

4𝜅2

(︁
1− 𝑒−

√
2/3𝜅𝜑

)︁2
. (3.16)

In Figure 1 we illustrate the potential (3.16) as a function of 𝜑. In the regime 𝜅𝜑 ≫ 1 the
potential is nearly constant (𝑉 (𝜑) ≃ 3𝑀2/(4𝜅2)), which leads to slow-roll inflation. The potential
in the regime 𝜅𝜑≪ 1 is given by 𝑉 (𝜑) ≃ (1/2)𝑀2𝜑2, so that the field oscillates around 𝜑 = 0 with
a Hubble damping. The second derivative of 𝑉 with respect to 𝜑 is

𝑉,𝜑𝜑 = −𝑀2𝑒−
√

2/3𝜅𝜑
(︁
1− 2𝑒−

√
2/3𝜅𝜑

)︁
, (3.17)

which changes from negative to positive at 𝜑 = 𝜑1 ≡
√︀

3/2(ln 2)/𝜅 ≃ 0.169𝑚pl.
Since 𝐹 ≃ 4𝐻2/𝑀2 during inflation, the transformation (2.44) gives a relation between the

cosmic time 𝑡 in the Einstein frame and that in the Jordan frame:

𝑡 =

∫︁ 𝑡

𝑡𝑖

√
𝐹 d𝑡 ≃ 2

𝑀

[︂
𝐻𝑖(𝑡− 𝑡𝑖)−

𝑀2

12
(𝑡− 𝑡𝑖)

2

]︂
, (3.18)

where 𝑡 = 𝑡𝑖 corresponds to 𝑡 = 0. The end of inflation (𝑡𝑓 ≃ 𝑡𝑖 + 6𝐻𝑖/𝑀
2) corresponds to

𝑡𝑓 = (2/𝑀)𝑁 in the Einstein frame, where 𝑁 is given in Eq. (3.13). On using Eqs. (3.10) and

(3.18), the scale factor 𝑎̃ =
√
𝐹𝑎 in the Einstein frame evolves as

𝑎̃(𝑡) ≃
(︂
1− 𝑀2

12𝐻2
𝑖

𝑀𝑡

)︂
𝑎̃𝑖 𝑒

𝑀𝑡/2 , (3.19)

where 𝑎̃𝑖 = 2𝐻𝑖𝑎𝑖/𝑀 . Similarly the evolution of the Hubble parameter 𝐻̃ = (𝐻/
√
𝐹 )[1+𝐹̇ /(2𝐻𝐹 )]

is given by

𝐻̃(𝑡) ≃ 𝑀

2

[︃
1− 𝑀2

6𝐻2
𝑖

(︂
1− 𝑀2

12𝐻2
𝑖

𝑀𝑡

)︂−2
]︃
, (3.20)
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which decreases with time. Equations (3.19) and (3.20) show that the universe expands quasi-
exponentially in the Einstein frame as well.

The field equations for the action (2.32) are given by

3𝐻̃2 = 𝜅2

[︃
1

2

(︂
d𝜑

d𝑡

)︂2

+ 𝑉 (𝜑)

]︃
, (3.21)

d2𝜑

d𝑡2
+ 3𝐻̃

d𝜑

d𝑡
+ 𝑉,𝜑 = 0 . (3.22)

Using the slow-roll approximations (d𝜑/d𝑡)2 ≪ 𝑉 (𝜑) and |d2𝜑/d𝑡2| ≪ |𝐻̃d𝜑/d𝑡| during inflation,

one has 3𝐻2 ≃ 𝜅2𝑉 (𝜑) and 3𝐻̃(d𝜑/d𝑡) + 𝑉,𝜑 ≃ 0. We define the slow-roll parameters

𝜖1 ≡ −d𝐻̃/d𝑡

𝐻̃2
≃ 1

2𝜅2

(︂
𝑉,𝜑
𝑉

)︂2

, 𝜖2 ≡ d2𝜑/d𝑡2

𝐻̃(d𝜑/d𝑡)
≃ 𝜖1 −

𝑉,𝜑𝜑

3𝐻̃2
. (3.23)

For the potential (3.16) it follows that

𝜖1 ≃ 4

3
(𝑒
√

2/3𝜅𝜑 − 1)−2 , 𝜖2 ≃ 𝜖1 +
𝑀2

3𝐻̃2
𝑒−

√
2/3𝜅𝜑(1− 2𝑒−

√
2/3𝜅𝜑) , (3.24)

which are much smaller than 1 during inflation (𝜅𝜑≫ 1). The end of inflation is characterized by
the condition {𝜖1, |𝜖2|} = 𝒪(1). Solving 𝜖1 = 1, we obtain the field value 𝜑𝑓 ≃ 0.19𝑚pl.

We define the number of e-foldings in the Einstein frame,

𝑁̃ =

∫︁ 𝑡𝑓

𝑡𝑖

𝐻̃d𝑡 ≃ 𝜅2
∫︁ 𝜑𝑖

𝜑𝑓

𝑉

𝑉,𝜑
d𝜑 , (3.25)

where 𝜑𝑖 is the field value at the onset of inflation. Since 𝐻̃d𝑡 = 𝐻d𝑡[1 + 𝐹̇ /(2𝐻𝐹 )], it follows
that 𝑁̃ is identical to 𝑁 in the slow-roll limit: |𝐹̇ /(2𝐻𝐹 )| ≃ |𝐻̇/𝐻2| ≪ 1. Under the condition
𝜅𝜑𝑖 ≫ 1 we have

𝑁̃ ≃ 3

4
𝑒
√

2/3𝜅𝜑𝑖 . (3.26)

This shows that 𝜑𝑖 ≃ 1.11𝑚pl for 𝑁̃ = 70. From Eqs. (3.24) and (3.26) together with the approxi-

mate relation 𝐻̃ ≃𝑀/2, we obtain

𝜖1 ≃ 3

4𝑁̃2
, 𝜖2 ≃ 1

𝑁̃
, (3.27)

where, in the expression of 𝜖2, we have dropped the terms of the order of 1/𝑁̃2. The results (3.27)
will be used to estimate the spectra of density perturbations in Section 7.

3.3 Reheating after inflation

We discuss the dynamics of reheating and the resulting particle production in the Jordan frame
for the model (3.6). The inflationary period is followed by a reheating phase in which the second
derivative 𝑅̈ can no longer be neglected in Eq. (3.8). Introducing 𝑅̂ = 𝑎3/2𝑅, we have

¨̂
𝑅+

(︂
𝑀2 − 3

4
𝐻2 − 3

2
𝐻̇

)︂
𝑅̂ = 0 . (3.28)
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Since𝑀2 ≫ {𝐻2, |𝐻̇|} during reheating, the solution to Eq. (3.28) is given by that of the harmonic
oscillator with a frequency 𝑀 . Hence the Ricci scalar exhibits a damped oscillation around 𝑅 = 0:

𝑅 ∝ 𝑎−3/2 sin(𝑀𝑡) . (3.29)

Let us estimate the evolution of the Hubble parameter and the scale factor during reheating in
more detail. If we neglect the r.h.s. of Eq. (3.7), we get the solution 𝐻(𝑡) = const × cos2(𝑀𝑡/2).
Setting 𝐻(𝑡) = 𝑓(𝑡) cos2(𝑀𝑡/2) to derive the solution of Eq. (3.7), we obtain [426]

𝑓(𝑡) =
1

𝐶 + (3/4)(𝑡− 𝑡os) + 3/(4𝑀) sin[𝑀(𝑡− 𝑡os)]
, (3.30)

where 𝑡os is the time at the onset of reheating. The constant 𝐶 is determined by matching Eq. (3.30)
with the slow-roll inflationary solution 𝐻̇ = −𝑀2/6 at 𝑡 = 𝑡os. Then we get 𝐶 = 3/𝑀 and

𝐻(𝑡) =

[︂
3

𝑀
+

3

4
(𝑡− 𝑡os) +

3

4𝑀
sin𝑀(𝑡− 𝑡os)

]︂−1

cos2
[︂
𝑀

2
(𝑡− 𝑡os)

]︂
. (3.31)

Taking the time average of oscillations in the regime 𝑀(𝑡 − 𝑡os) ≫ 1, it follows that ⟨𝐻⟩ ≃
(2/3)(𝑡 − 𝑡os)

−1. This corresponds to the cosmic evolution during the matter-dominated epoch,
i.e., ⟨𝑎⟩ ∝ (𝑡− 𝑡os)

2/3. The gravitational effect of coherent oscillations of scalarons with mass 𝑀 is
similar to that of a pressureless perfect fluid. During reheating the Ricci scalar is approximately
given by 𝑅 ≃ 6𝐻̇, i.e.

𝑅 ≃ −3

[︂
3

𝑀
+

3

4
(𝑡− 𝑡os) +

3

4𝑀
sin𝑀(𝑡− 𝑡os)

]︂−1

𝑀 sin [𝑀(𝑡− 𝑡os)] . (3.32)

In the regime 𝑀(𝑡− 𝑡os) ≫ 1 this behaves as

𝑅 ≃ − 4𝑀

𝑡− 𝑡os
sin [𝑀(𝑡− 𝑡os)] . (3.33)

In order to study particle production during reheating, we consider a scalar field 𝜒 with mass
𝑚𝜒. We also introduce a nonminimal coupling (1/2)𝜉𝑅𝜒2 between the field 𝜒 and the Ricci scalar
𝑅 [88]. Then the action is given by

𝑆 =

∫︁
d4𝑥

√
−𝑔
[︂
𝑓(𝑅)

2𝜅2
− 1

2
𝑔𝜇𝜈𝜕𝜇𝜒𝜕𝜈𝜒− 1

2
𝑚2

𝜒𝜒
2 − 1

2
𝜉𝑅𝜒2

]︂
, (3.34)

where 𝑓(𝑅) = 𝑅+𝑅2/(6𝑀2). Taking the variation of this action with respect to 𝜒 gives

�𝜒−𝑚2
𝜒𝜒− 𝜉𝑅𝜒 = 0 . (3.35)

We decompose the quantum field 𝜒 in terms of the Heisenberg representation:

𝜒(𝑡,𝑥) =
1

(2𝜋)3/2

∫︁
d3𝑘

(︁
𝑎̂𝑘𝜒𝑘(𝑡)𝑒

−𝑖𝑘·𝑥 + 𝑎̂†𝑘𝜒
*
𝑘(𝑡)𝑒

𝑖𝑘·𝑥
)︁
, (3.36)

where 𝑎̂𝑘 and 𝑎̂†𝑘 are annihilation and creation operators, respectively. The field 𝜒 can be quan-
tized in curved spacetime by generalizing the basic formalism of quantum field theory in the flat
spacetime. See the book [88] for the detail of quantum field theory in curved spacetime. Then
each Fourier mode 𝜒𝑘(𝑡) obeys the following equation of motion

𝜒̈𝑘 + 3𝐻𝜒̇𝑘 +

(︂
𝑘2

𝑎2
+𝑚2

𝜒 + 𝜉𝑅

)︂
𝜒𝑘 = 0 , (3.37)
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where 𝑘 = |𝑘| is a comoving wavenumber. Introducing a new field 𝑢𝑘 = 𝑎𝜒𝑘 and conformal time
𝜂 =

∫︀
𝑎−1d𝑡, we obtain

d2𝑢𝑘
d𝜂2

+

[︂
𝑘2 +𝑚2

𝜒𝑎
2 +

(︂
𝜉 − 1

6

)︂
𝑎2𝑅

]︂
𝑢𝑘 = 0 , (3.38)

where the conformal coupling correspond to 𝜉 = 1/6. This result states that, even though 𝜉 = 0
(that is, the field is minimally coupled to gravity), 𝑅 still gives a contribution to the effective
mass of 𝑢𝑘. In the following we first review the reheating scenario based on a minimally coupled
massless field (𝜉 = 0 and 𝑚𝜒 = 0). This corresponds to the gravitational particle production
in the perturbative regime [565, 606, 426]. We then study the case in which the nonminimal
coupling |𝜉| is larger than the order of 1. In this case the non-adiabatic particle production
preheating [584, 353, 538, 354] can occur via parametric resonance.

3.3.1 Case: 𝜉 = 0 and 𝑚𝜒 = 0

In this case there is no explicit coupling among the fields 𝜒 and 𝑅. Hence the 𝜒 particles are
produced only gravitationally. In fact, Eq. (3.38) reduces to

d2𝑢𝑘
d𝜂2

+ 𝑘2𝑢𝑘 = 𝑈𝑢𝑘 , (3.39)

where 𝑈 = 𝑎2𝑅/6. Since 𝑈 is of the order of (𝑎𝐻)2, one has 𝑘2 ≫ 𝑈 for the mode deep inside
the Hubble radius. Initially we choose the field in the vacuum state with the positive-frequency

solution [88]: 𝑢
(𝑖)
𝑘 = 𝑒−𝑖𝑘𝜂/

√
2𝑘. The presence of the time-dependent term 𝑈(𝜂) leads to the

creation of the particle 𝜒. We can write the solution of Eq. (3.39) iteratively, as [626]

𝑢𝑘(𝜂) = 𝑢
(𝑖)
𝑘 +

1

𝑘

∫︁ 𝜂

0

𝑈(𝜂′) sin[𝑘(𝜂 − 𝜂′)]𝑢𝑘(𝜂
′)d𝜂′ . (3.40)

After the universe enters the radiation-dominated epoch, the term 𝑈 becomes small so that the
flat-space solution is recovered. The choice of decomposition of 𝜒 into 𝑎̂𝑘 and 𝑎̂†𝑘 is not unique. In
curved spacetime it is possible to choose another decomposition in term of new ladder operators
𝒜𝑘 and 𝒜†

𝑘, which can be written in terms of 𝑎̂𝑘 and 𝑎̂†𝑘, such as 𝒜𝑘 = 𝛼𝑘𝑎̂𝑘 + 𝛽*
𝑘 𝑎̂

†
−𝑘. Provided

that 𝛽*
𝑘 ̸= 0, even though 𝑎̂𝑘 |0⟩ = 0, we have 𝒜𝑘 |0⟩ ̸= 0. Hence the vacuum in one basis is not the

vacuum in the new basis, and according to the new basis, the particles are created. The Bogoliubov
coefficient describing the particle production is

𝛽𝑘 = − 𝑖

2𝑘

∫︁ ∞

0

𝑈(𝜂′)𝑒−2𝑖𝑘𝜂′
d𝜂′ . (3.41)

The typical wavenumber in the 𝜂-coordinate is given by 𝑘, whereas in the 𝑡-coordinate it is 𝑘/𝑎.
Then the energy density per unit comoving volume in the 𝜂-coordinate is [426]

𝜌𝜂 =
1

(2𝜋)3

∫︁ ∞

0

4𝜋𝑘2d𝑘 · 𝑘 |𝛽𝑘|2

=
1

8𝜋2

∫︁ ∞

0

d𝜂 𝑈(𝜂)

∫︁ ∞

0

d𝜂′𝑈(𝜂′)

∫︁ ∞

0

d𝑘 · 𝑘𝑒2𝑖𝑘(𝜂
′−𝜂)

=
1

32𝜋2

∫︁ ∞

0

d𝜂
d𝑈

d𝜂

∫︁ ∞

0

d𝜂′
𝑈(𝜂′)

𝜂′ − 𝜂
, (3.42)

where in the last equality we have used the fact that the term 𝑈 approaches 0 in the early and
late times.
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During the oscillating phase of the Ricci scalar the time-dependence of 𝑈 is given by 𝑈 =
𝐼(𝜂) sin(

∫︀ 𝜂

0
𝜔d𝜂), where 𝐼(𝜂) = 𝑐𝑎(𝜂)1/2 and 𝜔 = 𝑀𝑎 (𝑐 is a constant). When we evaluate the

term d𝑈/d𝜂 in Eq. (3.42), the time-dependence of 𝐼(𝜂) can be neglected. Differentiating Eq. (3.42)
in terms of 𝜂 and taking the limit

∫︀ 𝜂

0
𝜔d𝜂 ≫ 1, it follows that

d𝜌𝜂
d𝜂

≃ 𝜔

32𝜋
𝐼2(𝜂) cos2

(︂∫︁ 𝜂

0

𝜔d𝜂

)︂
, (3.43)

where we used the relation lim𝑘→∞ sin(𝑘𝑥)/𝑥 = 𝜋𝛿(𝑥). Shifting the phase of the oscillating factor
by 𝜋/2, we obtain

d𝜌𝜂
d𝑡

≃ 𝑀𝑈2

32𝜋
=
𝑀𝑎4𝑅2

1152𝜋
. (3.44)

The proper energy density of the field 𝜒 is given by 𝜌𝜒 = (𝜌𝜂/𝑎)/𝑎
3 = 𝜌𝜂/𝑎

4. Taking into account
𝑔* relativistic degrees of freedom, the total radiation density is

𝜌𝑀 =
𝑔*
𝑎4
𝜌𝜂 =

𝑔*
𝑎4

∫︁ 𝑡

𝑡os

𝑀𝑎4𝑅2

1152𝜋
d𝑡 , (3.45)

which obeys the following equation

𝜌̇𝑀 + 4𝐻𝜌𝑀 =
𝑔*𝑀𝑅2

1152𝜋
. (3.46)

Comparing this with the continuity equation (2.17) we obtain the pressure of the created particles,
as

𝑃𝑀 =
1

3
𝜌𝑀 − 𝑔*𝑀𝑅2

3456𝜋𝐻
. (3.47)

Now the dynamical equations are given by Eqs. (2.15) and (2.16) with the energy density (3.45)
and the pressure (3.47).

In the regime 𝑀(𝑡 − 𝑡os) ≫ 1 the evolution of the scale factor is given by 𝑎 ≃ 𝑎0(𝑡 − 𝑡os)
2/3,

and hence

𝐻2 ≃ 4

9(𝑡− 𝑡os)2
, (3.48)

where we have neglected the backreaction of created particles. Meanwhile the integration of
Eq. (3.45) gives

𝜌𝑀 ≃ 𝑔*𝑀
3

240𝜋

1

𝑡− 𝑡os
, (3.49)

where we have used the averaged relation ⟨𝑅2⟩ ≃ 8𝑀2/(𝑡−𝑡os)2 [which comes from Eq. (3.33)]. The
energy density 𝜌𝑀 evolves slowly compared to 𝐻2 and finally it becomes a dominant contribution
to the total energy density (3𝐻2 ≃ 8𝜋𝜌𝑀/𝑚

2
pl) at the time 𝑡𝑓 ≃ 𝑡os+40𝑚2

pl/(𝑔*𝑀
3). In [426] it was

found that the transition from the oscillating phase to the radiation-dominated epoch occurs slower
compared to the estimation given above. Since the epoch of the transient matter-dominated era
is about one order of magnitude longer than the analytic estimation [426], we take the value 𝑡𝑓 ≃
𝑡os + 400𝑚2

pl/(𝑔*𝑀
3) to estimate the reheating temperature 𝑇𝑟. Since the particle energy density

𝜌𝑀 (𝑡𝑓 ) is converted to the radiation energy density 𝜌𝑟 = 𝑔*𝜋
2𝑇 4

𝑟 /30, the reheating temperature
can be estimated as4

𝑇𝑟 . 3× 1017𝑔
1/4
*

(︂
𝑀

𝑚pl

)︂3/2

GeV . (3.50)

4 In [426] the reheating temperature is estimated by taking the maximum value of 𝜌𝑀 reached around the ten
oscillations of 𝑅. Meanwhile we estimate 𝑇𝑟 at the epoch where 𝜌𝑀 becomes a dominant contribution to the total
energy density (as in [364]).
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As we will see in Section 7, the WMAP normalization of the CMB temperature anisotropies
determines the mass scale to be 𝑀 ≃ 3 × 10−6𝑚pl. Taking the value 𝑔* = 100, we have 𝑇𝑟 .
5 × 109 GeV. For 𝑡 > 𝑡𝑓 the universe enters the radiation-dominated epoch characterized by
𝑎 ∝ 𝑡1/2, 𝑅 = 0, and 𝜌𝑟 ∝ 𝑡−2.

3.3.2 Case: |𝜉| & 1

If |𝜉| is larger than the order of unity, one can expect the explosive particle production called
preheating prior to the perturbative regime discussed above. Originally the dynamics of such
gravitational preheating was studied in [70, 592] for a massive chaotic inflation model in Einstein
gravity. Later this was extended to the f (R) model (3.6) [591].

Introducing a new field 𝑋𝑘 = 𝑎3/2𝜒𝑘, Eq. (3.37) reads

𝑋̈𝑘 +

(︂
𝑘2

𝑎2
+𝑚2

𝜒 + 𝜉𝑅− 9

4
𝐻2 − 3

2
𝐻̇

)︂
𝑋𝑘 = 0 . (3.51)

As long as |𝜉| is larger than the order of unity, the last two terms in the bracket of Eq. (3.51) can be
neglected relative to 𝜉𝑅. Since the Ricci scalar is given by Eq. (3.33) in the regime𝑀(𝑡− 𝑡os) ≫ 1,
it follows that

𝑋̈𝑘 +

[︂
𝑘2

𝑎2
+𝑚2

𝜒 − 4𝑀𝜉

𝑡− 𝑡os
sin{𝑀(𝑡− 𝑡os)}

]︂
𝑋𝑘 ≃ 0 . (3.52)

The oscillating term gives rise to parametric amplification of the particle 𝜒𝑘. In order to see
this we introduce the variable 𝑧 defined by 𝑀(𝑡− 𝑡os) = 2𝑧± 𝜋/2, where the plus and minus signs
correspond to the cases 𝜉 > 0 and 𝜉 < 0 respectively. Then Eq. (3.52) reduces to the Mathieu
equation

d2

d𝑧2
𝑋𝑘 + [𝐴𝑘 − 2𝑞 cos(2𝑧)]𝑋𝑘 ≃ 0 , (3.53)

where

𝐴𝑘 =
4𝑘2

𝑎2𝑀2
+

4𝑚2
𝜒

𝑀2
, 𝑞 =

8|𝜉|
𝑀(𝑡− 𝑡os)

. (3.54)

The strength of parametric resonance depends on the parameters 𝐴𝑘 and 𝑞. This can be described
by a stability-instability chart of the Mathieu equation [419, 353, 591]. In the Minkowski spacetime
the parameters 𝐴𝑘 and 𝑞 are constant. If 𝐴𝑘 and 𝑞 are in an instability band, then the perturbation
𝑋𝑘 grows exponentially with a growth index 𝜇𝑘, i.e., 𝑋𝑘 ∝ 𝑒𝜇𝑘𝑧. In the regime 𝑞 ≪ 1 the resonance
occurs only in narrow bands around 𝐴𝑘 = ℓ2, where ℓ = 1, 2, ..., with the maximum growth index
𝜇𝑘 = 𝑞/2 [353]. Meanwhile, for large 𝑞 (≫ 1), a broad resonance can occur for a wide range of
parameter space and momentum modes [354].

In the expanding cosmological background both 𝐴𝑘 and 𝑞 vary in time. Initially the field 𝑋𝑘

is in the broad resonance regime (𝑞 ≫ 1) for |𝜉| ≫ 1, but it gradually enters the narrow resonance
regime (𝑞 . 1). Since the field passes many instability and stability bands, the growth index
𝜇𝑘 stochastically changes with the cosmic expansion. The non-adiabaticity of the change of the
frequency 𝜔2

𝑘 = 𝑘2/𝑎2 +𝑚2
𝜒 − 4𝑀𝜉 sin{𝑀(𝑡− 𝑡os)}/(𝑡− 𝑡os) can be estimated by the quantity

𝑟na ≡
⃒⃒⃒⃒
𝜔̇𝑘

𝜔2
𝑘

⃒⃒⃒⃒
=𝑀

|𝑘2/𝑎2 + 2𝑀𝜉 cos{𝑀(𝑡− 𝑡os)}/(𝑡− 𝑡os)|
|𝑘2/𝑎2 +𝑚2

𝜒 − 4𝑀𝜉 sin{𝑀(𝑡− 𝑡os)}/(𝑡− 𝑡os)|3/2
, (3.55)

where the non-adiabatic regime corresponds to 𝑟na & 1. For small 𝑘 and 𝑚𝜒 we have 𝑟na ≫ 1
around 𝑀(𝑡 − 𝑡os) = 𝑛𝜋, where 𝑛 are positive integers. This corresponds to the time at which
the Ricci scalar vanishes. Hence, each time 𝑅 crosses 0 during its oscillation, the non-adiabatic
particle production occurs most efficiently. The presence of the mass term 𝑚𝜒 tends to suppress
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the non-adiabaticity parameter 𝑟na, but still it is possible to satisfy the condition 𝑟na & 1 around
𝑅 = 0.

For the model (3.6) it was shown in [591] that massless 𝜒 particles are resonantly amplified for
|𝜉| & 3. Massive particles with 𝑚𝜒 of the order of 𝑀 can be created for |𝜉| & 10. Note that in
the preheating scenario based on the model 𝑉 (𝜑, 𝜒) = (1/2)𝑚2

𝜑𝜑
2 + (1/2)𝑔2𝜑2𝜒2 the parameter

𝑞 decreases more rapidly (𝑞 ∝ 1/𝑡2) than that in the model (3.6) [354]. Hence, in our geometric
preheating scenario, we do not require very large initial values of 𝑞 [such as 𝑞 > 𝒪(103)] to lead to
the efficient parametric resonance.

While the above discussion is based on the linear analysis, non-linear effects (such as the
mode-mode coupling of perturbations) can be important at the late stage of preheating (see,
e.g., [354, 342]). Also the energy density of created particles affects the background cosmological
dynamics, which works as a backreaction to the Ricci scalar. The process of the subsequent
perturbative reheating stage can be affected by the explosive particle production during preheating.
It will be of interest to take into account all these effects and study how the thermalization is
reached at the end of reheating. This certainly requires the detailed numerical investigation of
lattice simulations, as developed in [255, 254].

At the end of this section we should mention a number of interesting works about gravita-
tional baryogenesis based on the interaction (1/𝑀2

* )
∫︀
d4𝑥

√
−𝑔 𝐽𝜇 𝜕𝜇𝑅 between the baryon num-

ber current 𝐽𝜇 and the Ricci scalar 𝑅 (𝑀* is the cut-off scale characterizing the effective the-
ory) [179, 376, 514]. This interaction can give rise to an equilibrium baryon asymmetry which is
observationally acceptable, even for the gravitational Lagrangian 𝑓(𝑅) = 𝑅𝑛 with 𝑛 close to 1. It
will be of interest to extend the analysis to more general f (R) gravity models.
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4 Dark Energy in f (R) Theories

In this section we apply f (R) theories to dark energy. Our interest is to construct viable f (R)
models that can realize the sequence of radiation, matter, and accelerated epochs. In this section
we do not attempt to find unified models of inflation and dark energy based on f (R) theories.

Originally the model 𝑓(𝑅) = 𝑅 − 𝛼/𝑅𝑛 (𝛼 > 0, 𝑛 > 0) was proposed to explain the late-time
cosmic acceleration [113, 120, 114, 143] (see also [456, 559, 17, 223, 212, 16, 137, 62] for related
works). However, this model suffers from a number of problems such as matter instability [215, 244],
the instability of cosmological perturbations [146, 74, 544, 526, 251], the absence of the matter
era [28, 29, 239], and the inability to satisfy local gravity constraints [469, 470, 245, 233, 154, 448,
134]. The main reason why this model does not work is that the quantity 𝑓,𝑅𝑅 ≡ 𝜕2𝑓/𝜕𝑅2 is
negative. As we will see later, the violation of the condition 𝑓,𝑅𝑅 > 0 gives rise to the negative
mass squared 𝑀2 for the scalaron field. Hence we require that 𝑓,𝑅𝑅 > 0 to avoid a tachyonic
instability. The condition 𝑓,𝑅 ≡ 𝜕𝑓/𝜕𝑅 > 0 is also required to avoid the appearance of ghosts (see
Section 7.4). Thus viable f (R) dark energy models need to satisfy [568]

𝑓,𝑅 > 0 , 𝑓,𝑅𝑅 > 0 , for 𝑅 ≥ 𝑅0 (> 0) , (4.56)

where 𝑅0 is the Ricci scalar today.
In the following we shall derive other conditions for the cosmological viability of f (R) models.

This is based on the analysis of [26]. For the matter Lagrangian ℒ𝑀 in Eq. (2.1) we take into
account non-relativistic matter and radiation, whose energy densities 𝜌𝑚 and 𝜌𝑟 satisfy

𝜌̇𝑚 + 3𝐻𝜌𝑚 = 0 , (4.57)

𝜌̇𝑟 + 4𝐻𝜌𝑟 = 0 , (4.58)

respectively. From Eqs. (2.15) and (2.16) it follows that

3𝐹𝐻2 = (𝐹𝑅− 𝑓)/2− 3𝐻𝐹̇ + 𝜅2(𝜌𝑚 + 𝜌𝑟) , (4.59)

−2𝐹𝐻̇ = 𝐹 −𝐻𝐹̇ + 𝜅2 [𝜌𝑚 + (4/3)𝜌𝑟] . (4.60)

4.1 Dynamical equations

We introduce the following variables

𝑥1 ≡ − 𝐹̇

𝐻𝐹
, 𝑥2 ≡ − 𝑓

6𝐹𝐻2
, 𝑥3 ≡ 𝑅

6𝐻2
, 𝑥4 ≡ 𝜅2𝜌𝑟

3𝐹𝐻2
, (4.61)

together with the density parameters

Ω𝑚 ≡ 𝜅2𝜌𝑚
3𝐹𝐻2

= 1− 𝑥1 − 𝑥2 − 𝑥3 − 𝑥4, Ω𝑟 ≡ 𝑥4 , ΩDE ≡ 𝑥1 + 𝑥2 + 𝑥3 . (4.62)

It is straightforward to derive the following equations

d𝑥1
d𝑁

= −1− 𝑥3 − 3𝑥2 + 𝑥21 − 𝑥1𝑥3 + 𝑥4 , (4.63)

d𝑥2
d𝑁

=
𝑥1𝑥3
𝑚

− 𝑥2(2𝑥3 − 4− 𝑥1) , (4.64)

d𝑥3
d𝑁

= −𝑥1𝑥3
𝑚

− 2𝑥3(𝑥3 − 2) , (4.65)

d𝑥4
d𝑁

= −2𝑥3𝑥4 + 𝑥1 𝑥4 , (4.66)
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where 𝑁 = ln 𝑎 is the number of e-foldings, and

𝑚 ≡ d ln𝐹

d ln𝑅
=
𝑅𝑓,𝑅𝑅

𝑓,𝑅
, (4.67)

𝑟 ≡ − d ln 𝑓

d ln𝑅
= −𝑅𝑓,𝑅

𝑓
=
𝑥3
𝑥2

. (4.68)

From Eq. (4.68) the Ricci scalar 𝑅 can be expressed by 𝑥3/𝑥2. Since 𝑚 depends on 𝑅, this
means that 𝑚 is a function of 𝑟, that is, 𝑚 = 𝑚(𝑟). The ΛCDM model, 𝑓(𝑅) = 𝑅 − 2Λ,
corresponds to 𝑚 = 0. Hence the quantity 𝑚 characterizes the deviation of the background
dynamics from the ΛCDM model. A number of authors studied cosmological dynamics for specific
f (R) models [160, 382, 488, 252, 31, 198, 280, 72, 41, 159, 235, 1, 279, 483, 321, 432].

The effective equation of state of the system is defined by

𝑤eff ≡ −1− 2𝐻̇/(3𝐻2) , (4.69)

which is equivalent to 𝑤eff = −(2𝑥3 − 1)/3. In the absence of radiation (𝑥4 = 0) the fixed points
for the above dynamical system are

𝑃1 : (𝑥1, 𝑥2, 𝑥3) = (0,−1, 2), Ω𝑚 = 0, 𝑤eff = −1 , (4.70)

𝑃2 : (𝑥1, 𝑥2, 𝑥3) = (−1, 0, 0), Ω𝑚 = 2, 𝑤eff = 1/3 , (4.71)

𝑃3 : (𝑥1, 𝑥2, 𝑥3) = (1, 0, 0), Ω𝑚 = 0, 𝑤eff = 1/3 , (4.72)

𝑃4 : (𝑥1, 𝑥2, 𝑥3) = (−4, 5, 0), Ω𝑚 = 0, 𝑤eff = 1/3 , (4.73)

𝑃5 : (𝑥1, 𝑥2, 𝑥3) =

(︂
3𝑚

1 +𝑚
,− 1 + 4𝑚

2(1 +𝑚)2
,

1 + 4𝑚

2(1 +𝑚)

)︂
, (4.74)

Ω𝑚 = 1− 𝑚(7 + 10𝑚)

2(1 +𝑚)2
, 𝑤eff = − 𝑚

1 +𝑚
, (4.75)

𝑃6 : (𝑥1, 𝑥2, 𝑥3) =

(︂
2(1−𝑚)

1 + 2𝑚
,

1− 4𝑚

𝑚(1 + 2𝑚)
,− (1− 4𝑚)(1 +𝑚)

𝑚(1 + 2𝑚)

)︂
,

Ω𝑚 = 0, 𝑤eff =
2− 5𝑚− 6𝑚2

3𝑚(1 + 2𝑚)
. (4.76)

The points 𝑃5 and 𝑃6 are on the line 𝑚(𝑟) = −𝑟 − 1 in the (𝑟,𝑚) plane.
The matter-dominated epoch (Ω𝑚 ≃ 1 and 𝑤eff ≃ 0) can be realized only by the point 𝑃5 for

𝑚 close to 0. In the (𝑟,𝑚) plane this point exists around (𝑟,𝑚) = (−1, 0). Either the point 𝑃1

or 𝑃6 can be responsible for the late-time cosmic acceleration. The former is a de Sitter point
(𝑤eff = −1) with 𝑟 = −2, in which case the condition (2.11) is satisfied. The point 𝑃6 can give rise
to the accelerated expansion (𝑤eff < −1/3) provided that 𝑚 > (

√
3 − 1)/2, or −1/2 < 𝑚 < 0, or

𝑚 < −(1 +
√
3)/2.

In order to analyze the stability of the above fixed points it is sufficient to consider only time-
dependent linear perturbations 𝛿𝑥𝑖(𝑡) (𝑖 = 1, 2, 3) around them (see [170, 171] for the detail of such
analysis). For the point 𝑃5 the eigenvalues for the 3× 3 Jacobian matrix of perturbations are

3(1 +𝑚′
5),

−3𝑚5 ±
√︀
𝑚5(256𝑚3

5 + 160𝑚2
5 − 31𝑚5 − 16)

4𝑚5(𝑚5 + 1)
, (4.77)

where 𝑚5 ≡ 𝑚(𝑟5) and 𝑚′
5 ≡ d𝑚

d𝑟 (𝑟5) with 𝑟5 ≈ −1. In the limit that |𝑚5| ≪ 1 the latter

two eigenvalues reduce to −3/4 ±
√︀
−1/𝑚5. For the models with 𝑚5 < 0, the solutions cannot

remain for a long time around the point 𝑃5 because of the divergent behavior of the eigenvalues
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as 𝑚5 → −0. The model 𝑓(𝑅) = 𝑅 − 𝛼/𝑅𝑛 (𝛼 > 0, 𝑛 > 0) falls into this category. On the other
hand, if 0 < 𝑚5 < 0.327, the latter two eigenvalues in Eq. (4.77) are complex with negative real
parts. Then, provided that 𝑚′

5 > −1, the point 𝑃5 corresponds to a saddle point with a damped
oscillation. Hence the solutions can stay around this point for some time and finally leave for the
late-time acceleration. Then the condition for the existence of the saddle matter era is

𝑚(𝑟) ≃ +0 ,
d𝑚

d𝑟
> −1 , at 𝑟 = −1 . (4.78)

The first condition implies that viable f (R) models need to be close to the ΛCDM model during
the matter domination. This is also required for consistency with local gravity constraints, as we
will see in Section 5.

The eigenvalues for the Jacobian matrix of perturbations about the point 𝑃1 are

−3, −3

2
±
√︀
25− 16/𝑚1

2
, (4.79)

where 𝑚1 = 𝑚(𝑟 = −2). This shows that the condition for the stability of the de Sitter point 𝑃1

is [440, 243, 250, 26]
0 < 𝑚(𝑟 = −2) ≤ 1 . (4.80)

The trajectories that start from the saddle matter point 𝑃5 satisfying the condition (4.78) and then
approach the stable de Sitter point 𝑃1 satisfying the condition (4.80) are, in general, cosmologically
viable.

One can also show that 𝑃6 is stable and accelerated for (a) 𝑚′
6 < −1, (

√
3−1)/2 < 𝑚6 < 1, (b)

𝑚′
6 > −1, 𝑚6 < −(1+

√
3)/2, (c) 𝑚′

6 > −1, −1/2 < 𝑚6 < 0, (d) 𝑚′
6 > −1, 𝑚6 ≥ 1. Since both 𝑃5

and 𝑃6 are on the line 𝑚 = −𝑟 − 1, only the trajectories from 𝑚′
5 > −1 to 𝑚′

6 < −1 are allowed
(see Figure 2). This means that only the case (a) is viable as a stable and accelerated fixed point
𝑃6. In this case the effective equation of state satisfies the condition 𝑤eff > −1.

From the above discussion the following two classes of models are cosmologically viable.

∙ Class A: Models that connect 𝑃5 (𝑟 ≃ −1, 𝑚 ≃ +0) to 𝑃1 (𝑟 = −2, 0 < 𝑚 ≤ 1)

∙ Class B: Models that connect 𝑃5 (𝑟 ≃ −1, 𝑚 ≃ +0) to 𝑃6 (𝑚 = −𝑟−1, (
√
3−1)/2 < 𝑚 < 1)

From Eq. (4.56) the viable f (R) dark energy models need to satisfy the condition 𝑚 > 0, which is
consistent with the above argument.

4.2 Viable f (R) dark energy models

We present a number of viable f (R) models in the (𝑟,𝑚) plane. First we note that the ΛCDM
model corresponds to 𝑚 = 0, in which case the trajectory is the straight line (i) in Figure 2. The
trajectory (ii) in Figure 2 represents the model 𝑓(𝑅) = (𝑅𝑏 − Λ)𝑐 [31], which corresponds to the
straight line 𝑚(𝑟) = [(1− 𝑐)/𝑐]𝑟+ 𝑏−1 in the (𝑟,𝑚) plane. The existence of a saddle matter epoch
demands the condition 𝑐 ≥ 1 and 𝑏𝑐 ≃ 1. The trajectory (iii) represents the model [26, 382]

𝑓(𝑅) = 𝑅− 𝛼𝑅𝑛 (𝛼 > 0, 0 < 𝑛 < 1) , (4.81)

which corresponds to the curve 𝑚 = 𝑛(1 + 𝑟)/𝑟. The trajectory (iv) represents the model 𝑚(𝑟) =
−𝐶(𝑟 + 1)(𝑟2 + 𝑎𝑟 + 𝑏), in which case the late-time accelerated attractor is the point 𝑃6 with
(
√
3− 1)/2 < 𝑚 < 1.
In [26] it was shown that 𝑚 needs to be close to 0 during the radiation domination as well as

the matter domination. Hence the viable f (R) models are close to the ΛCDM model in the region
𝑅≫ 𝑅0. The Ricci scalar remains positive from the radiation era up to the present epoch, as long
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Figure 2: Four trajectories in the (𝑟,𝑚) plane. Each trajectory corresponds to the models: (i) ΛCDM,
(ii) 𝑓(𝑅) = (𝑅𝑏−Λ)𝑐, (iii) 𝑓(𝑅) = 𝑅−𝛼𝑅𝑛 with 𝛼 > 0, 0 < 𝑛 < 1, and (iv) 𝑚(𝑟) = −𝐶(𝑟+1)(𝑟2+𝑎𝑟+𝑏).
From [31].

as it does not oscillate around 𝑅 = 0. The model 𝑓(𝑅) = 𝑅 − 𝛼/𝑅𝑛 (𝛼 > 0, 𝑛 > 0) is not viable
because the condition 𝑓,𝑅𝑅 > 0 is violated.

As we will see in Section 5, the local gravity constraints provide tight bounds on the deviation
parameter 𝑚 in the region of high density (𝑅≫ 𝑅0), e.g., 𝑚(𝑅) . 10−15 for 𝑅 = 105𝑅0 [134, 596].
In order to realize a large deviation from the ΛCDM model such as 𝑚(𝑅) > 𝒪(0.1) today (𝑅 = 𝑅0)
we require that the variable 𝑚 changes rapidly from the past to the present. The f (R) model given
in Eq. (4.81), for example, does not allow such a rapid variation, because𝑚 evolves as𝑚 ≃ 𝑛(−𝑟−1)
in the region 𝑅≫ 𝑅0. Instead, if the deviation parameter has the dependence

𝑚 = 𝐶(−𝑟 − 1)𝑝 , 𝑝 > 1 , 𝐶 > 0 , (4.82)

it is possible to lead to the rapid decrease of 𝑚 as we go back to the past. The models that behave
as Eq. (4.82) in the regime 𝑅≫ 𝑅0 are

(A) 𝑓(𝑅) = 𝑅− 𝜇𝑅𝑐
(𝑅/𝑅𝑐)

2𝑛

(𝑅/𝑅𝑐)2𝑛 + 1
with 𝑛, 𝜇,𝑅𝑐 > 0 , (4.83)

(B) 𝑓(𝑅) = 𝑅− 𝜇𝑅𝑐

[︁
1−

(︀
1 +𝑅2/𝑅2

𝑐

)︀−𝑛
]︁

with 𝑛, 𝜇,𝑅𝑐 > 0 . (4.84)

The models (A) and (B) have been proposed by Hu and Sawicki [306] and Starobinsky [568],
respectively. Note that 𝑅𝑐 roughly corresponds to the order of 𝑅0 for 𝜇 = 𝒪(1). This means that
𝑝 = 2𝑛 + 1 for 𝑅 ≫ 𝑅0. In the next section we will show that both the models (A) and (B) are
consistent with local gravity constraints for 𝑛 & 1.

In the model (A) the following relation holds at the de Sitter point:

𝜇 =
(1 + 𝑥2𝑛𝑑 )2

𝑥2𝑛−1
𝑑 (2 + 2𝑥2𝑛𝑑 − 2𝑛)

, (4.85)
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where 𝑥𝑑 ≡ 𝑅1/𝑅𝑐 and 𝑅1 is the Ricci scalar at the de Sitter point. The stability condition (4.80)
gives [587]

2𝑥4𝑛𝑑 − (2𝑛− 1)(2𝑛+ 4)𝑥2𝑛𝑑 + (2𝑛− 1)(2𝑛− 2) ≥ 0 . (4.86)

The parameter 𝜇 has a lower bound determined by the condition (4.86). When 𝑛 = 1, for example,
one has 𝑥𝑑 ≥

√
3 and 𝜇 ≥ 8

√
3/9. Under Eq. (4.86) one can show that the conditions (4.56) are

also satisfied.
Similarly the model (B) satisfies [568]

(1 + 𝑥2𝑑)
𝑛+2 ≥ 1 + (𝑛+ 2)𝑥2𝑑 + (𝑛+ 1)(2𝑛+ 1)𝑥4𝑑, (4.87)

with

𝜇 =
𝑥𝑑(1 + 𝑥2𝑑)

𝑛+1

2[(1 + 𝑥2𝑑)
𝑛+1 − 1− (𝑛+ 1)𝑥2𝑑]

. (4.88)

When 𝑛 = 1 we have 𝑥𝑑 ≥
√
3 and 𝜇 ≥ 8

√
3/9, which is the same as in the model (A). For general

𝑛, however, the bounds on 𝜇 in the model (B) are not identical to those in the model (A).
Another model that leads to an even faster evolution of 𝑚 is given by [587]

(C) 𝑓(𝑅) = 𝑅− 𝜇𝑅𝑐 tanh (𝑅/𝑅𝑐) with 𝜇,𝑅𝑐 > 0 . (4.89)

A similar model was proposed by Appleby and Battye [35]. In the region 𝑅≫ 𝑅𝑐 the model (4.89)
behaves as 𝑓(𝑅) ≃ 𝑅− 𝜇𝑅𝑐 [1− exp(−2𝑅/𝑅𝑐)], which may be regarded as a special case of (4.82)
in the limit that 𝑝≫ 1 5. The Ricci scalar at the de Sitter point is determined by 𝜇, as

𝜇 =
𝑥𝑑 cosh

2(𝑥𝑑)

2 sinh(𝑥𝑑) cosh(𝑥𝑑)− 𝑥𝑑
. (4.90)

From the stability condition (4.80) we obtain

𝜇 > 0.905 , 𝑥𝑑 > 0.920 . (4.91)

The models (A), (B) and (C) are close to the ΛCDM model for 𝑅 ≫ 𝑅𝑐, but the deviation
from it appears when 𝑅 decreases to the order of 𝑅𝑐. This leaves a number of observational
signatures such as the phantom-like equation of state of dark energy and the modified evolution of
matter density perturbations. In the following we discuss the dark energy equation of state in f (R)
models. In Section 8 we study the evolution of density perturbations and resulting observational
consequences in detail.

4.3 Equation of state of dark energy

In order to confront viable f (R) models with SN Ia observations, we rewrite Eqs. (4.59) and (4.60)
as follows:

3𝐴𝐻2 = 𝜅2 (𝜌𝑚 + 𝜌𝑟 + 𝜌DE) , (4.92)

−2𝐴𝐻̇ = 𝜅2 [𝜌𝑚 + (4/3)𝜌𝑟 + 𝜌DE + 𝑃DE] , (4.93)

where 𝐴 is some constant and

𝜅2𝜌DE ≡ (1/2)(𝐹𝑅− 𝑓)− 3𝐻𝐹̇ + 3𝐻2(𝐴− 𝐹 ) , (4.94)

𝜅2𝑃DE ≡ 𝐹 + 2𝐻𝐹̇ − (1/2)(𝐹𝑅− 𝑓)− (3𝐻2 + 2𝐻̇)(𝐴− 𝐹 ) . (4.95)

5 The cosmological dynamics for the model 𝑓(𝑅) = 𝑅− 𝜇𝑅𝑐 [1− exp(−2𝑅/𝑅𝑐)] was studied in [396].
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Defining 𝜌DE and 𝑃DE in the above way, we find that these satisfy the usual continuity equation

𝜌̇DE + 3𝐻(𝜌DE + 𝑃DE) = 0 . (4.96)

Note that this holds as a consequence of the Bianchi identities, as we have already mentioned in
the discussion from Eq. (2.8) to Eq. (2.10).

The dark energy equation of state, 𝑤DE ≡ 𝑃DE/𝜌DE, is directly related to the one used in SN Ia
observations. From Eqs. (4.92) and (4.93) it is given by

𝑤DE = −2𝐴𝐻̇ + 3𝐴𝐻2 + 𝜅2𝜌𝑟/3

3𝐴𝐻2 − 𝜅2(𝜌𝑚 + 𝜌𝑟)
≃ 𝑤eff

1− (𝐹/𝐴)Ω𝑚
, (4.97)

where the last approximate equality is valid in the regime where the radiation density 𝜌𝑟 is negligible
relative to the matter density 𝜌𝑚. The viable f (R) models approach the ΛCDM model in the past,
i.e., 𝐹 → 1 as 𝑅 → ∞. In order to reproduce the standard matter era (3𝐻2 ≃ 𝜅2𝜌𝑚) for 𝑧 ≫ 1,
we can choose 𝐴 = 1 in Eqs. (4.92) and (4.93). Another possible choice is 𝐴 = 𝐹0, where 𝐹0 is
the present value of 𝐹 . This choice may be suitable if the deviation of 𝐹0 from 1 is small (as
in scalar-tensor theory with a nearly massless scalar field [583, 93]). In both cases the equation
of state 𝑤DE can be smaller than −1 before reaching the de Sitter attractor [306, 31, 587, 435],
while the effective equation of state 𝑤eff is larger than −1. This comes from the fact that the
denominator in Eq. (4.97) becomes smaller than 1 in the presence of the matter fluid. Thus f (R)
gravity models give rise to the phantom equation of state of dark energy without violating any
stability conditions of the system. See [210, 417, 136, 13] for observational constraints on the
models (4.83) and (4.84) by using the background expansion history of the universe. Note that as
long as the late-time attractor is the de Sitter point the cosmological constant boundary crossing
of 𝑤eff reported in [52, 50] does not typically occur, apart from small oscillations of 𝑤eff around
the de Sitter point.

There are some works that try to reconstruct the forms of f (R) by using some desired form for
the evolution of the scale factor 𝑎(𝑡) or the observational data of SN Ia [117, 130, 442, 191, 621, 252].
We need to caution that the procedure of reconstruction does not in general guarantee the stability
of solutions. In scalar-tensor dark energy models, for example, it is known that a singular behavior
sometimes arises at low-redshifts in such a procedure [234, 271]. In addition to the fact that the
reconstruction method does not uniquely determine the forms of f (R), the observational data of
the background expansion history alone is not yet sufficient to reconstruct f (R) models in high
precision.

Finally we mention a number of works [115, 118, 119, 265, 319, 515, 542, 90] about the use of
metric f (R) gravity as dark matter instead of dark energy. In most of past works the power-law
f (R) model 𝑓 = 𝑅𝑛 has been used to obtain spherically symmetric solutions for galaxy clustering.
In [118] it was shown that the theoretical rotation curves of spiral galaxies show good agreement
with observational data for 𝑛 = 1.7, while for broader samples the best-fit value of the power was
found to be 𝑛 = 2.2 [265]. However, these values are not compatible with the bound |𝑛 − 1| <
7.2 × 10−19 derived in [62, 160] from a number of other observational constraints. Hence, it is
unlikely that f (R) gravity works as the main source for dark matter.
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5 Local Gravity Constraints

In this section we discuss the compatibility of f (R) models with local gravity constraints (see [469,
470, 245, 233, 154, 448, 251] for early works, and [31, 306, 134] for experimental constraints on
viable f (R) dark energy models, and [101, 210, 330, 332, 471, 628, 149, 625, 329, 45, 511, 277, 534,
133, 445, 309, 89] for other related works). In an environment of high density such as Earth or Sun,
the Ricci scalar 𝑅 is much larger than the background cosmological value 𝑅0. If the outside of a
spherically symmetric body is a vacuum, the metric can be described by a Schwarzschild exterior
solution with 𝑅 = 0. In the presence of non-relativistic matter with an energy density 𝜌𝑚, this
gives rise to a contribution to the Ricci scalar 𝑅 of the order 𝜅2𝜌𝑚.

If we consider local perturbations 𝛿𝑅 on a background characterized by the curvature 𝑅0, the
validity of the linear approximation demands the condition 𝛿𝑅≪ 𝑅0. We first derive the solutions

of linear perturbations under the approximation that the background metric 𝑔
(0)
𝜇𝜈 is described by

the Minkowski metric 𝜂𝜇𝜈 . In the case of Earth and Sun the perturbation 𝛿𝑅 is much larger than
𝑅0, which means that the linear theory is no longer valid. In such a non-linear regime the effect
of the chameleon mechanism [344, 343] becomes important, so that f (R) models can be consistent
with local gravity tests.

5.1 Linear expansions of perturbations in the spherically symmetric
background

First we decompose the quantities 𝑅, 𝐹 (𝑅), and 𝑇𝜇𝜈 into the background part and the perturbed
part: 𝑅 = 𝑅0 + 𝛿𝑅, 𝐹 = 𝐹0(1 + 𝛿𝐹 ), and 𝑇𝜇𝜈 = (0)𝑇𝜇𝜈 + 𝛿𝑇𝜇𝜈 about the approximate Minkowski

background (𝑔
(0)
𝜇𝜈 ≈ 𝜂𝜇𝜈). In other words, although we consider 𝑅 close to a mean-field value

𝑅0, the metric is still very close to the Minkowski case. The linear expansion of Eq. (2.7) in a
time-independent background gives [470, 250, 154, 448]

∇2𝛿𝐹 −𝑀2𝛿𝐹 =
𝜅2

3𝐹0
𝛿𝑇 , (5.1)

where 𝛿𝑇 ≡ 𝜂𝜇𝜈𝛿𝑇𝜇𝜈 and

𝑀2 ≡ 1

3

[︂
𝑓,𝑅(𝑅0)

𝑓,𝑅𝑅(𝑅0)
−𝑅0

]︂
=
𝑅0

3

[︂
1

𝑚(𝑅0)
− 1

]︂
. (5.2)

The variable 𝑚 is defined in Eq. (4.67). Since 0 < 𝑚(𝑅0) < 1 for viable f (R) models, it follows
that 𝑀2 > 0 (recall that 𝑅0 > 0).

We consider a spherically symmetric body with mass 𝑀𝑐, constant density 𝜌 (= −𝛿𝑇 ), radius
𝑟𝑐, and vanishing density outside the body. Since 𝛿𝐹 is a function of the distance 𝑟 from the center
of the body, Eq. (5.1) reduces to the following form inside the body (𝑟 < 𝑟𝑐):

d2

d𝑟2
𝛿𝐹 +

2

𝑟

d

d𝑟
𝛿𝐹 −𝑀2 𝛿𝐹 = − 𝜅2

3𝐹0
𝜌 , (5.3)

whereas the r.h.s. vanishes outside the body (𝑟 > 𝑟𝑐). The solution of the perturbation 𝛿𝐹 for
positive 𝑀2 is given by

(𝛿𝐹 )𝑟<𝑟𝑐 = 𝑐1
𝑒−𝑀𝑟

𝑟
+ 𝑐2

𝑒𝑀𝑟

𝑟
+

8𝜋𝐺𝜌

3𝐹0𝑀2
, (5.4)

(𝛿𝐹 )𝑟>𝑟𝑐 = 𝑐3
𝑒−𝑀𝑟

𝑟
+ 𝑐4

𝑒𝑀𝑟

𝑟
, (5.5)
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where 𝑐𝑖 (𝑖 = 1, 2, 3, 4) are integration constants. The requirement that (𝛿𝐹 )𝑟>𝑟𝑐 → 0 as 𝑟 → ∞
gives 𝑐4 = 0. The regularity condition at 𝑟 = 0 requires that 𝑐2 = −𝑐1. We match two solutions
(5.4) and (5.5) at 𝑟 = 𝑟𝑐 by demanding the regular behavior of 𝛿𝐹 (𝑟) and 𝛿

′
𝐹 (𝑟). Since 𝛿𝐹 ∝ 𝛿𝑅,

this implies that 𝑅 is also continuous. If the mass 𝑀 satisfies the condition 𝑀𝑟𝑐 ≪ 1, we obtain
the following solutions

(𝛿𝐹 )𝑟<𝑟𝑐 ≃ 4𝜋𝐺𝜌

3𝐹0

(︂
𝑟2𝑐 −

𝑟2

3

)︂
, (5.6)

(𝛿𝐹 )𝑟>𝑟𝑐 ≃ 2𝐺𝑀𝑐

3𝐹0𝑟
𝑒−𝑀𝑟 . (5.7)

As we have seen in Section 2.3, the action (2.1) in f (R) gravity can be transformed to the
Einstein frame action by a transformation of the metric. The Einstein frame action is given by
a linear action in 𝑅̃, where 𝑅̃ is a Ricci scalar in the new frame. The first-order solution for
the perturbation ℎ𝜇𝜈 of the metric 𝑔𝜇𝜈 = 𝐹0 (𝜂𝜇𝜈 + ℎ𝜇𝜈) follows from the first-order linearized
Einstein equations in the Einstein frame. This leads to the solutions ℎ00 = 2𝐺𝑀𝑐/(𝐹0𝑟) and
ℎ𝑖𝑗 = 2𝐺𝑀𝑐/(𝐹0𝑟) 𝛿𝑖𝑗 . Including the perturbation 𝛿𝐹 to the quantity 𝐹 , the actual metric 𝑔𝜇𝜈 is
given by [448]

𝑔𝜇𝜈 =
𝑔𝜇𝜈
𝐹

≃ 𝜂𝜇𝜈 + ℎ𝜇𝜈 − 𝛿𝐹 𝜂𝜇𝜈 . (5.8)

Using the solution (5.7) outside the body, the (00) and (𝑖𝑖) components of the metric 𝑔𝜇𝜈 are

𝑔00 ≃ −1 +
2𝐺

(𝑁)
eff 𝑀𝑐

𝑟
, 𝑔𝑖𝑖 ≃ 1 +

2𝐺
(𝑁)
eff 𝑀𝑐

𝑟
𝛾 , (5.9)

where 𝐺
(𝑁)
eff and 𝛾 are the effective gravitational coupling and the post-Newtonian parameter,

respectively, defined by

𝐺
(𝑁)
eff ≡ 𝐺

𝐹0

(︂
1 +

1

3
𝑒−𝑀𝑟

)︂
, 𝛾 ≡ 3− 𝑒−𝑀𝑟

3 + 𝑒−𝑀𝑟
. (5.10)

For the f (R) models whose deviation from the ΛCDM model is small (𝑚 ≪ 1), we have
𝑀2 ≃ 𝑅0/[3𝑚(𝑅0)] and 𝑅 ≃ 8𝜋𝐺𝜌. This gives the following estimate

(𝑀𝑟𝑐)
2 ≃ 2

Φ𝑐

𝑚(𝑅0)
, (5.11)

where Φ𝑐 = 𝐺𝑀𝑐/(𝐹0𝑟𝑐) = 4𝜋𝐺𝜌𝑟2𝑐/(3𝐹0) is the gravitational potential at the surface of the body.
The approximation 𝑀𝑟𝑐 ≪ 1 used to derive Eqs. (5.6) and (5.7) corresponds to the condition

𝑚(𝑅0) ≫ Φ𝑐 . (5.12)

Since 𝐹0𝛿𝐹 = 𝑓,𝑅𝑅(𝑅0)𝛿𝑅, it follows that

𝛿𝑅 =
𝑓,𝑅(𝑅0)

𝑓,𝑅𝑅(𝑅0)
𝛿𝐹 . (5.13)

The validity of the linear expansion requires that 𝛿𝑅 ≪ 𝑅0, which translates into 𝛿𝐹 ≪ 𝑚(𝑅0).
Since 𝛿𝐹 ≃ 2𝐺𝑀𝑐/(3𝐹0𝑟𝑐) = 2Φ𝑐/3 at 𝑟 = 𝑟𝑐, one has 𝛿𝐹 ≪ 𝑚(𝑅0) ≪ 1 under the condition
(5.12). Hence the linear analysis given above is valid for 𝑚(𝑅0) ≫ Φ𝑐.

For the distance 𝑟 close to 𝑟𝑐 the post Newtonian parameter in Eq. (5.10) is given by 𝛾 ≃ 1/2
(i.e., because 𝑀𝑟 ≪ 1). The tightest experimental bound on 𝛾 is given by [616, 83, 617]:

|𝛾 − 1| < 2.3× 10−5 , (5.14)
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which comes from the time-delay effect of the Cassini tracking for Sun. This means that f (R)
gravity models with the light scalaron mass (𝑀𝑟𝑐 ≪ 1) do not satisfy local gravity constraints [469,
470, 245, 233, 154, 448, 330, 332]. The mean density of Earth or Sun is of the order of 𝜌 ≃
1 – 10 g/cm

3
, which is much larger than the present cosmological density 𝜌

(0)
𝑐 ≃ 10−29 g/cm

3
. In

such an environment the condition 𝛿𝑅≪ 𝑅0 is violated and the field mass 𝑀 becomes large such
that 𝑀𝑟𝑐 ≫ 1. The effect of the chameleon mechanism [344, 343] becomes important in this non-
linear regime (𝛿𝑅≫ 𝑅0) [251, 306, 134, 101]. In Section 5.2 we will show that the f (R) models can
be consistent with local gravity constraints provided that the chameleon mechanism is at work.

5.2 Chameleon mechanism in f (R) gravity

Let us discuss the chameleon mechanism [344, 343] in metric f (R) gravity. Unlike the linear
expansion approach given in Section 5.1, this corresponds to a non-linear effect arising from a large
departure of the Ricci scalar from its background value 𝑅0. The mass of an effective scalar field
degree of freedom depends on the density of its environment. If the matter density is sufficiently
high, the field acquires a heavy mass about the potential minimum. Meanwhile the field has a
lighter mass in a low-density cosmological environment relevant to dark energy so that it can
propagate freely. As long as the spherically symmetric body has a thin-shell around its surface,
the effective coupling between the field and matter becomes much smaller than the bare coupling
|𝑄|. In the following we shall review the chameleon mechanism for general couplings 𝑄 and then
proceed to constrain f (R) dark energy models from local gravity tests.

5.2.1 Field profile of the chameleon field

The action (2.1) in f (R) gravity can be transformed to the Einstein frame action (2.32) with the
coupling 𝑄 = −1/

√
6 between the scalaron field 𝜑 =

√︀
3/(2𝜅2) ln 𝐹 and non-relativistic matter.

Let us consider a spherically symmetric body with radius 𝑟𝑐 in the Einstein frame. We approximate
that the background geometry is described by the Minkowski space-time. Varying the action (2.32)
with respect to the field 𝜑, we obtain

d2𝜑

d𝑟2
+

2

𝑟

d𝜑

d𝑟
− d𝑉eff

d𝜑
= 0 , (5.15)

where 𝑟 is a distance from the center of symmetry that is related to the distance 𝑟 in the Jordan
frame via 𝑟 =

√
𝐹𝑟 = 𝑒−𝑄𝜅𝜑𝑟. The effective potential 𝑉eff is defined by

𝑉eff(𝜑) = 𝑉 (𝜑) + 𝑒𝑄𝜅𝜑𝜌* , (5.16)

where 𝜌* is a conserved quantity in the Einstein frame [343]. Recall that the field potential 𝑉 (𝜑) is
given in Eq. (2.33). The energy density 𝜌 in the Einstein frame is related with the energy density
𝜌 in the Jordan frame via the relation 𝜌 = 𝜌/𝐹 2 = 𝑒4𝑄𝜅𝜑𝜌. Since the conformal transformation
gives rise to a coupling 𝑄 between matter and the field, 𝜌 is not a conserved quantity. Instead the
quantity 𝜌* = 𝑒3𝑄𝜅𝜑𝜌 = 𝑒−𝑄𝜅𝜑𝜌 corresponds to a conserved quantity, which satisfies 𝑟3𝜌* = 𝑟3𝜌.
Note that Eq. (5.15) is consistent with Eq. (2.42).

In the following we assume that a spherically symmetric body has a constant density 𝜌* = 𝜌𝐴
inside the body (𝑟 < 𝑟𝑐) and that the energy density outside the body (𝑟 > 𝑟𝑐) is 𝜌* = 𝜌𝐵
(≪ 𝜌𝐴). The mass 𝑀𝑐 of the body and the gravitational potential Φ𝑐 at the radius 𝑟𝑐 are given
by 𝑀𝑐 = (4𝜋/3)𝑟3𝑐𝜌𝐴 and Φ𝑐 = 𝐺𝑀𝑐/𝑟𝑐, respectively. The effective potential has minima at the
field values 𝜑𝐴 and 𝜑𝐵 :

𝑉,𝜑(𝜑𝐴) + 𝜅𝑄𝑒𝑄𝜅𝜑𝐴𝜌𝐴 = 0 , (5.17)

𝑉,𝜑(𝜑𝐵) + 𝜅𝑄𝑒𝑄𝜅𝜑𝐵𝜌𝐵 = 0 . (5.18)
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The former corresponds to the region of high density with a heavy mass squared 𝑚2
𝐴 ≡ 𝑉eff,𝜑𝜑(𝜑𝐴),

whereas the latter to a lower density region with a lighter mass squared 𝑚2
𝐵 ≡ 𝑉eff,𝜑𝜑(𝜑𝐵). In the

case of Sun, for example, the field value 𝜑𝐵 is determined by the homogeneous dark matter/baryon

density in our galaxy, i.e., 𝜌𝐵 ≃ 10−24 g/cm
3
.
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Figure 3: (Top) The potential 𝑉 (𝜑) = (𝐹𝑅 − 𝑓)/(2𝜅2𝐹 2) versus the field 𝜑 =
√︀

3/(16𝜋)𝑚pl ln𝐹 for
the Starobinsky’s dark energy model (4.84) with 𝑛 = 1 and 𝜇 = 2. (Bottom) The inverted effective
potential −𝑉eff for the same model parameters as the top with 𝜌* = 10𝑅𝑐𝑚

2
pl. The field value, at which

the inverted effective potential has a maximum, is different depending on the density 𝜌*, see Eq. (5.22). In
the upper panel “de Sitter” corresponds to the minimum of the potential, whereas “singular” means that
the curvature diverges at 𝜑 = 0.

When 𝑄 > 0 the effective potential has a minimum for the models with 𝑉,𝜑 < 0, which occurs,
e.g., for the inverse power-law potential 𝑉 (𝜑) = 𝑀4+𝑛𝜑−𝑛. The f (R) gravity corresponds to a
negative coupling (𝑄 = −1/

√
6), in which case the effective potential has a minimum for 𝑉,𝜑 > 0.

As an example, let us consider the shape of the effective potential for the models (4.83) and (4.84).
In the region 𝑅≫ 𝑅𝑐 both models behave as

𝑓(𝑅) ≃ 𝑅− 𝜇𝑅𝑐

[︁
1− (𝑅𝑐/𝑅)

2𝑛
]︁
. (5.19)
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For this functional form it follows that

𝐹 = 𝑒
2√
6
𝜅𝜑

= 1− 2𝑛𝜇(𝑅/𝑅𝑐)
−(2𝑛+1) , (5.20)

𝑉 (𝜑) =
𝜇𝑅𝑐

2𝜅2
𝑒
− 4√

6
𝜅𝜑

[︃
1− (2𝑛+ 1)

(︂
−𝜅𝜑√
6𝑛𝜇

)︂ 2𝑛
2𝑛+1

]︃
. (5.21)

The r.h.s. of Eq. (5.20) is smaller than 1, so that 𝜑 < 0. The limit 𝑅→ ∞ corresponds to 𝜑→ −0.
In the limit 𝜑 → −0 one has 𝑉 → 𝜇𝑅𝑐/(2𝜅

2) and 𝑉,𝜑 → ∞. This property can be seen in the
upper panel of Figure 3, which shows the potential 𝑉 (𝜑) for the model (4.84) with parameters

𝑛 = 1 and 𝜇 = 2. Because of the existence of the coupling term 𝑒−𝜅𝜑/
√
6𝜌*, the effective potential

𝑉eff(𝜑) has a minimum at

𝜅𝜑𝑀 = −
√
6𝑛𝜇

(︂
𝑅𝑐

𝜅2𝜌*

)︂2𝑛+1

. (5.22)

Since 𝑅 ∼ 𝜅2𝜌* ≫ 𝑅𝑐 in the region of high density, the condition |𝜅𝜑𝑀 | ≪ 1 is in fact justified (for
𝑛 and 𝜇 of the order of unity). The field mass 𝑚𝜑 about the minimum of the effective potential is
given by

𝑚2
𝜑 =

1

6𝑛(𝑛+ 1)𝜇
𝑅𝑐

(︂
𝜅2𝜌*

𝑅𝑐

)︂2(𝑛+1)

. (5.23)

This shows that, in the regime 𝑅 ∼ 𝜅2𝜌* ≫ 𝑅𝑐, 𝑚𝜑 is much larger than the present Hubble param-
eter 𝐻0 (∼

√
𝑅𝑐). Cosmologically the field evolves along the instantaneous minima characterized

by Eq. (5.22) and then it approaches a de Sitter point which appears as a minimum of the potential
in the upper panel of Figure 3.

In order to solve the “dynamics” of the field 𝜑 in Eq. (5.15), we need to consider the inverted
effective potential (−𝑉eff). See the lower panel of Figure 3 for illustration [which corresponds to
the model (4.84)]. We impose the following boundary conditions:

d𝜑

d𝑟
(𝑟 = 0) = 0 , (5.24)

𝜑(𝑟 → ∞) = 𝜑𝐵 . (5.25)

The boundary condition (5.25) can be also understood as lim𝑟→∞ d𝜑/d𝑟 = 0. The field 𝜑 is at
rest at 𝑟 = 0 and starts to roll down the potential when the matter-coupling term 𝜅𝑄𝜌𝐴𝑒

𝑄𝜅𝜑 in
Eq. (5.15) becomes important at a radius 𝑟1. If the field value at 𝑟 = 0 is close to 𝜑𝐴, the field
stays around 𝜑𝐴 in the region 0 < 𝑟 < 𝑟1. The body has a thin-shell if 𝑟1 is close to the radius 𝑟𝑐
of the body.

In the region 0 < 𝑟 < 𝑟1 one can approximate the r.h.s. of Eq. (5.15) as d𝑉eff/d𝜑 ≃ 𝑚2
𝐴(𝜑−𝜑𝐴)

around 𝜑 = 𝜑𝐴, where 𝑚
2
𝐴 = 𝑅𝑐(𝜅

2𝜌𝐴/𝑅𝑐)
2(𝑛+1)/[6𝑛(𝑛+ 1)]. Hence the solution to Eq. (5.15) is

given by 𝜑(𝑟) = 𝜑𝐴 +𝐴𝑒−𝑚𝐴𝑟/𝑟 +𝐵𝑒𝑚𝐴𝑟/𝑟, where 𝐴 and 𝐵 are constants. In order to avoid the
divergence of 𝜑 at 𝑟 = 0 we demand the condition 𝐵 = −𝐴, in which case the solution is

𝜑(𝑟) = 𝜑𝐴 +
𝐴(𝑒−𝑚𝐴𝑟 − 𝑒𝑚𝐴𝑟)

𝑟
(0 < 𝑟 < 𝑟1). (5.26)

In fact, this satisfies the boundary condition (5.24).
In the region 𝑟1 < 𝑟 < 𝑟𝑐 the field |𝜑(𝑟)| evolves toward larger values with the increase of 𝑟. In

the lower panel of Figure 3 the field stays around the potential maximum for 0 < 𝑟 < 𝑟1, but in the
regime 𝑟1 < 𝑟 < 𝑟𝑐 it moves toward the left (largely negative 𝜑 region). Since |𝑉,𝜑| ≪ |𝜅𝑄𝜌𝐴𝑒𝑄𝜅𝜑|
in this regime we have that d𝑉eff/d𝜑 ≃ 𝜅𝑄𝜌𝐴 in Eq. (5.15), where we used the condition 𝑄𝜅𝜑≪ 1.
Hence we obtain the following solution

𝜑(𝑟) =
1

6
𝜅𝑄𝜌𝐴𝑟

2 − 𝐶

𝑟
+𝐷 (𝑟1 < 𝑟 < 𝑟𝑐), (5.27)
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where 𝐶 and 𝐷 are constants.
Since the field acquires a sufficient kinetic energy in the region 𝑟1 < 𝑟 < 𝑟𝑐, the field climbs up

the potential hill toward the largely negative 𝜑 region outside the body (𝑟 > 𝑟𝑐). The shape of
the effective potential changes relative to that inside the body because the density drops from 𝜌𝐴
to 𝜌𝐵 . The kinetic energy of the field dominates over the potential energy, which means that the
term d𝑉eff/d𝜑 in Eq. (5.15) can be neglected. Recall that one has |𝜑𝐵 | ≫ |𝜑𝐴| under the condition
𝜌𝐴 ≫ 𝜌𝐵 [see Eq. (5.22)]. Taking into account the mass term𝑚2

𝐵 = 𝑅𝑐(𝜅
2𝜌𝐵/𝑅𝑐)

2(𝑛+1)/[6𝑛(𝑛+1)],
we have d𝑉eff/d𝜑 ≃ 𝑚2

𝐵(𝜑− 𝜑𝐵) on the r.h.s. of Eq. (5.15). Hence we obtain the solution 𝜑(𝑟) =
𝜑𝐵 + 𝐸𝑒−𝑚𝐵(𝑟−𝑟𝑐)/𝑟 + 𝐹𝑒𝑚𝐵(𝑟−𝑟𝑐)/𝑟 with constants 𝐸 and 𝐹 . Using the boundary condition
(5.25), it follows that 𝐹 = 0 and hence

𝜑(𝑟) = 𝜑𝐵 + 𝐸
𝑒−𝑚𝐵(𝑟−𝑟𝑐)

𝑟
(𝑟 > 𝑟𝑐) . (5.28)

Three solutions (5.26), (5.27) and (5.28) should be matched at 𝑟 = 𝑟1 and 𝑟 = 𝑟𝑐 by im-
posing continuous conditions for 𝜑 and d𝜑/d𝑟. The coefficients 𝐴, 𝐶, 𝐷 and 𝐸 are determined
accordingly [575]:

𝐶 =
𝑠1𝑠2[(𝜑𝐵 − 𝜑𝐴) + (𝑟21 − 𝑟2𝑐 )𝜅𝑄𝜌𝐴/6] + [𝑠2𝑟

2
1(𝑒

−𝑚𝐴𝑟1 − 𝑒𝑚𝐴𝑟1)− 𝑠1𝑟
2
𝑐 ]𝜅𝑄𝜌𝐴/3

𝑚𝐴(𝑒−𝑚𝐴𝑟1 + 𝑒𝑚𝐴𝑟1)𝑠2 −𝑚𝐵𝑠1
, (5.29)

𝐴 = − 1

𝑠1
(𝐶 + 𝜅𝑄𝜌𝐴𝑟

3
1/3) , (5.30)

𝐸 = − 1

𝑠2
(𝐶 + 𝜅𝑄𝜌𝐴𝑟

3
𝑐/3) , (5.31)

𝐷 = 𝜑𝐵 − 1

6
𝜅𝑄𝜌𝐴𝑟

2
𝑐 +

1

𝑟𝑐
(𝐶 + 𝐸) , (5.32)

where

𝑠1 ≡ 𝑚𝐴𝑟1(𝑒
−𝑚𝐴𝑟1 + 𝑒𝑚𝐴𝑟1) + 𝑒−𝑚𝐴𝑟1 − 𝑒𝑚𝐴𝑟1 , (5.33)

𝑠2 ≡ 1 +𝑚𝐵𝑟𝑐 . (5.34)

If the mass 𝑚𝐵 outside the body is small to satisfy the condition 𝑚𝐵𝑟𝑐 ≪ 1 and 𝑚𝐴 ≫ 𝑚𝐵 , we
can neglect the contribution of the 𝑚𝐵-dependent terms in Eqs. (5.29) – (5.32). Then the field
profile is given by [575]

𝜑(𝑟) = 𝜑𝐴 − 1

𝑚𝐴(𝑒−𝑚𝐴𝑟1 + 𝑒𝑚𝐴𝑟1)

[︂
𝜑𝐵 − 𝜑𝐴 +

1

2
𝜅𝑄𝜌𝐴(𝑟

2
1 − 𝑟2𝑐 )

]︂
𝑒−𝑚𝐴𝑟 − 𝑒𝑚𝐴𝑟

𝑟
,

(0 < 𝑟 < 𝑟1) , (5.35)

𝜑(𝑟) = 𝜑𝐵 +
1

6
𝜅𝑄𝜌𝐴(𝑟

2 − 3𝑟2𝑐 ) +
𝜅𝑄𝜌𝐴𝑟

3
1

3𝑟

−
[︂
1 +

𝑒−𝑚𝐴𝑟1 − 𝑒𝑚𝐴𝑟1

𝑚𝐴𝑟1(𝑒−𝑚𝐴𝑟1 + 𝑒𝑚𝐴𝑟1)

]︂ [︂
𝜑𝐵 − 𝜑𝐴 +

1

2
𝜅𝑄𝜌𝐴(𝑟

2
1 − 𝑟2𝑐 )

]︂
𝑟1
𝑟
,

(𝑟1 < 𝑟 < 𝑟𝑐) , (5.36)

𝜑(𝑟) = 𝜑𝐵 −

[︃
𝑟1(𝜑𝐵 − 𝜑𝐴) +

1

6
𝜅𝑄𝜌𝐴𝑟

3
𝑐

(︂
2 +

𝑟1
𝑟𝑐

)︂(︂
1− 𝑟1

𝑟𝑐

)︂2

+
𝑒−𝑚𝐴𝑟1 − 𝑒𝑚𝐴𝑟1

𝑚𝐴(𝑒−𝑚𝐴𝑟1 + 𝑒𝑚𝐴𝑟1)

{︂
𝜑𝐵 − 𝜑𝐴 +

1

2
𝜅𝑄𝜌𝐴(𝑟

2
1 − 𝑟2𝑐 )

}︂]︃
𝑒−𝑚𝐵(𝑟−𝑟𝑐)

𝑟
,

(𝑟 > 𝑟𝑐) . (5.37)
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Originally a similar field profile was derived in [344, 343] by assuming that the field is frozen at
𝜑 = 𝜑𝐴 in the region 0 < 𝑟 < 𝑟1.

The radius 𝑟1 is determined by the following condition

𝑚2
𝐴 [𝜑(𝑟1)− 𝜑𝐴] = 𝜅𝑄𝜌𝐴 . (5.38)

This translates into

𝜑𝐵 − 𝜑𝐴 +
1

2
𝜅𝑄𝜌𝐴(𝑟

2
1 − 𝑟2𝑐 ) =

6𝑄Φ𝑐

𝜅(𝑚𝐴𝑟𝑐)2
𝑚𝐴𝑟1(𝑒

𝑚𝐴𝑟1 + 𝑒−𝑚𝐴𝑟1)

𝑒𝑚𝐴𝑟1 − 𝑒−𝑚𝐴𝑟1
, (5.39)

where Φ𝑐 = 𝜅2𝑀𝑐/(8𝜋𝑟𝑐) = 𝜅2𝜌𝐴𝑟
2
𝑐/6 is the gravitational potential at the surface of the body.

Using this relation, the field profile (5.37) outside the body reduces to

𝜑(𝑟) = 𝜑𝐵 − 2𝑄Φ𝑐

𝜅

[︂
1− 𝑟31

𝑟3𝑐
+ 3

𝑟1
𝑟𝑐

1

(𝑚𝐴𝑟𝑐)2

{︂
𝑚𝐴𝑟1(𝑒

𝑚𝐴𝑟1 + 𝑒−𝑚𝐴𝑟1)

𝑒𝑚𝐴𝑟1 − 𝑒−𝑚𝐴𝑟1
− 1

}︂]︂
𝑟𝑐𝑒

−𝑚𝐵(𝑟−𝑟𝑐)

𝑟
,

(𝑟 > 𝑟𝑐) . (5.40)

If the field value at 𝑟 = 0 is away from 𝜑𝐴, the field rolls down the potential for 𝑟 > 0. This
corresponds to taking the limit 𝑟1 → 0 in Eq. (5.40), in which case the field profile outside the
body is given by

𝜑(𝑟) = 𝜑𝐵 − 2𝑄

𝜅

𝐺𝑀𝑐

𝑟
𝑒−𝑚𝐵(𝑟−𝑟𝑐) . (5.41)

This shows that the effective coupling is of the order of 𝑄 and hence for |𝑄| = 𝒪(1) local gravity
constraints are not satisfied.

5.2.2 Thin-shell solutions

Let us consider the case in which 𝑟1 is close to 𝑟𝑐, i.e.

Δ𝑟𝑐 ≡ 𝑟𝑐 − 𝑟1 ≪ 𝑟𝑐 . (5.42)

This corresponds to the thin-shell regime in which the field is stuck inside the star except around
its surface. If the field is sufficiently massive inside the star to satisfy the condition 𝑚𝐴𝑟𝑐 ≫ 1,
Eq. (5.39) gives the following relation

𝜖th ≡ 𝜅(𝜑𝐵 − 𝜑𝐴)

6𝑄Φ𝑐
≃ Δ𝑟𝑐

𝑟𝑐
+

1

𝑚𝐴𝑟𝑐
, (5.43)

where 𝜖th is called the thin-shell parameter [344, 343]. Neglecting second-order terms with respect
to Δ𝑟𝑐/𝑟𝑐 and 1/(𝑚𝐴𝑟𝑐) in Eq. (5.40), it follows that

𝜑(𝑟) ≃ 𝜑𝐵 − 2𝑄eff

𝜅

𝐺𝑀𝑐

𝑟
𝑒−𝑚𝐵(𝑟−𝑟𝑐) , (5.44)

where 𝑄eff is the effective coupling given by

𝑄eff = 3𝑄𝜖th . (5.45)

Since 𝜖th ≪ 1 under the conditions Δ𝑟𝑐/𝑟𝑐 ≪ 1 and 1/(𝑚𝐴𝑟𝑐) ≪ 1, the amplitude of the
effective coupling 𝑄eff becomes much smaller than 1. In the original papers of Khoury and Welt-
man [344, 343] the thin-shell solution was derived by assuming that the field is frozen with the value
𝜑 = 𝜑𝐴 in the region 0 < 𝑟 < 𝑟1. In this case the thin-shell parameter is given by 𝜖th ≃ Δ𝑟𝑐/𝑟𝑐,
which is different from Eq. (5.43). However, this difference is not important because the condition
Δ𝑟𝑐/𝑟𝑐 ≫ 1/(𝑚𝐴𝑟𝑐) is satisfied for most of viable models [575].
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5.2.3 Post Newtonian parameter

We derive the bound on the thin-shell parameter from experimental tests of the post Newtonian
parameter in the solar system. The spherically symmetric metric in the Einstein frame is described
by [251]

d𝑠2 = 𝑔𝜇𝜈d𝑥̃
𝜇d𝑥̃𝜈 = −[1− 2𝒜(𝑟)]d𝑡2 + [1 + 2ℬ̃(𝑟)]d𝑟2 + 𝑟2dΩ2 , (5.46)

where 𝒜(𝑟) and ℬ̃(𝑟) are functions of 𝑟 and dΩ2 = d𝜃2 + (sin2 𝜃) d𝜑2. In the weak gravitational
background (𝒜(𝑟) ≪ 1 and ℬ̃(𝑟) ≪ 1) the metric outside the spherically symmetric body with
mass 𝑀𝑐 is given by 𝒜(𝑟) ≃ ℬ̃(𝑟) ≃ 𝐺𝑀𝑐/𝑟.

Let us transform the metric (5.46) back to that in the Jordan frame under the inverse of
the conformal transformation, 𝑔𝜇𝜈 = 𝑒2𝑄𝜅𝜑𝑔𝜇𝜈 . Then the metric in the Jordan frame, d𝑠2 =
𝑒2𝑄𝜅𝜑d𝑠2 = 𝑔𝜇𝜈d𝑥

𝜇d𝑥𝜈 , is given by

d𝑠2 = −[1− 2𝒜(𝑟)]d𝑡2 + [1 + 2ℬ(𝑟)]d𝑟2 + 𝑟2dΩ2 . (5.47)

Under the condition |𝑄𝜅𝜑| ≪ 1 we obtain the following relations

𝑟 = 𝑒𝑄𝜅𝜑𝑟 , 𝒜(𝑟) ≃ 𝒜(𝑟)−𝑄𝜅𝜑(𝑟) , ℬ(𝑟) ≃ ℬ̃(𝑟)−𝑄𝜅𝑟
d𝜑(𝑟)

d𝑟
. (5.48)

In the following we use the approximation 𝑟 ≃ 𝑟, which is valid for |𝑄𝜅𝜑| ≪ 1. Using the thin-shell
solution (5.44), it follows that

𝒜(𝑟) =
𝐺𝑀𝑐

𝑟

[︀
1 + 6𝑄2𝜖th (1− 𝑟/𝑟𝑐)

]︀
, ℬ(𝑟) = 𝐺𝑀𝑐

𝑟

(︀
1− 6𝑄2𝜖th

)︀
, (5.49)

where we have used the approximation |𝜑𝐵 | ≫ |𝜑𝐴| and hence 𝜑𝐵 ≃ 6𝑄Φ𝑐𝜖th/𝜅.
The term 𝑄𝜅𝜑𝐵 in Eq. (5.48) is smaller than 𝒜(𝑟) = 𝐺𝑀𝑐/𝑟 under the condition 𝑟/𝑟𝑐 <

(6𝑄2𝜖th)
−1. Provided that the field 𝜑 reaches the value 𝜑𝐵 with the distance 𝑟𝐵 satisfying the

condition 𝑟𝐵/𝑟𝑐 < (6𝑄2𝜖th)
−1, the metric 𝒜(𝑟) does not change its sign for 𝑟 < 𝑟𝐵 . The post-

Newtonian parameter 𝛾 is given by

𝛾 ≡ ℬ(𝑟)
𝒜(𝑟)

≃ 1− 6𝑄2𝜖th
1 + 6𝑄2𝜖th(1− 𝑟/𝑟𝑐)

. (5.50)

The experimental bound (5.14) can be satisfied as long as the thin-shell parameter 𝜖th is much
smaller than 1. If we take the distance 𝑟 = 𝑟𝑐, the constraint (5.14) translates into

𝜖th,⊙ < 3.8× 10−6/𝑄2 , (5.51)

where 𝜖th,⊙ is the thin-shell parameter for Sun. In f (R) gravity (𝑄 = −1/
√
6) this corresponds to

𝜖th,⊙ < 2.3× 10−5.

5.2.4 Experimental bounds from the violation of equivalence principle

Let us next discuss constraints on the thin-shell parameter from the possible violation of equivalence
principle (EP). The tightest bound comes from the solar system tests of weak EP using the free-fall
acceleration of Earth (𝑎⊕) and Moon (𝑎Moon) toward Sun [343]. The experimental bound on the
difference of two accelerations is given by [616, 83, 617]

|𝑎⊕ − 𝑎Moon|
|𝑎⊕ + 𝑎Moon|/2

< 10−13 . (5.52)

Provided that Earth, Sun, and Moon have thin-shells, the field profiles outside the bodies are
given by Eq. (5.44) with the replacement of corresponding quantities. The presence of the field
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𝜑(𝑟) with an effective coupling 𝑄eff gives rise to an extra acceleration, 𝑎fifth = |𝑄eff∇𝜑(𝑟)|. Then
the accelerations 𝑎⊕ and 𝑎Moon toward Sun (mass 𝑀⊙) are [343]

𝑎⊕ ≃ 𝐺𝑀⊙

𝑟2

[︂
1 + 18𝑄2𝜖2th,⊕

Φ⊕

Φ⊙

]︂
, (5.53)

𝑎Moon ≃ 𝐺𝑀⊙

𝑟2

[︂
1 + 18𝑄2𝜖2th,⊕

Φ2
⊕

Φ⊙ΦMoon

]︂
, (5.54)

where 𝜖th,⊕ is the thin-shell parameter of Earth, and Φ⊙ ≃ 2.1×10−6, Φ⊕ ≃ 7.0×10−10, ΦMoon ≃
3.1 × 10−11 are the gravitational potentials of Sun, Earth and Moon, respectively. Hence the
condition (5.52) translates into [134, 596]

𝜖th,⊕ < 8.8× 10−7/|𝑄| , (5.55)

which corresponds to 𝜖th,⊕ < 2.2× 10−6 in f (R) gravity. This bound provides a tighter bound on
model parameters compared to (5.51).

Since the condition |𝜑𝐵 | ≫ |𝜑𝐴| is satisfied for 𝜌𝐴 ≫ 𝜌𝐵 , one has 𝜖th,⊕ ≃ 𝜅𝜑𝐵/(6𝑄Φ⊕) from
Eq. (5.43). Then the bound (5.55) translates into

|𝜅𝜑𝐵,⊕| < 3.7× 10−15 . (5.56)

5.2.5 Constraints on model parameters in f (R) gravity

We place constraints on the f (R) models given in Eqs. (4.83) and (4.84) by using the experimental
bounds discussed above. In the region of high density where 𝑅 is much larger than 𝑅𝑐, one can use
the asymptotic form (5.19) to discuss local gravity constraints. Inside and outside the spherically
symmetric body the effective potential 𝑉eff for the model (5.19) has two minima at

𝜅𝜑𝐴 ≃ −
√
6𝑛𝜇

(︂
𝑅𝑐

𝜅2𝜌𝐴

)︂2𝑛+1

, 𝜅𝜑𝐵 ≃ −
√
6𝑛𝜇

(︂
𝑅𝑐

𝜅2𝜌𝐵

)︂2𝑛+1

. (5.57)

The bound (5.56) translates into

𝑛𝜇

𝑥2𝑛+1
𝑑

(︂
𝑅1

𝜅2𝜌𝐵

)︂2𝑛+1

< 1.5× 10−15 , (5.58)

where 𝑥𝑑 ≡ 𝑅1/𝑅𝑐 and 𝑅1 is the Ricci scalar at the late-time de Sitter point. In the following we
consider the case in which the Lagrangian density is given by (5.19) for 𝑅 ≥ 𝑅1. If we use the
models (4.83) and (4.84), then there are some modifications for the estimation of 𝑅1. However this
change should be insignificant when we place constraints on model parameters.

At the de Sitter point the model (5.19) satisfies the condition 𝜇 = 𝑥2𝑛+1
𝑑 /[2(𝑥2𝑛𝑑 − 𝑛 − 1)].

Substituting this relation into Eq. (5.58), we find

𝑛

2(𝑥2𝑛𝑑 − 𝑛− 1)

(︂
𝑅1

𝜅2𝜌𝐵

)︂2𝑛+1

< 1.5× 10−15 . (5.59)

For the stability of the de Sitter point we require that 𝑚(𝑅1) < 1, which translates into the
condition 𝑥2𝑛𝑑 > 2𝑛2 +3𝑛+1. Hence the term 𝑛/[2(𝑥2𝑛𝑑 −𝑛− 1)] in Eq. (5.59) is smaller than 0.25
for 𝑛 > 0.

We use the approximation that 𝑅1 and 𝜌𝐵 are of the orders of the present cosmological density
10−29 g/cm

3
and the baryonic/dark matter density 10−24 g/cm

3
in our galaxy, respectively. From

Eq. (5.59) we obtain the bound [134]
𝑛 > 0.9 . (5.60)
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Under this condition one can see an appreciable deviation from the ΛCDM model cosmologically
as 𝑅 decreases to the order of 𝑅𝑐.

If we consider the model (4.81), it was shown in [134] that the bound (5.56) gives the constraint
𝑛 < 3×10−10. This means that the deviation from the ΛCDM model is very small. Meanwhile, for
the models (4.83) and (4.84), the deviation from the ΛCDM model can be large even for 𝑛 = 𝒪(1),
while satisfying local gravity constraints. We note that the model (4.89) is also consistent with
local gravity constraints.
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6 Cosmological Perturbations

The f (R) theories have one extra scalar degree of freedom compared to the ΛCDM model. This
feature results in more freedom for the background. As we have seen previously, a viable cosmo-
logical sequence of radiation, matter, and accelerated epochs is possible provided some conditions
hold for f (R). In principle, however, one can specify any given 𝐻 = 𝐻(𝑎) and solve Eqs. (2.15)
and (2.16) for those 𝑓(𝑅(𝑎)) compatible with the given 𝐻(𝑎).

Therefore the background cosmological evolution is not in general enough to distinguish f (R)
theories from other theories. Even worse, for the same 𝐻(𝑎), there may be some different forms
of f (R) which fulfill the Friedmann equations. Hence other observables are needed in order to
distinguish between different theories. In order to achieve this goal, perturbation theory turns out
to be of fundamental importance. More than this, perturbations theory in cosmology has become
as important as in particle physics, since it gives deep insight into these theories by providing
information regarding the number of independent degrees of freedom, their speed of propagation,
their time-evolution: all observables to be confronted with different data sets.

The main result of the perturbation analysis in f (R) gravity can be understood in the following
way. Since it is possible to express this theory into a form of scalar-tensor theory, this should
correspond to having a scalar-field degree of freedom which propagates with the speed of light.
Therefore no extra vector or tensor modes come from the f (R) gravitational sector. Introducing
matter fields will in general increase the number of degrees of freedom, e.g., a perfect fluid will only
add another propagating scalar mode and a vector mode as well. In this section we shall provide
perturbation equations for the general Lagrangian density 𝑓(𝑅,𝜑) including metric f (R) gravity
as a special case.

6.1 Perturbation equations

We start with a general perturbed metric about the flat FLRW background [57, 352, 231, 232, 437]

d𝑠2 = −(1+2𝛼) d𝑡2−2𝑎(𝑡) (𝜕𝑖𝛽−𝑆𝑖)d𝑡d𝑥
𝑖+𝑎2(𝑡)(𝛿𝑖𝑗+2𝜓𝛿𝑖𝑗+2𝜕𝑖𝜕𝑗𝛾+2𝜕𝑗𝐹𝑖+ℎ𝑖𝑗) d𝑥

𝑖 d𝑥𝑗 , (6.1)

where 𝛼, 𝛽, 𝜓, 𝛾 are scalar perturbations, 𝑆𝑖, 𝐹𝑖 are vector perturbations, and ℎ𝑖𝑗 is the tensor
perturbations, respectively. In this review we focus on scalar and tensor perturbations, because
vector perturbations are generally unimportant in cosmology [71].

For generality we consider the following action

𝑆 =

∫︁
d4𝑥

√
−𝑔

[︂
1

2𝜅2
𝑓(𝑅,𝜑)− 1

2
𝜔(𝜑)𝑔𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑− 𝑉 (𝜑)

]︂
+ 𝑆𝑀 (𝑔𝜇𝜈 ,Ψ𝑀 ) , (6.2)

where 𝑓(𝑅,𝜑) is a function of the Ricci scalar 𝑅 and the scalar field 𝜑, 𝜔(𝜑) and 𝑉 (𝜑) are functions
of 𝜑, and 𝑆𝑀 is a matter action. We do not take into account an explicit coupling between the
field 𝜑 and matter. The action (6.2) covers not only f (R) gravity but also other modified gravity
theories such as Brans–Dicke theory, scalar-tensor theories, and dilaton gravity. We define the
quantity 𝐹 (𝑅,𝜑) ≡ 𝜕𝑓/𝜕𝑅. Varying the action (6.2) with respect to 𝑔𝜇𝜈 and 𝜑, we obtain the
following field equations

𝐹𝑅𝜇𝜈 − 1

2
𝑓𝑔𝜇𝜈 −∇𝜇∇𝜈𝐹 + 𝑔𝜇𝜈�𝐹

= 𝜅2
[︂
𝜔

(︂
∇𝜇𝜑∇𝜈𝜑− 1

2
𝑔𝜇𝜈∇𝜆𝜑∇𝜆𝜑

)︂
− 𝑉 𝑔𝜇𝜈 + 𝑇 (𝑀)

𝜇𝜈

]︂
, (6.3)

�𝜑+
1

2𝜔

(︂
𝜔,𝜑∇𝜆𝜑∇𝜆𝜑− 2𝑉,𝜑 +

𝑓,𝜑
𝜅2

)︂
= 0 , (6.4)
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where 𝑇
(𝑀)
𝜇𝜈 is the energy-momentum tensor of matter.

We decompose 𝜑 and 𝐹 into homogeneous and perturbed parts, 𝜑 = 𝜑+ 𝛿𝜑 and 𝐹 = 𝐹 + 𝛿𝐹 ,
respectively. In the following we omit the bar for simplicity. The energy-momentum tensor of an
ideal fluid with perturbations is

𝑇 0
0 = −(𝜌𝑀 + 𝛿𝜌𝑀 ) , 𝑇 0

𝑖 = −(𝜌𝑀 + 𝑃𝑀 )𝜕𝑖𝑣 , 𝑇 𝑖
𝑗 = (𝑃𝑀 + 𝛿𝑃𝑀 )𝛿𝑖𝑗 , (6.5)

where 𝑣 characterizes the velocity potential of the fluid. The conservation of the energy-momentum
tensor (∇𝜇𝑇𝜇𝜈 = 0) holds for the theories with the action (6.2) [357].

For the action (6.2) the background equations (without metric perturbations) are given by

3𝐹𝐻2 =
1

2
(𝑅𝐹 − 𝑓)− 3𝐻𝐹̇ + 𝜅2

[︂
1

2
𝜔𝜑̇2 + 𝑉 (𝜑) + 𝜌𝑀

]︂
, (6.6)

−2𝐹𝐻̇ = 𝐹 −𝐻𝐹̇ + 𝜅2𝜔𝜑̇2 + 𝜅2(𝜌𝑀 + 𝑃𝑀 ) , (6.7)

𝜑+ 3𝐻𝜑̇+
1

2𝜔

(︂
𝜔,𝜑𝜑̇

2 + 2𝑉,𝜑 − 𝑓,𝜑
𝜅2

)︂
= 0 , (6.8)

𝜌̇𝑀 + 3𝐻(𝜌𝑀 + 𝑃𝑀 ) = 0 , (6.9)

where 𝑅 is given in Eq. (2.13).

For later convenience, we define the following perturbed quantities

𝜒 ≡ 𝑎(𝛽 + 𝑎𝛾̇) , 𝐴 ≡ 3(𝐻𝛼− 𝜓̇)− Δ

𝑎2
𝜒 . (6.10)

Perturbing Einstein equations at linear order, we obtain the following equations [316, 317] (see
also [436, 566, 355, 438, 312, 313, 314, 492, 138, 33, 441, 328])

Δ

𝑎2
𝜓 +𝐻𝐴 = − 1

2𝐹

[︂(︂
3𝐻2 + 3𝐻̇ +

Δ

𝑎2

)︂
𝛿𝐹 − 3𝐻 ˙𝛿𝐹 +

1

2

(︁
𝜅2𝜔,𝜑𝜑̇

2 + 2𝜅2𝑉,𝜑 − 𝑓,𝜑

)︁
𝛿𝜑

+ 𝜅2𝜔𝜑̇ ˙𝛿𝜑+ (3𝐻𝐹̇ − 𝜅2𝜔𝜑̇2)𝛼+ 𝐹̇𝐴+ 𝜅2𝛿𝜌𝑀

]︂
, (6.11)

𝐻𝛼− 𝜓̇ =
1

2𝐹

[︁
𝜅2𝜔𝜑̇𝛿𝜑+ ˙𝛿𝐹 −𝐻𝛿𝐹 − 𝐹̇𝛼+ 𝜅2(𝜌𝑀 + 𝑃𝑀 )𝑣

]︁
, (6.12)

𝜒̇+𝐻𝜒− 𝛼− 𝜓 =
1

𝐹
(𝛿𝐹 − 𝐹̇𝜒) , (6.13)

𝐴̇+ 2𝐻𝐴+

(︂
3𝐻 +

Δ

𝑎2

)︂
𝛼 =

1

2𝐹

[︂
3 ¨𝛿𝐹 + 3𝐻 ˙𝛿𝐹 −

(︂
6𝐻2 +

Δ

𝑎2

)︂
𝛿𝐹 + 4𝜅2𝜔𝜑̇ ˙𝛿𝜑

+ (2𝜅2𝜔,𝜑𝜑̇
2 − 2𝜅2𝑉,𝜑 + 𝑓,𝜑)𝛿𝜑− 3𝐹̇ 𝛼̇− 𝐹̇𝐴

− (4𝜅2𝜔𝜑̇2 + 3𝐻𝐹̇ + 6𝐹 )𝛼+ 𝜅2(𝛿𝜌𝑀 + 𝛿𝑃𝑀 )

]︂
, (6.14)
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¨𝛿𝐹 + 3𝐻 ˙𝛿𝐹 −
(︂
Δ

𝑎2
+
𝑅

3

)︂
𝛿𝐹 +

2

3
𝜅2𝜑̇ ˙𝛿𝜑+

1

3
(𝜅2𝜔,𝜑𝜑̇

2 − 4𝜅2𝑉,𝜑 + 2𝑓,𝜑)𝛿𝜑

=
1

3
𝜅2(𝛿𝜌𝑀 − 3𝛿𝑃𝑀 ) + 𝐹̇ (𝐴+ 𝛼̇) +

(︂
2𝐹 + 3𝐻𝐹̇ +

2

3
𝜅2𝜔𝜑̇2

)︂
𝛼− 1

3
𝐹𝛿𝑅 , (6.15)

𝛿𝜑+
(︁
3𝐻 +

𝜔,𝜑

𝜔
𝜑̇
)︁
𝛿𝜑̇+

[︃
−Δ

𝑎2
+
(︁𝜔,𝜑

𝜔

)︁
,𝜑

𝜑̇2

2
+

(︂
2𝑉,𝜑 − 𝑓,𝜑

2𝜔

)︂
,𝜑

]︃
𝛿𝜑

= 𝜑̇𝛼̇+
(︁
2𝜑+ 3𝐻𝜑̇+

𝜔,𝜑

𝜔
𝜑̇2
)︁
𝛼+ 𝜑̇𝐴+

1

2𝜔
𝐹,𝜑𝛿𝑅 , (6.16)

˙𝛿𝜌𝑀 + 3𝐻(𝛿𝜌𝑀 + 𝛿𝑃𝑀 ) = (𝜌𝑀 + 𝑃𝑀 )

(︂
𝐴− 3𝐻𝛼+

Δ

𝑎2
𝑣

)︂
, (6.17)

1

𝑎3(𝜌𝑀 + 𝑃𝑀 )

d

d𝑡
[𝑎3(𝜌𝑀 + 𝑃𝑀 )𝑣] = 𝛼+

𝛿𝑃𝑀

𝜌𝑀 + 𝑃𝑀
, (6.18)

where 𝛿𝑅 is given by

𝛿𝑅 = −2

[︂
𝐴̇+ 4𝐻𝐴+

(︂
Δ

𝑎2
+ 3𝐻̇

)︂
𝛼+ 2

Δ

𝑎2
𝜓

]︂
. (6.19)

We shall solve the above equations in two different contexts: (i) inflation (Section 7), and (ii)
the matter dominated epoch followed by the late-time cosmic acceleration (Section 8).

6.2 Gauge-invariant quantities

Before discussing the detail for the evolution of cosmological perturbations, we construct a number
of gauge-invariant quantities. This is required to avoid the appearance of unphysical modes. Let
us consider the gauge transformation

𝑡 = 𝑡+ 𝛿𝑡 , 𝑥̂𝑖 = 𝑥𝑖 + 𝛿𝑖𝑗𝜕𝑗𝛿𝑥 , (6.20)

where 𝛿𝑡 and 𝛿𝑥 characterize the time slicing and the spatial threading, respectively. Then the
scalar metric perturbations 𝛼, 𝛽, 𝜓 and 𝐸 transform as [57, 71, 412]

𝛼̂ = 𝛼− 𝛿𝑡 , (6.21)

𝛽 = 𝛽 − 𝑎−1𝛿𝑡+ 𝑎 ˙𝛿𝑥 , (6.22)

𝜓 = 𝜓 −𝐻𝛿𝑡 , (6.23)

𝛾 = 𝛾 − 𝛿𝑥 . (6.24)

Matter perturbations such as 𝛿𝜑 and 𝛿𝜌 obey the following transformation rule

𝛿𝜑 = 𝛿𝜑− 𝜑̇ 𝛿𝑡 , (6.25)

𝛿𝜌 = 𝛿𝜌− 𝜌̇ 𝛿𝑡 . (6.26)

Note that the quantity 𝛿𝐹 is also subject to the same transformation: ^𝛿𝐹 = 𝛿𝐹 − 𝐹̇ 𝛿𝑡. We express
the scalar part of the 3-momentum energy-momentum tensor 𝛿𝑇 0

𝑖 as

𝛿𝑇 0
𝑖 = 𝜕𝑖𝛿𝑞 . (6.27)

For the scalar field and the perfect fluid one has 𝛿𝑞 = −𝜑̇𝛿𝜑 and 𝛿𝑞 = −(𝜌𝑀 + 𝑃𝑀 )𝑣, respectively.
This quantity transforms as

𝛿𝑞 = 𝛿𝑞 + (𝜌+ 𝑃 )𝛿𝑡 . (6.28)
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One can construct a number of gauge-invariant quantities unchanged under the transformation
(6.20):

Φ = 𝛼− d

d𝑡

[︀
𝑎2(𝛾 + 𝛽/𝑎)

]︀
, Ψ = −𝜓 + 𝑎2𝐻(𝛾̇ + 𝛽/𝑎) , (6.29)

ℛ = 𝜓 +
𝐻

𝜌+ 𝑃
𝛿𝑞 , ℛ𝛿𝜑 = 𝜓 − 𝐻

𝜑̇
𝛿𝜑 , ℛ𝛿𝐹 = 𝜓 − 𝐻

𝐹̇
𝛿𝐹 , (6.30)

𝛿𝜌𝑞 = 𝛿𝜌− 3𝐻𝛿𝑞 . (6.31)

Since 𝛿𝑞 = −𝜑̇𝛿𝜑 for single-field inflation with a potential 𝑉 (𝜑), ℛ is identical to ℛ𝛿𝜑 [where we

used 𝜌 = 𝜑̇2/2 + 𝑉 (𝜑) and 𝑃 = 𝜑̇2/2 − 𝑉 (𝜑)]. In f (R) gravity one can introduce a scalar field 𝜑
as in Eq. (2.31), so that ℛ𝛿𝐹 = ℛ𝛿𝜑. From the gauge-invariant quantity (6.31) it is also possible
to construct another gauge-invariant quantity for the matter perturbation of perfect fluids:

𝛿𝑀 =
𝛿𝜌𝑀
𝜌𝑀

+ 3𝐻(1 + 𝑤𝑀 )𝑣 , (6.32)

where 𝑤𝑀 = 𝑃𝑀/𝜌𝑀 .
We note that the tensor perturbation ℎ𝑖𝑗 is invariant under the gauge transformation [412].
We can choose specific gauge conditions to fix the gauge degree of freedom. After fixing a gauge,

two scalar variables 𝛿𝑡 and 𝛿𝑥 are determined accordingly. The Longitudinal gauge corresponds to
the gauge choice 𝛽 = 0 and 𝛾 = 0, under which 𝛿𝑡 = 𝑎(𝛽 + 𝑎𝛾̇) and 𝛿𝑥 = 𝛾. In this gauge one has

Φ̂ = 𝛼̂ and Ψ̂ = −𝜓, so that the line element (without vector and tensor perturbations) is given
by

d𝑠2 = −(1 + 2Φ)d𝑡2 + 𝑎2(𝑡)(1− 2Ψ)𝛿𝑖𝑗d𝑥
𝑖d𝑥𝑗 , (6.33)

where we omitted the hat for perturbed quantities.
The uniform-field gauge corresponds to 𝛿𝜑 = 0 which fixes 𝛿𝑡 = 𝛿𝜑/𝜑̇. The spatial threading

𝛿𝑥 is fixed by choosing either 𝛽 = 0 or 𝛾 = 0 (up to an integration constant in the former case).

For this gauge choice one has ℛ̂𝛿𝜑 = 𝜓. Since the spatial curvature (3)ℛ on the constant-time
hypersurface is related to 𝜓 via the relation (3)ℛ = −4∇2𝜓/𝑎2, the quantity ℛ is often called the
curvature perturbation on the uniform-field hypersurface. We can also choose the gauge condition
𝛿𝑞 = 0 or ^𝛿𝐹 = 0.
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7 Perturbations Generated During Inflation

Let us consider scalar and tensor perturbations generated during inflation for the theories (6.2)
without taking into account the perfect fluid (𝑆𝑀 = 0). In f (R) gravity the contribution of the
field 𝜑 such as 𝛿𝜑 is absent in the perturbation equations (6.11) – (6.16). One can choose the gauge
condition 𝛿𝐹 = 0, so that ℛ𝛿𝐹 = 𝜓. In scalar-tensor theory in which 𝐹 is the function of 𝜑 alone
(i.e., the coupling of the form 𝐹 (𝜑)𝑅 without a non-linear term in 𝑅), the gauge choice 𝛿𝜑 = 0
leads to ℛ𝛿𝜑 = 𝜓. Since 𝛿𝐹 = 𝐹,𝜑𝛿𝜑 = 0 in this case, we have ℛ𝛿𝐹 = ℛ𝛿𝜑 = 𝜓.

We focus on the effective single-field theory such as f (R) gravity and scalar-tensor theory with
the coupling 𝐹 (𝜑)𝑅, by choosing the gauge condition 𝛿𝜑 = 0 and 𝛿𝐹 = 0. We caution that this
analysis does not cover the theory such as ℒ = 𝜉(𝜑)𝑅+𝛼𝑅2 [500], because the quantity 𝐹 depends
on both 𝜑 and 𝑅 (in other words, 𝛿𝐹 = 𝐹,𝜑𝛿𝜑+ 𝐹,𝑅𝛿𝑅). In the following we write the curvature
perturbations ℛ𝛿𝐹 and ℛ𝛿𝜑 as ℛ.

7.1 Curvature perturbations

Since 𝛿𝜑 = 0 and 𝛿𝐹 = 0 in Eq. (6.12) we obtain

𝛼 =
ℛ̇

𝐻 + 𝐹̇ /(2𝐹 )
. (7.34)

Plugging Eq. (7.34) into Eq. (6.11), we have

𝐴 = − 1

𝐻 + 𝐹̇ /(2𝐹 )

[︃
Δ

𝑎2
ℛ+

3𝐻𝐹̇ − 𝜅2𝜔𝜑̇2

2𝐹{𝐻 + 𝐹̇ /(2𝐹 )}
ℛ̇

]︃
. (7.35)

Equation (6.14) gives

𝐴̇+

(︃
2𝐻 +

𝐹̇

2𝐹

)︃
𝐴+

3𝐹̇

2𝐹
𝛼̇+

[︃
3𝐹 + 6𝐻𝐹̇ + 𝜅2𝜔𝜑̇2

2𝐹
+

Δ

𝑎2

]︃
𝛼 = 0 , (7.36)

where we have used the background equation (6.7). Plugging Eqs. (7.34) and (7.35) into Eq. (7.36),
we find that the curvature perturbation satisfies the following simple equation in Fourier space

ℛ̈+
(𝑎3𝑄𝑠)

˙

𝑎3𝑄𝑠
ℛ̇+

𝑘2

𝑎2
ℛ = 0 , (7.37)

where 𝑘 is a comoving wavenumber and

𝑄𝑠 ≡
𝜔𝜑̇2 + 3𝐹̇ 2/(2𝜅2𝐹 )

[𝐻 + 𝐹̇ /(2𝐹 )]2
. (7.38)

Introducing the variables 𝑧𝑠 = 𝑎
√
𝑄𝑠 and 𝑢 = 𝑧𝑠ℛ, Eq. (7.37) reduces to

𝑢′′ +

(︂
𝑘2 − 𝑧′′𝑠

𝑧𝑠

)︂
𝑢 = 0 , (7.39)

where a prime represents a derivative with respect to the conformal time 𝜂 =
∫︀
𝑎−1d𝑡.

In General Relativity with a canonical scalar field 𝜑 one has 𝜔 = 1 and 𝐹 = 1, which corresponds
to 𝑄𝑠 = 𝜑̇2/𝐻2. Then the perturbation 𝑢 corresponds to 𝑢 = 𝑎[−𝛿𝜑 + (𝜑̇/𝐻)𝜓]. In the spatially
flat gauge (𝜓 = 0) this reduces to 𝑢 = −𝑎𝛿𝜑, which implies that the perturbation 𝑢 corresponds
to a canonical scalar field 𝛿𝜒 = 𝑎𝛿𝜑. In modified gravity theories it is not clear at this stage that
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the perturbation 𝑢 = 𝑎
√
𝑄𝑠ℛ corresponds a canonical field that should be quantized, because

Eq. (7.37) is unchanged by multiplying a constant term to the quantity 𝑄𝑠 defined in Eq. (7.38).
As we will see in Section 7.4, this problem is overcome by considering a second-order perturbed
action for the theory (6.2) from the beginning.

In order to derive the spectrum of curvature perturbations generated during inflation, we in-
troduce the following variables [315]

𝜖1 ≡ − 𝐻̇

𝐻2
, 𝜖2 ≡ 𝜑

𝐻𝜑̇
, 𝜖3 ≡ 𝐹̇

2𝐻𝐹
, 𝜖4 ≡ 𝐸̇

2𝐻𝐸
, (7.40)

where 𝐸 ≡ 𝐹 [𝜔 + 3𝐹̇ 2/(2𝜅2𝜑̇2𝐹 )]. Then the quantity 𝑄𝑠 can be expressed as

𝑄𝑠 = 𝜑̇2
𝐸

𝐹𝐻2(1 + 𝜖3)2
. (7.41)

If the parameter 𝜖1 is constant, it follows that 𝜂 = −1/[(1− 𝜖1)𝑎𝐻] [573]. If 𝜖̇𝑖 = 0 (𝑖 = 1, 2, 3, 4)
one has

𝑧′′𝑠
𝑧𝑠

=
𝜈2ℛ − 1/4

𝜂2
, with 𝜈2ℛ =

1

4
+

(1 + 𝜖1 + 𝜖2 − 𝜖3 + 𝜖4)(2 + 𝜖2 − 𝜖3 + 𝜖4)

(1− 𝜖1)2
. (7.42)

Then the solution to Eq. (7.39) can be expressed as a linear combination of Hankel functions,

𝑢 =

√︀
𝜋|𝜂|
2

𝑒𝑖(1+2𝜈ℛ)𝜋/4
[︁
𝑐1𝐻

(1)
𝜈ℛ

(𝑘|𝜂|) + 𝑐2𝐻
(2)
𝜈ℛ

(𝑘|𝜂|)
]︁
, (7.43)

where 𝑐1 and 𝑐2 are integration constants.
During inflation one has |𝜖𝑖| ≪ 1, so that 𝑧′′𝑠 /𝑧𝑠 ≈ (𝑎𝐻)2. For the modes deep inside the Hubble

radius (𝑘 ≫ 𝑎𝐻, i.e., |𝑘𝜂| ≫ 1) the perturbation 𝑢 satisfies the standard equation of a canonical
field in the Minkowski spacetime: 𝑢′′+𝑘2𝑢 ≃ 0. After the Hubble radius crossing (𝑘 = 𝑎𝐻) during
inflation, the effect of the gravitational term 𝑧′′𝑠 /𝑧𝑠 becomes important. In the super-Hubble limit
(𝑘 ≪ 𝑎𝐻, i.e., |𝑘𝜂| ≪ 1) the last term on the l.h.s. of Eq. (7.37) can be neglected, giving the
following solution

ℛ = 𝑐1 + 𝑐2

∫︁
d𝑡

𝑎3𝑄𝑠
, (7.44)

where 𝑐1 and 𝑐2 are integration constants. The second term can be identified as a decaying mode,
which rapidly decays during inflation (unless the field potential has abrupt features). Hence the
curvature perturbation approaches a constant value 𝑐1 after the Hubble radius crossing (𝑘 < 𝑎𝐻).

In the asymptotic past (𝑘𝜂 → −∞) the solution to Eq. (7.39) is determined by a vacuum state
in quantum field theory [88], as 𝑢→ 𝑒−𝑖𝑘𝜂/

√
2𝑘. This fixes the coefficients to be 𝑐1 = 1 and 𝑐2 = 0,

giving the following solution

𝑢 =

√︀
𝜋|𝜂|
2

𝑒𝑖(1+2𝜈ℛ)𝜋/4𝐻(1)
𝜈ℛ

(𝑘|𝜂|) . (7.45)

We define the power spectrum of curvature perturbations,

𝒫ℛ ≡ 4𝜋𝑘3

(2𝜋)3
|ℛ|2 . (7.46)

Using the solution (7.45), we obtain the power spectrum [317]

𝒫ℛ =
1

𝑄𝑠

(︂
(1− 𝜖1)

Γ(𝜈ℛ)

Γ(3/2)

𝐻

2𝜋

)︂2(︂ |𝑘𝜂|
2

)︂3−2𝜈ℛ

, (7.47)
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where we have used the relations 𝐻
(1)
𝜈 (𝑘|𝜂|) → −(𝑖/𝜋)Γ(𝜈)(𝑘|𝜂|/2)−𝜈 for 𝑘𝜂 → 0 and Γ(3/2) =√

𝜋/2. Since the curvature perturbation is frozen after the Hubble radius crossing, the spectrum
(7.47) should be evaluated at 𝑘 = 𝑎𝐻. The spectral index of ℛ, which is defined by 𝑛ℛ − 1 =
d ln𝒫ℛ/d ln 𝑘|𝑘=𝑎𝐻 , is

𝑛ℛ − 1 = 3− 2𝜈ℛ , (7.48)

where 𝜈ℛ is given in Eq. (7.42). As long as |𝜖𝑖| (𝑖 = 1, 2, 3, 4) are much smaller than 1 during
inflation, the spectral index reduces to

𝑛ℛ − 1 ≃ −4𝜖1 − 2𝜖2 + 2𝜖3 − 2𝜖4 , (7.49)

where we have ignored those terms higher than the order of 𝜖𝑖’s. Provided that |𝜖𝑖| ≪ 1 the
spectrum is close to scale-invariant (𝑛ℛ ≃ 1). From Eq. (7.47) the power spectrum of curvature
perturbations can be estimated as

𝒫ℛ ≃ 1

𝑄𝑠

(︂
𝐻

2𝜋

)︂2

. (7.50)

A minimally coupled scalar field 𝜑 in Einstein gravity corresponds to 𝜖3 = 0, 𝜖4 = 0 and 𝑄𝑠 =
𝜑̇2/𝐻2, in which case we obtain the standard results 𝑛ℛ − 1 ≃ −4𝜖1 − 2𝜖2 and 𝒫ℛ ≃ 𝐻4/(4𝜋2𝜑̇2)
in slow-roll inflation [573, 390].

7.2 Tensor perturbations

Tensor perturbations ℎ𝑖𝑗 have two polarization states, which are generally written as 𝜆 = +,× [391].
In terms of polarization tensors 𝑒+𝑖𝑗 and 𝑒×𝑖𝑗 they are given by

ℎ𝑖𝑗 = ℎ+𝑒
+
𝑖𝑗 + ℎ×𝑒

×
𝑖𝑗 . (7.51)

If the direction of a momentum 𝑘 is along the 𝑧-axis, the non-zero components of polarization
tensors are given by 𝑒+𝑥𝑥 = −𝑒+𝑦𝑦 = 1 and 𝑒×𝑥𝑦 = 𝑒×𝑦𝑥 = 1.

For the action (6.2) the Fourier components ℎ𝜆 (𝜆 = +,×) obey the following equation [314]

ℎ̈𝜆 +
(𝑎3𝐹 )˙

𝑎3𝐹
ℎ̇𝜆 +

𝑘2

𝑎2
ℎ𝜆 = 0 . (7.52)

This is similar to Eq. (7.37) of curvature perturbations, apart from the difference of the factor 𝐹
instead of 𝑄𝑠. Defining new variables 𝑧𝑡 = 𝑎

√
𝐹 and 𝑢𝜆 = 𝑧𝑡ℎ𝜆/

√
16𝜋𝐺, it follows that

𝑢′′𝜆 +

(︂
𝑘2 − 𝑧′′𝑡

𝑧𝑡

)︂
𝑢𝜆 = 0 . (7.53)

We have introduced the factor 16𝜋𝐺 to relate a dimensionless massless field ℎ𝜆 with a massless
scalar field 𝑢𝜆 having a unit of mass.

If 𝜖̇𝑖 = 0, we obtain

𝑧′′𝑡
𝑧𝑡

=
𝜈2𝑡 − 1/4

𝜂2
, with 𝜈2𝑡 =

1

4
+

(1 + 𝜖3)(2− 𝜖1 + 𝜖3)

(1− 𝜖1)2
. (7.54)

We follow the similar procedure to the one given in Section 7.1. Taking into account polarization
states, the spectrum of tensor perturbations after the Hubble radius crossing is given by

𝒫𝑇 = 4× 16𝜋𝐺

𝑎2𝐹

4𝜋𝑘3

(2𝜋)3
|𝑢𝜆|2 ≃ 16

𝜋

(︂
𝐻

𝑚pl

)︂2
1

𝐹

(︂
(1− 𝜖1)

Γ(𝜈𝑡)

Γ(3/2)

)︂2(︂ |𝑘𝜂|
2

)︂3−2𝜈𝑡

, (7.55)
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which should be evaluated at the Hubble radius crossing (𝑘 = 𝑎𝐻). The spectral index of 𝒫𝑇 is

𝑛𝑇 = 3− 2𝜈𝑡 , (7.56)

where 𝜈𝑡 is given in Eq. (7.54). If |𝜖𝑖| ≪ 1, this reduces to

𝑛𝑇 ≃ −2𝜖1 − 2𝜖3 . (7.57)

Then the amplitude of tensor perturbations is given by

𝒫𝑇 ≃ 16

𝜋

(︂
𝐻

𝑚pl

)︂2
1

𝐹
. (7.58)

We define the tensor-to-scalar ratio

𝑟 ≡ 𝒫𝑇

𝒫ℛ
≃ 64𝜋

𝑚2
pl

𝑄𝑠

𝐹
. (7.59)

For a minimally coupled scalar field 𝜑 in Einstein gravity, it follows that 𝑛𝑇 ≃ −2𝜖1, 𝒫𝑇 ≃
16𝐻2/(𝜋𝑚2

pl), and 𝑟 ≃ 16𝜖1.

7.3 The spectra of perturbations in inflation based on f (R) gravity

Let us study the spectra of scalar and tensor perturbations generated during inflation in metric
f (R) gravity. Introducing the quantity 𝐸 = 3𝐹̇ 2/(2𝜅2), we have 𝜖4 = 𝐹/(𝐻𝐹̇ ) and

𝑄𝑠 =
6𝐹𝜖23

𝜅2(1 + 𝜖3)2
=

𝐸

𝐹𝐻2(1 + 𝜖3)2
. (7.60)

Since the field kinetic term 𝜑̇2 is absent, one has 𝜖2 = 0 in Eqs. (7.42) and (7.49). Under the
conditions |𝜖𝑖| ≪ 1 (𝑖 = 1, 3, 4), the spectral index of curvature perturbations is given by 𝑛ℛ − 1 ≃
−4𝜖1 + 2𝜖3 − 2𝜖4.

In the absence of the matter fluid, Eq. (2.16) translates into

𝜖1 = −𝜖3(1− 𝜖4) , (7.61)

which gives 𝜖1 ≃ −𝜖3 for |𝜖4| ≪ 1. Hence we obtain [315]

𝑛ℛ − 1 ≃ −6𝜖1 − 2𝜖4 . (7.62)

From Eqs. (7.50) and (7.60), the amplitude of ℛ is estimated as

𝒫ℛ ≃ 1

3𝜋𝐹

(︂
𝐻

𝑚pl

)︂2
1

𝜖23
. (7.63)

Using the relation 𝜖1 ≃ −𝜖3, the spectral index (7.57) of tensor perturbations is given by

𝑛𝑇 ≃ 0 , (7.64)

which vanishes at first-order of slow-roll approximations. From Eqs. (7.58) and (7.63) we obtain
the tensor-to-scalar ratio

𝑟 ≃ 48𝜖23 ≃ 48𝜖21 . (7.65)
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7.3.1 The model 𝑓(𝑅) = 𝛼𝑅𝑛 (𝑛 > 0)

Let us consider the inflation model: 𝑓(𝑅) = 𝛼𝑅𝑛 (𝑛 > 0). From the discussion given in Section 3.1
the slow-roll parameters 𝜖𝑖 (𝑖 = 1, 3, 4) are constants:

𝜖1 =
2− 𝑛

(𝑛− 1)(2𝑛− 1)
, 𝜖3 = −(𝑛− 1)𝜖1 , 𝜖4 =

𝑛− 2

𝑛− 1
. (7.66)

In this case one can use the exact results (7.48) and (7.56) with 𝜈ℛ and 𝜈𝑡 given in Eqs. (7.42) and
(7.54) (with 𝜖2 = 0). Then the spectral indices are

𝑛ℛ − 1 = 𝑛𝑇 = − 2(𝑛− 2)2

2𝑛2 − 2𝑛− 1
. (7.67)

If 𝑛 = 2 we obtain the scale-invariant spectra with 𝑛ℛ = 1 and 𝑛𝑇 = 0. Even the slight
deviation from 𝑛 = 2 leads to a rather large deviation from the scale-invariance. If 𝑛 = 1.7, for
example, one has 𝑛ℛ− 1 = 𝑛𝑇 = −0.13, which does not match with the WMAP 5-year constraint:
𝑛ℛ = 0.960± 0.013 [367].

7.3.2 The model 𝑓(𝑅) = 𝑅+𝑅2/(6𝑀2)

For the model 𝑓(𝑅) = 𝑅+𝑅2/(6𝑀2), the spectrum of the curvature perturbation ℛ shows some
deviation from the scale-invariance. Since inflation occurs in the regime 𝑅 ≫ 𝑀2 and |𝐻̇| ≪ 𝐻2,
one can approximate 𝐹 ≃ 𝑅/(3𝑀2) ≃ 4𝐻2/𝑀2. Then the power spectra (7.63) and (7.58) yield

𝒫ℛ ≃ 1

12𝜋

(︂
𝑀

𝑚pl

)︂2
1

𝜖21
, 𝒫𝑇 ≃ 4

𝜋

(︂
𝑀

𝑚pl

)︂2

, (7.68)

where we have employed the relation 𝜖3 ≃ −𝜖1.
Recall that the evolution of the Hubble parameter during inflation is given by Eq. (3.9). As long

as the time 𝑡𝑘 at the Hubble radius crossing (𝑘 = 𝑎𝐻) satisfies the condition (𝑀2/6)(𝑡𝑘−𝑡𝑖) ≪ 𝐻𝑖,
one can approximate 𝐻(𝑡𝑘) ≃ 𝐻𝑖. Using Eq. (3.9), the number of e-foldings from 𝑡 = 𝑡𝑘 to the end
of inflation can be estimated as

𝑁𝑘 ≃ 1

2𝜖1(𝑡𝑘)
. (7.69)

Then the amplitude of the curvature perturbation is given by

𝒫ℛ ≃ 𝑁2
𝑘

3𝜋

(︂
𝑀

𝑚pl

)︂2

. (7.70)

The WMAP 5-year normalization corresponds to 𝒫ℛ = (2.445 ± 0.096) × 10−9 at the scale 𝑘 =
0.002 Mpc−1 [367]. Taking the typical value 𝑁𝑘 = 55, the mass 𝑀 is constrained to be

𝑀 ≃ 3× 10−6𝑚pl . (7.71)

Using the relation 𝐹 ≃ 4𝐻2/𝑀2, it follows that 𝜖4 ≃ −𝜖1. Hence the spectral index (7.62) reduces
to

𝑛ℛ − 1 ≃ −4𝜖1 ≃ − 2

𝑁𝑘
= −3.6× 10−2

(︂
𝑁𝑘

55

)︂−1

. (7.72)

For 𝑁𝑘 = 55 we have 𝑛ℛ ≃ 0.964, which is in the allowed region of the WMAP 5-year constraint
(𝑛ℛ = 0.960 ± 0.013 at the 68% confidence level [367]). The tensor-to-scalar ratio (7.65) can be
estimated as

𝑟 ≃ 12

𝑁2
𝑘

≃ 4.0× 10−3

(︂
𝑁𝑘

55

)︂−2

, (7.73)
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which satisfies the current observational bound 𝑟 < 0.22 [367]. We note that a minimally coupled
field with the potential 𝑉 (𝜑) = 𝑚2𝜑2/2 in Einstein gravity (chaotic inflation model [393]) gives rise
to a larger tensor-to-scalar ratio of the order of 0.1. Since future observations such as the Planck
satellite are expected to reach the level of 𝑟 = 𝒪(10−2), they will be able to discriminate between
the chaotic inflation model and the Starobinsky’s f (R) model.

7.3.3 The power spectra in the Einstein frame

Let us consider the power spectra in the Einstein frame. Under the conformal transformation
𝑔𝜇𝜈 = 𝐹𝑔𝜇𝜈 , the perturbed metric (6.1) is transformed as

d𝑠2 = 𝐹d𝑠2

= −(1 + 2𝛼̃) d𝑡2 − 2𝑎̃(𝑡) (𝜕𝑖𝛽 − 𝑆𝑖)d𝑡d𝑥̃
𝑖

+𝑎̃2(𝑡)(𝛿𝑖𝑗 + 2𝜓𝛿𝑖𝑗 + 2𝜕𝑖𝜕𝑗𝛾 + 2𝜕𝑗𝐹𝑖 + ℎ̃𝑖𝑗) d𝑥̃
𝑖 d𝑥̃𝑗 . (7.74)

We decompose the conformal factor into the background and perturbed parts, as

𝐹 (𝑡,𝑥) = 𝐹 (𝑡)

(︂
1 +

𝛿𝐹 (𝑡,𝑥)

𝐹 (𝑡)

)︂
. (7.75)

In what follows we omit a bar from 𝐹 . We recall that the background quantities are transformed
as Eqs. (2.44) and (2.47). The transformation of scalar metric perturbations is given by

𝛼̃ = 𝛼+
𝛿𝐹

2𝐹
, 𝛽 = 𝛽 , 𝜓 = 𝜓 +

𝛿𝐹

2𝐹
, 𝛾 = 𝛾 . (7.76)

Meanwhile vector and tensor perturbations are invariant under the conformal transformation (𝑆𝑖 =
𝑆𝑖, 𝐹𝑖 = 𝐹𝑖, ℎ̃𝑖𝑗 = ℎ𝑖𝑗).

Using the above transformation law, one can easily show that the curvature perturbation ℛ =
𝜓 −𝐻𝛿𝐹/𝐹̇ in f (R) gravity is invariant under the conformal transformation:

ℛ̃ = ℛ . (7.77)

Since the tensor perturbation is also invariant, the tensor-to-scalar ratio 𝑟 in the Einstein frame is
identical to that in the Jordan frame. For example, let us consider the model 𝑓(𝑅) = 𝑅+𝑅2/(6𝑀2).
Since the action in the Einstein frame is given by Eq. (2.32), the slow-roll parameters 𝜖3 and 𝜖4
vanish in this frame. Using Eqs. (7.49) and (3.27), the spectral index of curvature perturbations
is given by

𝑛̃ℛ − 1 ≃ −4𝜖1 − 2𝜖2 ≃ − 2

𝑁̃𝑘

, (7.78)

where we have ignored the term of the order of 1/𝑁̃2
𝑘 . Since 𝑁̃𝑘 ≃ 𝑁𝑘 in the slow-roll limit

(|𝐹̇ /(2𝐻𝐹 )| ≪ 1), Eq. (7.78) agrees with the result (7.72) in the Jordan frame. Since 𝑄𝑠 =
(d𝜑/d𝑡)2/𝐻̃2 in the Einstein frame, Eq. (7.59) gives the tensor-to-scalar ratio

𝑟 =
64𝜋

𝑚2
pl

(︂
d𝜑

d𝑡

)︂2
1

𝐻̃2
≃ 16𝜖1 ≃ 12

𝑁̃2
𝑘

, (7.79)

where the background equations (3.21) and (3.22) are used with slow-roll approximations. Equa-
tion (7.79) is consistent with the result (7.73) in the Jordan frame.

The equivalence of the curvature perturbation between the Jordan and Einstein frames also
holds for scalar-tensor theory with the Lagrangian ℒ = 𝐹 (𝜑)𝑅/(2𝜅2) − (1/2)𝜔(𝜑)𝑔𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑 −
𝑉 (𝜑) [411, 240]. For the non-minimally coupled scalar field with 𝐹 (𝜑) = 1− 𝜉𝜅2𝜑2 [269, 241] the
spectral indices of scalar and tensor perturbations have been derived by using such equivalence [366,
590].
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7.4 The Lagrangian for cosmological perturbations

In Section 7.1 we used the fact that the field which should be quantized corresponds to 𝑢 =
𝑎
√
𝑄𝑠ℛ. This can be justified by writing down the action (6.1) expanded at second-order in the

perturbations [437]. We recall again that we are considering an effective single-field theory such
as f (R) gravity and scalar-tensor theory with the coupling 𝐹 (𝜑)𝑅. Carrying out the expansion of
the action (6.2) in second order, we find that the action for the curvature perturbation ℛ (either
ℛ𝛿𝐹 or ℛ𝛿𝜑) is given by [311]

𝛿𝑆(2) =

∫︁
d𝑡d3𝑥 𝑎3𝑄𝑠

[︂
1

2
ℛ̇2 − 1

2

1

𝑎2
(∇ℛ)2

]︂
, (7.80)

where 𝑄𝑠 is given in Eq. (7.38). In fact, the variation of this action in terms of the field ℛ
gives rise to Eq. (7.37) in Fourier space. We note that there is another approach called the
Hamiltonian formalism which is also useful for the quantization of cosmological perturbations.
See [237, 209, 208, 127] for this approach in the context of f (R) gravity and modified gravitational
theories.

Introducing the quantities 𝑢 = 𝑧𝑠ℛ and 𝑧𝑠 = 𝑎
√
𝑄𝑠, the action (7.80) can be written as

𝛿𝑆(2) =

∫︁
d𝜂 d3𝑥

[︂
1

2
𝑢′2 − 1

2
(∇𝑢)2 + 1

2

𝑧′′𝑠
𝑧𝑠
𝑢2
]︂
, (7.81)

where a prime represents a derivative with respect to the conformal time 𝜂 =
∫︀
𝑎−1d𝑡. The

action (7.81) leads to Eq. (7.39) in Fourier space. The transformation of the action (7.80) to (7.81)
gives rise to the effective mass6

𝑀2
𝑠 ≡ − 1

𝑎2
𝑧′′𝑠
𝑧𝑠

=
𝑄̇2

𝑠

4𝑄2
𝑠

− 𝑄̈𝑠

2𝑄𝑠
− 3𝐻𝑄̇𝑠

2𝑄𝑠
. (7.82)

We have seen in Eq. (7.42) that during inflation the quantity 𝑧′′𝑠 /𝑧𝑠 can be estimated as 𝑧′′𝑠 /𝑧𝑠 ≃
2(𝑎𝐻)2 in the slow-roll limit, so that 𝑀2

𝑠 ≃ −2𝐻2. For the modes deep inside the Hubble radius
(𝑘 ≫ 𝑎𝐻) the action (7.81) reduces to the one for a canonical scalar field 𝑢 in the flat spacetime.
Hence the quantization should be done for the field 𝑢 = 𝑎

√
𝑄𝑠ℛ, as we have done in Section 7.1.

From the action (7.81) we understand a number of physical properties in f (R) theories and
scalar-tensor theories with the coupling 𝐹 (𝜑)𝑅 listed below.

1. Having a standard d’Alambertian operator, the mode has speed of propagation equal to the
speed of light. This leads to a standard dispersion relation 𝜔 = 𝑘/𝑎 for the high-𝑘 modes in
Fourier space.

2. The sign of 𝑄𝑠 corresponds to the sign of the kinetic energy of ℛ. The negative sign corre-
sponds to a ghost (phantom) scalar field. In f (R) gravity (with 𝜑̇ = 0) the ghost appears
for 𝐹 < 0. In Brans–Dicke theory with 𝐹 (𝜑) = 𝜅2𝜑 and 𝜔(𝜑) = 𝜔BD/𝜑 [100] (where
𝜑 > 0) the condition for the appearance of the ghost (𝜔𝜑̇2 + 3𝐹̇ 2/(2𝜅2𝐹 ) < 0) translates
into 𝜔BD < −3/2. In these cases one would encounter serious problems related to vacuum
instability [145, 161].

6 If we define 𝑋 =
√
𝑄𝑠ℛ and plugging it into Eq. (7.80), we obtain the perturbed action for the field 𝑋 after

the partial integration:

𝛿𝑆(2) =

∫︁
d𝑡d3𝑥

√︁
−𝑔(0)

[︂
1

2
𝑋̇2 −

1

2

1

𝑎2
(∇𝑋)2 −

1

2
𝑀2

𝑠𝑋
2

]︂
,

where
√︀

−𝑔(0) = 𝑎3 and 𝑀𝑠 is defined in Eq. (7.82). Then, for the field 𝑋, we obtain the Klein–Gordon equation
�𝑋 = 𝑀2

𝑠𝑋 in the large-scale limit (𝑘 → 0), which defines the mass 𝑀𝑠 in an invariant way in the FLRW
background.
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3. The field 𝑢 has the effective mass squared given in Eq. (7.82). In f (R) gravity it can be
written as

𝑀2
𝑠 = − 72𝐹 2𝐻4

(2𝐹𝐻 + 𝑓,𝑅𝑅𝑅̇)2
+
1

3
𝐹

(︃
288𝐻3 − 12𝐻𝑅

2𝐹𝐻 + 𝑓,𝑅𝑅𝑅̇
+

1

𝑓,𝑅𝑅

)︃
+
𝑓2,𝑅𝑅𝑅̇

2

4𝐹 2
−24𝐻2+

7

6
𝑅 , (7.83)

where we used the background equation (2.16) to write 𝐻̇ in terms of 𝑅 and 𝐻2. In Fourier
space the perturbation 𝑢 obeys the equation of motion

𝑢′′ +
(︀
𝑘2 +𝑀2

𝑠 𝑎
2
)︀
𝑢 = 0 . (7.84)

For 𝑘2/𝑎2 ≫𝑀2
𝑠 , the field 𝑢 propagates with speed of light. For small 𝑘 satisfying 𝑘2/𝑎2 ≪

𝑀2
𝑠 , we require a positive 𝑀2

𝑠 to avoid the tachyonic instability of perturbations. Recall
that the viable dark energy models based on f (R) theories need to satisfy 𝑅𝑓,𝑅𝑅 ≪ 𝐹 (i.e.,
𝑚 = 𝑅𝑓,𝑅𝑅/𝑓,𝑅 ≪ 1) at early times, in order to have successful cosmological evolution
from radiation domination till matter domination. At these epochs the mass squared is
approximately given by

𝑀2
𝑠 ≃ 𝐹

3𝑓,𝑅𝑅
, (7.85)

which is consistent with the result (5.2) derived by the linear analysis about the Minkowski
background. Together with the ghost condition 𝐹 > 0, this leads to 𝑓,𝑅𝑅 > 0. Recall that
these correspond to the conditions presented in Eq. (4.56).
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8 Observational Signatures of Dark Energy Models in f (R)
Theories

In this section we discuss a number of observational signatures of dark energy models based on
metric f (R) gravity. Our main interest is to distinguish these models from the ΛCDM model
observationally. In particular we study the evolution of matter density perturbations as well as
the gravitational potential to confront f (R) models with the observations of large-scale structure
(LSS) and Cosmic Microwave Background (CMB). The effect on weak lensing will be discussed in
Section 13.1 in more general modified gravity theories including f (R) gravity.

8.1 Matter density perturbations

Let us consider the perturbations of non-relativistic matter with the background energy density
𝜌𝑚 and the negligible pressure (𝑃𝑚 = 0). In Fourier space Eqs. (6.17) and (6.18) give

˙𝛿𝜌𝑚 + 3𝐻𝛿𝜌𝑚 = 𝜌𝑚

(︂
𝐴− 3𝐻𝛼− 𝑘2

𝑎2
𝑣

)︂
, (8.86)

𝑣̇ = 𝛼 , (8.87)

where in the second line we have used the continuity equation, 𝜌̇𝑚 + 3𝐻𝜌𝑚 = 0. The density
contrast defined in Eq. (6.32), i.e.

𝛿𝑚 =
𝛿𝜌𝑚
𝜌𝑚

+ 3𝐻𝑣 , (8.88)

obeys the following equation from Eqs. (8.86) and (8.87):

𝛿𝑚 + 2𝐻𝛿̇𝑚 +
𝑘2

𝑎2
(𝛼− 𝜒̇) = 3𝐵̈ + 6𝐻𝐵̇ , (8.89)

where 𝐵 ≡ 𝐻𝑣 − 𝜓 and we used the relation 𝐴 = 3(𝐻𝛼− 𝜓̇) + (𝑘2/𝑎2)𝜒.
In the following we consider the evolution of perturbations in f (R) gravity in the Longitudinal

gauge (6.33). Since 𝜒 = 0, 𝛼 = Φ, 𝜓 = −Ψ, and 𝐴 = 3(𝐻Φ + Ψ̇) in this case, Eqs. (6.11), (6.13),
(6.15), and (8.89) give

𝑘2

𝑎2
Ψ+ 3𝐻(𝐻Φ+ Ψ̇) = − 1

2𝐹

[︂(︂
3𝐻2 + 3𝐻̇ − 𝑘2

𝑎2

)︂
𝛿𝐹 − 3𝐻 ˙𝛿𝐹

+ 3𝐻𝐹̇Φ+ 3𝐹̇ (𝐻Φ+ Ψ̇) + 𝜅2𝛿𝜌𝑚

]︂
, (8.90)

Ψ− Φ =
𝛿𝐹

𝐹
, (8.91)

¨𝛿𝐹 + 3𝐻 ˙𝛿𝐹 +

(︂
𝑘2

𝑎2
+𝑀2

)︂
𝛿𝐹 =

𝜅2

3
𝛿𝜌𝑚 + 𝐹̇ (3𝐻Φ+ 3Ψ̇ + Φ̇) + (2𝐹 + 3𝐻𝐹̇ )Φ , (8.92)

𝛿𝑚 + 2𝐻𝛿̇𝑚 +
𝑘2

𝑎2
Φ = 3𝐵̈ + 6𝐻𝐵̇ , (8.93)

where 𝐵 = 𝐻𝑣+Ψ. In order to derive Eq. (8.92), we have used the mass squared 𝑀2 = (𝐹/𝐹,𝑅 −
𝑅)/3 introduced in Eq. (5.2) together with the relation 𝛿𝑅 = 𝛿𝐹/𝐹,𝑅.

Let us consider the wavenumber 𝑘 deep inside the Hubble radius (𝑘 ≫ 𝑎𝐻). In order to derive
the equation of matter perturbations approximately, we use the quasi-static approximation under
which the dominant terms in Eqs. (8.90) – (8.93) correspond to those including 𝑘2/𝑎2, 𝛿𝜌𝑚 (or 𝛿𝑚)
and 𝑀2. In General Relativity this approximation was first used by Starobinsky in the presence of
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a minimally coupled scalar field [567], which was numerically confirmed in [403]. This was further
extended to scalar-tensor theories [93, 171, 586] and f (R) gravity [586, 597]. Precisely speaking,
in f (R) gravity, this approximation corresponds to{︂

𝑘2

𝑎2
|Φ|, 𝑘

2

𝑎2
|Ψ|, 𝑘

2

𝑎2
|𝛿𝐹 |,𝑀2|𝛿𝐹 |

}︂
≫
{︀
𝐻2|Φ|, 𝐻2|Ψ|, 𝐻2|𝐵|, 𝐻2|𝛿𝐹 |

}︀
, (8.94)

and
|𝑋̇| . |𝐻𝑋| , where 𝑋 = Φ,Ψ, 𝐹, 𝐹̇ , 𝛿𝐹, ˙𝛿𝐹 . (8.95)

From Eqs. (8.90) and (8.91) it then follows that

Ψ ≃ 1

2𝐹

(︂
𝛿𝐹 − 𝑎2

𝑘2
𝜅2𝛿𝜌𝑚

)︂
, Φ ≃ − 1

2𝐹

(︂
𝛿𝐹 +

𝑎2

𝑘2
𝜅2𝛿𝜌𝑚

)︂
. (8.96)

Since (𝑘2/𝑎2 +𝑀2)𝛿𝐹 ≃ 𝜅2𝛿𝜌𝑚/3 from Eq. (8.92), we obtain

𝑘2

𝑎2
Ψ ≃ −𝜅

2𝛿𝜌𝑚
2𝐹

2 + 3𝑀2𝑎2/𝑘2

3(1 +𝑀2𝑎2/𝑘2)
,

𝑘2

𝑎2
Φ ≃ −𝜅

2𝛿𝜌𝑚
2𝐹

4 + 3𝑀2𝑎2/𝑘2

3(1 +𝑀2𝑎2/𝑘2)
. (8.97)

We also define the effective gravitational potential

Φeff ≡ (Φ + Ψ)/2 . (8.98)

This quantity characterizes the deviation of light rays, which is linked with the Integrated Sachs–
Wolfe (ISW) effect in CMB [544] and weak lensing observations [27]. From Eq. (8.97) we have

Φeff ≃ − 𝜅2

2𝐹

𝑎2

𝑘2
𝛿𝜌𝑚 . (8.99)

From Eq. (6.12) the term 𝐻𝑣 is of the order of 𝐻2Φ/(𝜅2𝜌𝑚) provided that the deviation from
the ΛCDM model is not significant. Using Eq. (8.97) we find that the ratio 3𝐻𝑣/(𝛿𝜌𝑚/𝜌𝑚) is of
the order of (𝑎𝐻/𝑘)2, which is much smaller than unity for sub-horizon modes. Then the gauge-
invariant perturbation 𝛿𝑚 given in Eq. (8.88) can be approximated as 𝛿𝑚 ≃ 𝛿𝜌𝑚/𝜌𝑚. Neglecting
the r.h.s. of Eq. (8.93) relative to the l.h.s. and using Eq. (8.97) with 𝛿𝜌𝑚 ≃ 𝜌𝑚𝛿𝑚, we get the
equation for matter perturbations:

𝛿𝑚 + 2𝐻𝛿̇𝑚 − 4𝜋𝐺eff𝜌𝑚𝛿𝑚 ≃ 0 , (8.100)

where 𝐺eff is the effective (cosmological) gravitational coupling defined by [586, 597]

𝐺eff ≡ 𝐺

𝐹

4 + 3𝑀2𝑎2/𝑘2

3(1 +𝑀2𝑎2/𝑘2)
. (8.101)

We recall that viable f (R) dark energy models are constructed to have a large mass 𝑀 in
the region of high density (𝑅 ≫ 𝑅0). During the radiation and deep matter eras the deviation
parameter 𝑚 = 𝑅𝑓,𝑅𝑅/𝑓,𝑅 is much smaller than 1, so that the mass squared satisfies

𝑀2 =
𝑅

3

(︂
1

𝑚
− 1

)︂
≫ 𝑅 . (8.102)

If 𝑚 grows to the order of 0.1 by the present epoch, then the mass 𝑀 today can be of the order
of 𝐻0. In the regimes 𝑀2 ≫ 𝑘2/𝑎2 and 𝑀2 ≪ 𝑘2/𝑎2 the effective gravitational coupling has the
asymptotic forms 𝐺eff ≃ 𝐺/𝐹 and 𝐺eff ≃ 4𝐺/(3𝐹 ), respectively. The former corresponds to the
“General Relativistic (GR) regime” in which the evolution of 𝛿𝑚 mimics that in GR, whereas the
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latter corresponds to the “scalar-tensor regime” in which the evolution of 𝛿𝑚 is non-standard. For
the f (R) models (4.83) and (4.84) the transition from the former regime to the latter regime, which
is characterized by the condition 𝑀2 = 𝑘2/𝑎2, can occur during the matter domination for the
wavenumbers relevant to the matter power spectrum [306, 568, 587, 270, 589].

In order to derive Eq. (8.100) we used the approximation that the time-derivative terms of 𝛿𝐹
on the l.h.s. of Eq. (8.92) is neglected. In the regime 𝑀2 ≫ 𝑘2/𝑎2, however, the large mass 𝑀
can induce rapid oscillations of 𝛿𝐹 . In the following we shall study the evolution of the oscillating
mode [568]. For sub-horizon perturbations Eq. (8.92) is approximately given by

¨𝛿𝐹 + 3𝐻 ˙𝛿𝐹 +

(︂
𝑘2

𝑎2
+𝑀2

)︂
𝛿𝐹 ≃ 𝜅2

3
𝛿𝜌𝑚 . (8.103)

The solution of this equation is the sum of the matter induce mode 𝛿𝐹ind ≃ (𝜅2/3)𝛿𝜌𝑚/(𝑘
2/𝑎2+𝑀2)

and the oscillating mode 𝛿𝐹osc satisfying

¨𝛿𝐹 osc + 3𝐻 ˙𝛿𝐹 osc +

(︂
𝑘2

𝑎2
+𝑀2

)︂
𝛿𝐹osc = 0 . (8.104)

As long as the frequency 𝜔 =
√︀
𝑘2/𝑎2 +𝑀2 satisfies the adiabatic condition |𝜔̇| ≪ 𝜔2, we

obtain the solution of Eq. (8.104) under the WKB approximation:

𝛿𝐹osc ≃ 𝑐𝑎−3/2 1√
2𝜔

cos

(︂∫︁
𝜔d𝑡

)︂
, (8.105)

where 𝑐 is a constant. Hence the solution of the perturbation 𝛿𝑅 is expressed by [568, 587]

𝛿𝑅 ≃ 1

3𝑓,𝑅𝑅

𝜅2𝛿𝜌𝑚
𝑘2/𝑎2 +𝑀2

+ 𝑐𝑎−3/2 1

𝑓,𝑅𝑅

√
2𝜔

cos

(︂∫︁
𝜔d𝑡

)︂
. (8.106)

For viable f (R) models, the scale factor 𝑎 and the background Ricci scalar 𝑅(0) evolve as
𝑎 ∝ 𝑡2/3 and 𝑅(0) ≃ 4/(3𝑡2) during the matter era. Then the amplitude of 𝛿𝑅osc relative to 𝑅(0)

has the time-dependence

|𝛿𝑅osc|
𝑅(0)

∝ 𝑀2𝑡

(𝑘2/𝑎2 +𝑀2)1/4
. (8.107)

The f (R) models (4.83) and (4.84) behave as 𝑚(𝑟) = 𝐶(−𝑟 − 1)𝑝 with 𝑝 = 2𝑛 + 1 in the regime
𝑅 ≫ 𝑅𝑐. During the matter-dominated epoch the mass 𝑀 evolves as 𝑀 ∝ 𝑡−(𝑝+1). In the
regime 𝑀2 ≫ 𝑘2/𝑎2 one has |𝛿𝑅osc|/𝑅(0) ∝ 𝑡−(3𝑝+1)/2 and hence the amplitude of the oscillating
mode decreases faster than 𝑅(0). However the contribution of the oscillating mode tends to be
more important as we go back to the past. In fact, this behavior was confirmed in the numerical
simulations of [587, 36]. This property persists in the radiation-dominated epoch as well. If the
condition |𝛿𝑅| < 𝑅(0) is violated, then 𝑅 can be negative such that the condition 𝑓,𝑅 > 0 or
𝑓,𝑅𝑅 > 0 is violated for the models (4.83) and (4.84). Thus we require that |𝛿𝑅| is smaller than
𝑅(0) at the beginning of the radiation era. This can be achieved by choosing the constant 𝑐 in
Eq. (8.106) to be sufficiently small, which amounts to a fine tuning for these models.

For the models (4.83) and (4.84) one has 𝐹 = 1−2𝑛𝜇(𝑅/𝑅𝑐)
−2𝑛−1 in the regime 𝑅≫ 𝑅𝑐. Then

the field 𝜑 defined in Eq. (2.31) rapidly approaches 0 as we go back to the past. Recall that in the
Einstein frame the effective potential of the field has a potential minimum around 𝜑 = 0 because
of the presence of the matter coupling. Unless the oscillating mode of the field perturbation 𝛿𝜑
is strongly suppressed relative to the background field 𝜑(0), the system can access the curvature
singularity at 𝜑 = 0 [266]. This is associated with the condition |𝛿𝑅| < 𝑅(0) discussed above. This
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curvature singularity appears in the past, which is not related to the future singularities studied in
[461, 54]. The past singularity can be cured by taking into account the 𝑅2 term [37], as we will see
in Section 13.3. We note that the f (R) models proposed in [427] [e.g., 𝑓(𝑅) = 𝑅−𝛼𝑅𝑐 ln(1+𝑅/𝑅𝑐)]
to cure the singularity problem satisfy neither the local gravity constraints [580] nor observational
constraints of large-scale structure [194].

As long as the oscillating mode 𝛿𝑅osc is negligible relative to the matter-induced mode 𝛿𝑅ind, we
can estimate the evolution of matter perturbations 𝛿𝑚 as well as the effective gravitational potential
Φeff . Note that in [192, 434] the perturbation equations have been derived without neglecting the
oscillating mode. As long as the condition |𝛿𝑅osc| < |𝛿𝑅ind| is satisfied initially, the approximate
equation (8.100) is accurate to reproduce the numerical solutions [192, 589]. Equation (8.100) can
be written as

d2𝛿𝑚
d𝑁2

+

(︂
1

2
− 3

2
𝑤eff

)︂
d𝛿𝑚
d𝑁

− 3

2
Ω𝑚

4 + 3𝑀2𝑎2/𝑘2

3(1 +𝑀2𝑎2/𝑘2)
= 0 , (8.108)

where 𝑁 = ln 𝑎, 𝑤eff = −1−2𝐻̇/(3𝐻2), and Ω𝑚 = 8𝜋𝐺𝜌𝑚/(3𝐹𝐻
2). The matter-dominated epoch

corresponds to 𝑤eff = 0 and Ω𝑚 = 1. In the regime 𝑀2 ≫ 𝑘2/𝑎2 the evolution of 𝛿𝑚 and Φeff

during the matter dominance is given by

𝛿𝑚 ∝ 𝑡2/3 , Φeff = constant , (8.109)

where we used Eq. (8.99). The matter-induced mode 𝛿𝑅ind relative to the background Ricci scalar
𝑅(0) evolves as |𝛿𝑅ind|/𝑅(0) ∝ 𝑡2/3 ∝ 𝛿𝑚. At late times the perturbations can enter the regime
𝑀2 ≪ 𝑘2/𝑎2, depending on the wavenumber 𝑘 and the mass𝑀 . When𝑀2 ≪ 𝑘2/𝑎2, the evolution
of 𝛿𝑚 and Φeff during the matter era is [568]

𝛿𝑚 ∝ 𝑡(
√
33−1)/6 , Φeff ∝ 𝑡(

√
33−5)/6 . (8.110)

For the model 𝑚(𝑟) = 𝐶(−𝑟− 1)𝑝, the evolution of the matter-induced mode in the region 𝑀2 ≪
𝑘2/𝑎2 is given by |𝛿𝑅ind|/𝑅(0) ∝ 𝑡−2𝑝+(

√
33−5)/6. This decreases more slowly relative to the ratio

|𝛿𝑅osc|/𝑅(0) [587], so the oscillating mode tends to be unimportant with time.

8.2 The impact on large-scale structure

We have shown that the evolution of matter perturbations during the matter dominance is given

by 𝛿𝑚 ∝ 𝑡2/3 for 𝑀2 ≫ 𝑘2/𝑎2 (GR regime) and 𝛿𝑚 ∝ 𝑡(
√
33−1)/6 for 𝑀2 ≪ 𝑘2/𝑎2 (scalar-tensor

regime), respectively. The existence of the latter phase gives rise to the modification to the matter
power spectrum [146, 74, 544, 526, 251] (see also [597, 493, 494, 94, 446, 278, 435] for related
works). The transition from the GR regime to the scalar-tensor regime occurs at 𝑀2 = 𝑘2/𝑎2. If
it occurs during the matter dominance (𝑅 ≃ 3𝐻2), the condition 𝑀2 = 𝑘2/𝑎2 translates into [589]

𝑚 ≃ (𝑎𝐻/𝑘)2 , (8.111)

where we have used the relation 𝑀2 ≃ 𝑅/(3𝑚) (valid for 𝑚≪ 1).
We are interested in the wavenumbers 𝑘 relevant to the linear regime of the galaxy power

spectrum [577, 578]:

0.01ℎ Mpc−1 . 𝑘 . 0., ℎ Mpc−1 , (8.112)

where ℎ = 0.72± 0.08 corresponds to the uncertainty of the Hubble parameter today. Non-linear
effects are important for 𝑘 & 0.2ℎ Mpc−1. The current observations on large scales around 𝑘 ∼
0.01ℎ Mpc−1 are not so accurate but can be improved in future. The upper bound 𝑘 = 0.2ℎ Mpc−1

corresponds to 𝑘 ≃ 600𝑎0𝐻0, where the subscript “0” represents quantities today. If the transition
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from the GR regime to the scalar-tensor regime occurred by the present epoch (the redshift 𝑧 = 0)
for the mode 𝑘 = 600𝑎0𝐻0, then the parameter 𝑚 today is constrained to be

𝑚(𝑧 = 0) & 3× 10−6 . (8.113)

When 𝑚(𝑧 = 0) . 3× 10−6 the linear perturbations have been always in the GR regime by today,
in which case the models are not distinguished from the ΛCDM model. The bound (8.113) is
relaxed for non-linear perturbations with 𝑘 & 0.2ℎ Mpc−1, but the linear analysis is not valid in
such cases.

If the transition characterized by the condition (8.111) occurs during the deep matter era
(𝑧 ≫ 1), we can estimate the critical redshift 𝑧𝑘 at the transition point. In the following let us

consider the models (4.83) and (4.84). In addition to the approximations 𝐻2 ≃ 𝐻2
0Ω

(0)
𝑚 (1 + 𝑧)3

and 𝑅 ≃ 3𝐻2 during the matter dominance, we use the the asymptotic forms 𝑚 ≃ 𝐶(−𝑟− 1)2𝑛+1

and 𝑟 ≃ −1 − 𝜇𝑅𝑐/𝑅 with 𝐶 = 2𝑛(2𝑛 + 1)/𝜇2𝑛. Since the dark energy density today can be

approximated as 𝜌
(0)
DE ≈ 𝜇𝑅𝑐/2, it follows that 𝜇𝑅𝑐 ≈ 6𝐻2

0Ω
(0)
DE. Then the condition (8.111)

translates into the critical redshift [589]

𝑧𝑘 =

[︃(︂
𝑘

𝑎0𝐻0

)︂2
2𝑛(2𝑛+ 1)

𝜇2𝑛

(2Ω
(0)
DE)

2𝑛+1

(Ω0
𝑚)2(𝑛+1)

]︃1/(6𝑛+4)

− 1 . (8.114)

For 𝑛 = 1, 𝜇 = 3, Ω
(0)
𝑚 = 0.28, and 𝑘 = 300𝑎0𝐻0 the numerical value of the critical redshift is

𝑧𝑘 = 4.5, which is in good agreement with the analytic value estimated by (8.114).
The estimation (8.114) shows that, for larger 𝑘, the transition occurs earlier. The time 𝑡𝑘 at

the transition has a 𝑘-dependence: 𝑡𝑘 ∝ 𝑘−3/(6𝑛+4). For 𝑡 > 𝑡𝑘 the matter perturbation evolves as

𝛿𝑚 ∝ 𝑡(
√
33−1)/6 by the time 𝑡 = 𝑡Λ corresponding to the onset of cosmic acceleration (𝑎̈ = 0). The

matter power spectrum 𝑃𝛿𝑚 = |𝛿𝑚|2 at the time 𝑡Λ shows a difference compared to the case of the
ΛCDM model [568]:

𝑃𝛿𝑚(𝑡Λ)

𝑃𝛿𝑚
ΛCDM(𝑡Λ)

=

(︂
𝑡Λ
𝑡𝑘

)︂2
(︁√

33−1
6 − 2

3

)︁
∝ 𝑘

√
33−5

6𝑛+4 . (8.115)

We caution that, when 𝑧𝑘 is close to 𝑧Λ (the redshift at 𝑡 = 𝑡Λ), the estimation (8.115) begins
to lose its accuracy. The ratio of the two power spectra today, i.e., 𝑃𝛿𝑚(𝑡0)/𝑃𝛿𝑚

ΛCDM(𝑡0) is in
general different from Eq. (8.115). However, numerical simulations in [587] show that the difference
is small for 𝑛 of the order of unity.

The modified evolution (8.110) of the effective gravitational potential for 𝑧 < 𝑧𝑘 leads to the
integrated Sachs–Wolfe (ISW) effect in CMB anisotropies [544, 382, 545]. However this is limited
to very large scales (low multipoles) in the CMB spectrum. Meanwhile the galaxy power spectrum
is directly affected by the non-standard evolution of matter perturbations. From Eq. (8.115) there
should be a difference between the spectral indices of the CMB spectrum and the galaxy power
spectrum on the scale (8.112) [568]:

Δ𝑛𝑠 =

√
33− 5

6𝑛+ 4
. (8.116)

Observationally we do not find any strong signature for the difference of slopes of the two spectra.
If we take the mild bound Δ𝑛𝑠 < 0.05, we obtain the constraint 𝑛 > 2. Note that in this case the
local gravity constraint (5.60) is also satisfied.

In order to estimate the growth rate of matter perturbations, we introduce the growth index 𝛾
defined by [484]

𝑓𝛿 ≡ 𝛿̇𝑚
𝐻𝛿𝑚

= (Ω̃𝑚)𝛾 , (8.117)
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where Ω̃𝑚 = 𝜅2𝜌𝑚/(3𝐻
2) = 𝐹Ω𝑚. This choice of Ω̃𝑚 comes from writing Eq. (4.59) in the form

3𝐻2 = 𝜌DE + 𝜅2𝜌𝑚, where 𝜌DE ≡ (𝐹𝑅 − 𝑓)/2 − 3𝐻𝐹̇ + 3𝐻2(1 − 𝐹 ) and we have ignored the
contribution of radiation. Since the viable f (R) models are close to the ΛCDM model in the region
of high density, the quantity 𝐹 approaches 1 in the asymptotic past. Defining 𝜌DE and Ω̃𝑚 in the
above way, the Friedmann equation can be cast in the usual GR form with non-relativistic matter
and dark energy [568, 270, 589].

The growth index in the ΛCDM model corresponds to 𝛾 ≃ 0.55 [612, 395], which is nearly
constant for 0 < 𝑧 < 1. In f (R) gravity, if the perturbations are in the GR regime (𝑀2 ≫ 𝑘2/𝑎2)
today, 𝛾 is close to the GR value. Meanwhile, if the transition to the scalar-tensor regime occurred
at the redshift 𝑧𝑘 larger than 1, the growth index becomes smaller than 0.55 [270]. Since 0 < Ω̃𝑚 <
1, the smaller 𝛾 implies a larger growth rate.
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Figure 4: Evolution of 𝛾 versus the redshift 𝑧 in the model (4.83) with 𝑛 = 1 and 𝜇 = 1.55 for four
different values of 𝑘. For these model parameters the dispersion of 𝛾 with respect to 𝑘 is very small. All
the perturbation modes shown in the figure have reached the scalar-tensor regime (𝑀2 ≪ 𝑘2/𝑎2) by today.
From [589].

In Figure 4 we plot the evolution of the growth index 𝛾 in the model (4.83) with 𝑛 = 1 and
𝜇 = 1.55 for a number of different wavenumbers. In this case the present value of 𝛾 is degenerate
around 𝛾0 ≃ 0.41 independent of the scales of our interest. For the wavenumbers 𝑘 = 0.1ℎ Mpc−1

and 𝑘 = 0.01ℎ Mpc−1 the transition redshifts correspond to 𝑧𝑘 = 5.2 and 𝑧𝑘 = 2.7, respectively.
Hence these modes have already entered the scalar-tensor regime by today.

From Eq. (8.114) we find that 𝑧𝑘 gets smaller for larger 𝑛 and 𝜇. If the mode 𝑘 = 0.2ℎ Mpc−1

crossed the transition point at 𝑧𝑘 > 𝒪(1) and the mode 𝑘 = 0.01ℎ Mpc−1 has marginally entered
(or has not entered) the scalar-tensor regime by today, then the growth indices should be strongly
dispersed. For sufficiently large values of 𝑛 and 𝜇 one can expect that the transition to the regime
𝑀2 ≪ 𝑘2/𝑎2 has not occurred by today. The following three cases appear depending on the values
of 𝑛 and 𝜇 [589]:

(i) All modes have the values of 𝛾0 close to the ΛCDM value: 𝛾0 = 0.55, i.e., 0.53 . 𝛾0 . 0.55.
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Figure 5: The regions (i), (ii) and (iii) for the model (4.84). We also show the bound 𝑛 > 0.9 coming
from the local gravity constraints as well as the condition (4.87) coming from the stability of the de Sitter
point. From [589].

(ii) All modes have the values of 𝛾0 close to the value in the range 0.40 . 𝛾0 . 0.43.

(iii) The values of 𝛾0 are dispersed in the range 0.40 . 𝛾0 . 0.55.

The region (i) corresponds to the opposite of the inequality (8.113), i.e., 𝑚(𝑧 = 0) . 3 × 10−6,
in which case 𝑛 and 𝜇 take large values. The border between (i) and (iii) is characterized by
the condition 𝑚(𝑧 = 0) ≈ 3 × 10−6. The region (ii) corresponds to small values of 𝑛 and 𝜇 (as
in the numerical simulation of Figure 4), in which case the mode 𝑘 = 0.01ℎ Mpc−1 entered the
scalar-tensor regime for 𝑧𝑘 > 𝒪(1).

The regions (i), (ii), (iii) can be found numerically by solving the perturbation equations. In
Figure 5 we plot those regions for the model (4.84) together with the bounds coming from the local
gravity constraints as well as the stability of the late-time de Sitter point. Note that the result in
the model (4.83) is also similar to that in the model (4.84). The parameter space for 𝑛 . 3 and
𝜇 = 𝒪(1) is dominated by either the region (ii) or the region (iii). While the present observational
constraint on 𝛾 is quite weak, the unusual converged or dispersed spectra found above can be
useful to distinguish metric f (R) gravity from the ΛCDM model in future observations. We also
note that for other viable f (R) models such as (4.89) the growth index today can be as small
as 𝛾0 ≃ 0.4 [589]. If future observations detect such unusually small values of 𝛾0, this can be a
smoking gun for f (R) models.

8.3 Non-linear matter perturbations

So far we have discussed the evolution of linear perturbations relevant to the matter spectrum
for the scale 𝑘 . 0.01 – 0.2ℎ Mpc−1. For smaller scale perturbations the effect of non-linearity
becomes important. In GR there are some mapping formulas from the linear power spectrum to
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the non-linear power spectrum such as the halo fitting by Smith et al. [540]. In the halo model the
non-linear power spectrum 𝑃 (𝑘) is defined by the sum of two pieces [169]:

𝑃 (𝑘) = 𝐼1(𝑘) + 𝐼2(𝑘)
2𝑃𝐿(𝑘) , (8.118)

where 𝑃𝐿(𝑘) is a linear power spectrum and

𝐼1(𝑘) =

∫︁
d𝑀

𝑀

(︃
𝑀

𝜌
(0)
𝑚

)︃2
d𝑛

d ln𝑀
𝑦2(𝑀,𝑘) , 𝐼2(𝑘) =

∫︁
d𝑀

𝑀

(︃
𝑀

𝜌
(0)
𝑚

)︃2
d𝑛

d ln𝑀
𝑏(𝑀)𝑦(𝑀,𝑘) .

(8.119)

Here 𝑀 is the mass of dark matter halos, 𝜌
(0)
𝑚 is the dark matter density today, d𝑛/d ln𝑀 is the

mass function describing the comoving number density of halos, 𝑦(𝑀,𝑘) is the Fourier transform
of the halo density profile, and 𝑏(𝑀) is the halo bias.

In modified gravity theories, Hu and Sawicki (HS) [307] provided a fitting formula to describe
a non-linear power spectrum based on the halo model. The mass function d𝑛/d ln𝑀 and the
halo profile 𝜌 depend on the root-mean-square 𝜎(𝑀) of a linear density field. The Sheth–Tormen
mass function [535] and the Navarro–Frenk–White halo profile [449] are usually employed in GR.
Replacing 𝜎 for 𝜎GR obtained in the GR dark energy model that follows the same expansion
history as the modified gravity model, we obtain a non-linear power spectrum 𝑃 (𝑘) according to
Eq. (8.118). In [307] this non-linear spectrum is called 𝑃∞(𝑘). It is also possible to obtain a non-
linear spectrum 𝑃0(𝑘) by applying a usual (halo) mapping formula in GR to modified gravity. This
approach is based on the assumption that the growth rate in the linear regime determines the non-
linear spectrum. Hu and Sawicki proposed a parametrized non-linear spectrum that interpolates
between two spectra 𝑃∞(𝑘) and 𝑃0(𝑘) [307]:

𝑃 (𝑘) =
𝑃0(𝑘) + 𝑐nlΣ

2(𝑘)𝑃∞(𝑘)

1 + 𝑐nlΣ2(𝑘)
, (8.120)

where 𝑐nl is a parameter which controls whether 𝑃 (𝑘) is close to 𝑃0(𝑘) or 𝑃∞(𝑘). In [307] they
have taken the form Σ2(𝑘) = 𝑘3𝑃𝐿(𝑘)/(2𝜋

2).
The validity of the HS fitting formula (8.120) should be checked with 𝑁 -body simulations in

modified gravity models. In [478, 479, 529] 𝑁 -body simulations were carried out for the f (R)
model (4.83) with 𝑛 = 1/2 (see also [562, 379] for 𝑁 -body simulations in other modified gravity
models). The chameleon mechanism should be at work on small scales (solar-system scales) for the
consistency with local gravity constraints. In [479] it was found that the chameleon mechanism
tends to suppress the enhancement of the power spectrum in the non-linear regime that corresponds
to the recovery of GR. On the other hand, in the post Newtonian intermediate regime, the power
spectrum is enhanced compared to the GR case at the measurable level.

Koyama et al. [371] studied the validity of the HS fitting formula by comparing it with the
results of 𝑁 -body simulations. Note that in this paper the parametrization (8.120) was used as
a fitting formula without employing the halo model explicitly. In their notation 𝑃0 corresponds
to “𝑃non−GR” derived without non-linear interactions responsible for the recovery of GR (i.e.,
gravity is modified down to small scales in the same manner as in the linear regime), whereas 𝑃∞
corresponds to “𝑃GR” obtained in the GR dark energy model following the same expansion history
as that in the modified gravity model. Note that 𝑐nl characterizes how the theory approaches GR
by the chameleon mechanism. Choosing Σ as

Σ2(𝑘, 𝑧) =

(︂
𝑘3

2𝜋2
𝑃𝐿(𝑘, 𝑧)

)︂1/3

, (8.121)

where 𝑃𝐿 is the linear power spectrum in the modified gravity model, they showed that, in the
f (R) model (4.83) with 𝑛 = 1/2, the formula (8.120) can fit the solutions in perturbation theory
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Figure 6: Comparison between 𝑁 -body simulations and the two fitting formulas in the f (R) model (4.83)
with 𝑛 = 1/2. The circles and triangles show the results of 𝑁 -body simulations with and without the
chameleon mechanism, respectively. The arrow represents the maximum value of 𝑘 (= 0.08ℎ Mpc−1) by
which the perturbation theory is valid. (Left) The fitting formula by Smith et al. [540] is used to predict
𝑃non−GR and 𝑃GR. The solid and dashed lines correspond to the power spectra with and without the
chameleon mechanism, respectively. For the chameleon case 𝑐nl(𝑧) is determined by the perturbation
theory with 𝑐nl(𝑧 = 0) = 0.085. (Right) The 𝑁 -body results in [479] are interpolated to derive 𝑃non−GR

without the chameleon mechanism. The obtained 𝑃non−GR is used for the HS fitting formula to derive the
power spectrum 𝑃 in the chameleon case. From [371].
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very well by allowing the time-dependence of the parameter 𝑐nl in terms of the redshift 𝑧. In the
regime 0 < 𝑧 < 1 the parameter 𝑐nl is approximately given by 𝑐nl(𝑧 = 0) = 0.085.

In the left panel of Figure 6 the relative difference of the non-linear power spectrum 𝑃 (𝑘) from
the GR spectrum 𝑃GR(𝑘) is plotted as a dashed curve (“no chameleon” case with 𝑐nl = 0) and
as a solid curve (“chameleon” case with non-zero 𝑐nl derived in the perturbative regime). Note
that in this simulation the fitting formula by Smith et al. [540] is used to obtain the non-linear
power spectrum from the linear one. The agreement with 𝑁 -body simulations is not very good
in the non-linear regime (𝑘 > 0.1ℎ Mpc−1). In [371] the power spectrum 𝑃non−GR in the no
chameleon case (i.e., 𝑐nl = 0) was derived by interpolating the 𝑁 -body results in [479]. This is
plotted as the dashed line in the right panel of Figure 6. Using this spectrum 𝑃non−GR for 𝑐nl ̸= 0,
the power spectrum in 𝑁 -body simulations in the chameleon case can be well reproduced by the
fitting formula (8.120) for the scale 𝑘 < 0.5ℎ Mpc−1 (see the solid line in Figure 6). Although
there is some deviation in the regime 𝑘 > 0.5ℎ Mpc−1, we caution that 𝑁 -body simulations have
large errors in this regime. See [530] for clustered abundance constraints on the f (R) model (4.83)
derived by the calibration of 𝑁 -body simulations.

In the quasi non-linear regime a normalized skewness, 𝑆3 = ⟨𝛿3𝑚⟩/⟨𝛿2𝑚⟩2, of matter pertur-
bations can provide a good test for the picture of gravitational instability from Gaussian initial
conditions [79]. If large-scale structure grows via gravitational instability from Gaussian initial per-
turbations, the skewness in a universe dominated by pressureless matter is known to be 𝑆3 = 34/7
in GR [484]. In the ΛCDM model the skewness depends weakly on the expansion history of the
universe (less than a few percent) [335]. In f (R) dark energy models the difference of the skewness
from the ΛCDM model is only less than a few percent [576], even if the growth rate of matter
perturbations is significantly different. This is related to the fact that in the Einstein frame dark
energy has a universal coupling 𝑄 = −1/

√
6 with all non-relativistic matter, unlike the coupled

quintessence scenario with different couplings between dark energy and matter species (dark mat-
ter, baryons) [30].

8.4 Cosmic Microwave Background

The effective gravitational potential (8.98) is directly related to the ISW effect in CMB anisotropies.
This contributes to the temperature anisotropies today as an integral [308, 214]

ΘISW ≡
∫︁ 𝜂0

0

d𝜂𝑒−𝜏 dΦeff

d𝜂
𝑗ℓ[𝑘(𝜂0 − 𝜂)] , (8.122)

where 𝜏 is the optical depth, 𝜂 =
∫︀
𝑎−1d𝑡 is the conformal time with the present value 𝜂0, and

𝑗ℓ[𝑘(𝜂0 − 𝜂)] is the spherical Bessel function for CMB multipoles ℓ and the wavenumber 𝑘. In
the limit ℓ ≫ 1 (i.e., small-scale limit) the spherical Bessel function has a dependence 𝑗ℓ(𝑥) ≃
(1/ℓ)(𝑥/ℓ)ℓ−1/2, which is suppressed for large ℓ. Hence the dominant contribution to the ISW
effect comes from the low ℓ modes (ℓ = 𝒪(1)).

In the ΛCDM model the effective gravitational potential is constant during the matter domi-
nance, but it begins to decay after the Universe enters the epoch of cosmic acceleration (see the
left panel of Figure 7). This late-time variation of Φeff leads to the contribution to ΘISW, which
works as the ISW effect.

For viable f (R) dark energy models the evolution of Φeff during the early stage of the matter
era is constant as in the ΛCDM model. After the transition to the scalar-tensor regime, the

effective gravitational potential evolves as Φeff ∝ 𝑡(
√
33−5)/6 during the matter dominance [as we

have shown in Eq. (8.110)]. The evolution of Φeff during the accelerated epoch is also subject to
change compared to the ΛCDM model. In the left panel of Figure 7 we show the evolution of Φeff

versus the scale factor 𝑎 for the wavenumber 𝑘 = 10−3 Mpc−1 in several different cases. In this
simulation the background cosmological evolution is fixed to be the same as that in the ΛCDM
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Figure 7: (Left) Evolution of the effective gravitational potential Φeff (denoted as Φ− in the figure) versus
the scale factor 𝑎 (with the present value 𝑎 = 1) on the scale 𝑘−1 = 103 Mpc for the ΛCDM model and f (R)
models with 𝐵0 = 0.5, 1.5, 3.0, 5.0. As the parameter 𝐵0 increases, the decay of Φeff decreases and then
turns into growth for 𝐵0 & 1.5. (Right) The CMB power spectrum ℓ(ℓ+ 1)𝐶ℓ/(2𝜋) for the ΛCDM model
and f (R) models with 𝐵0 = 0.5, 1.5, 3.0, 5.0. As 𝐵0 increases, the ISW contributions to low multipoles
decrease, reach the minimum around 𝐵0 = 1.5, and then increase. The black points correspond to the
WMAP 3-year data [561]. From [545].

model. In order to quantify the difference from the ΛCDM model at the level of perturbations,
[628, 544, 545] defined the following quantity

𝐵 ≡ 𝑚
𝑅̇

𝑅

𝐻

𝐻̇
, (8.123)

where𝑚 = 𝑅𝑓,𝑅𝑅/𝑓,𝑅. If the effective equation of state 𝑤eff defined in Eq. (4.69) is constant, it then
follows that 𝑅 = 3𝐻2(1 − 3𝑤eff) and hence 𝐵 = 2𝑚. The stability of cosmological perturbations
requires the condition 𝐵 > 0 [544, 526]. The left panel of Figure 7 shows that, as we increase the
values of 𝐵 today (= 𝐵0), the evolution of Φeff at late times tends to be significantly different from
that in the ΛCDM model. This comes from the fact that, for increasing 𝐵, the transition to the
scalar-tensor regime occurs earlier.

From the right panel of Figure 7 we find that, as 𝐵0 increases, the CMB spectrum for low
multipoles first decreases and then reaches the minimum around 𝐵0 = 1.5. This comes from the
reduction in the decay rate of Φeff relative to the ΛCDM model, see the left panel of Figure 7.
Around 𝐵0 = 1.5 the effective gravitational potential is nearly constant, so that the ISW effect is
almost absent (i.e., ΘISW ≈ 0). For 𝐵0 & 1.5 the evolution of Φeff turns into growth. This leads to
the increase of the large-scale CMB spectrum, as 𝐵0 increases. The spectrum in the case 𝐵0 = 3.0
is similar to that in the ΛCDM model. The WMAP 3-year data rule out 𝐵0 > 4.3 at the 95%
confidence level because of the excessive ISW effect [545].

There is another observational constraint coming from the angular correlation between the
CMB temperature field and the galaxy number density field induced by the ISW effect [544]. The
f (R) models predict that, for 𝐵0 & 1, the galaxies are anticorrelated with the CMB because of the
sign change of the ISW effect. Since the anticorrelation has not been observed in the observational
data of CMB and LSS, this places an upper bound of 𝐵0 . 1 [545]. This is tighter than the bound
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𝐵0 < 4.3 coming from the CMB angular spectrum discussed above.
Finally we briefly mention stochastic gravitational waves produced in the early universe [421,

172, 122, 123, 174, 173, 196, 20]. For the inflation model 𝑓(𝑅) = 𝑅 + 𝑅2/(6𝑀2) the primor-
dial gravitational waves are generated with the tensor-to-scalar ratio 𝑟 of the order of 10−3, see
Eq. (7.73). It is also possible to generate stochastic gravitational waves after inflation under the
modification of gravity. Capozziello et al. [122, 123] studied the evolution of tensor perturbations
for a toy model 𝑓 = 𝑅1+𝜖 in the FLRW universe with the power-law evolution of the scale factor.
Since the parameter 𝜖 is constrained to be very small (|𝜖| < 7.2× 10−19) [62, 160], it is very diffi-
cult to detect the signature of f (R) gravity in the stochastic gravitational wave background. This
property should hold for viable f (R) dark energy models in general, because the deviation from
GR during the radiation and the deep matter era is very small.
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9 Palatini Formalism

In this section we discuss f (R) theory in the Palatini formalism [481]. In this approach the
action (2.1) is varied with respect to both the metric 𝑔𝜇𝜈 and the connection Γ𝛼

𝛽𝛾 . Unlike the
metric approach, 𝑔𝜇𝜈 and Γ𝛼

𝛽𝛾 are treated as independent variables. Variations using the Palatini
approach [256, 607, 608, 261, 262, 260] lead to second-order field equations which are free from
the instability associated with negative signs of 𝑓,𝑅𝑅 [422, 423]. We note that even in the 1930s
Lanczos [378] proposed a specific combination of curvature-squared terms that lead to a second-
order and divergence-free modified Einstein equation.

The background cosmological dynamics of Palatini f (R) gravity has been investigated in [550,
553, 21, 253, 495], which shows that the sequence of radiation, matter, and accelerated epochs
can be realized even for the model 𝑓(𝑅) = 𝑅 − 𝛼/𝑅𝑛 with 𝑛 > 0 (see also [424, 457, 495]). The
equations for matter density perturbations were derived in [359]. Because of a large coupling 𝑄
between dark energy and non-relativistic matter dark energy models based on Palatini f (R) gravity
are not compatible with the observations of large-scale structure, unless the deviation from the
ΛCDM model is very small [356, 386, 385, 597]. Such a large coupling also gives rise to non-
perturbative corrections to the matter action, which leads to a conflict with the Standard Model
of particle physics [261, 262, 260] (see also [318, 472, 473, 475, 55]).

There are also a number of works [470, 471, 216, 552] about the Newtonian limit in the Palatini
formalism (see also [18, 19, 107, 331, 511, 510]). In particular it was shown in [55, 56] that the non-
dynamical nature of the scalar-field degree of freedom can lead to a divergence of non-vacuum static
spherically symmetric solutions at the surface of a compact object for commonly-used polytropic
equations of state. Hence Palatini f (R) theory is difficult to be compatible with a number of
observations and experiments, as long as the models are constructed to explain the late-time cosmic
acceleration. Moreover it is also known that in Palatini gravity the Cauchy problem [609] is not
well-formulated due to the presence of higher derivatives of matter fields in field equations [377]
(see also [520, 135] for related works). We also note that the matter Lagrangian (such as the
Lagrangian of Dirac particles) cannot be simply assumed to be independent of connections. Even
in the presence of above mentioned problems it will be useful to review this theory because we
can learn the way of modifications of gravity from GR to be consistent with observations and
experiments.

9.1 Field equations

Let us derive field equations by treating 𝑔𝜇𝜈 and Γ𝛼
𝛽𝛾 as independent variables. Varying the

action (2.1) with respect to 𝑔𝜇𝜈 , we obtain

𝐹 (𝑅)𝑅𝜇𝜈(Γ)−
1

2
𝑓(𝑅)𝑔𝜇𝜈 = 𝜅2𝑇 (𝑀)

𝜇𝜈 , (9.1)

where 𝐹 (𝑅) = 𝜕𝑓/𝜕𝑅, 𝑅𝜇𝜈(Γ) is the Ricci tensor corresponding to the connections Γ𝛼
𝛽𝛾 , and 𝑇

(𝑀)
𝜇𝜈

is defined in Eq. (2.5). Note that 𝑅𝜇𝜈(Γ) is in general different from the Ricci tensor calculated in
terms of metric connections 𝑅𝜇𝜈(𝑔). The trace of Eq. (9.1) gives

𝐹 (𝑅)𝑅− 2𝑓(𝑅) = 𝜅2𝑇 , (9.2)

where 𝑇 = 𝑔𝜇𝜈𝑇
(𝑀)
𝜇𝜈 . Here the Ricci scalar 𝑅(𝑇 ) is directly related to 𝑇 and it is different from

the Ricci scalar 𝑅(𝑔) = 𝑔𝜇𝜈𝑅𝜇𝜈(𝑔) in the metric formalism. More explicitly we have the following
relation [556]

𝑅(𝑇 ) = 𝑅(𝑔) +
3

2(𝑓 ′(𝑅(𝑇 )))2
(∇𝜇𝑓

′(𝑅(𝑇 )))(∇𝜇𝑓 ′(𝑅(𝑇 ))) +
3

𝑓 ′(𝑅(𝑇 ))
�𝑓 ′(𝑅(𝑇 )) , (9.3)
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where a prime represents a derivative in terms of 𝑅(𝑇 ). The variation of the action (2.1) with
respect to the connection leads to the following equation

𝑅𝜇𝜈(𝑔)−
1

2
𝑔𝜇𝜈𝑅(𝑔) =

𝜅2𝑇𝜇𝜈
𝐹

− 𝐹𝑅(𝑇 )− 𝑓

2𝐹
𝑔𝜇𝜈 +

1

𝐹
(∇𝜇∇𝜈𝐹 − 𝑔𝜇𝜈�𝐹 )

− 3

2𝐹 2

[︂
𝜕𝜇𝐹𝜕𝜈𝐹 − 1

2
𝑔𝜇𝜈(∇𝐹 )2

]︂
. (9.4)

In Einstein gravity (𝑓(𝑅) = 𝑅 − 2Λ and 𝐹 (𝑅) = 1) the field equations (9.2) and (9.4) are
identical to the equations (2.7) and (2.4), respectively. However, the difference appears for the f (R)
models which include non-linear terms in 𝑅. While the kinetic term �𝐹 is present in Eq. (2.7),
such a term is absent in Palatini f (R) gravity. This has the important consequence that the
oscillatory mode, which appears in the metric formalism, does not exist in the Palatini formalism.
As we will see later on, Palatini f (R) theory corresponds to Brans–Dicke (BD) theory [100] with
a parameter 𝜔BD = −3/2 in the presence of a field potential. Such a theory should be treated
separately, compared to BD theory with 𝜔BD ̸= −3/2 in which the field kinetic term is present.

As we have derived the action (2.21) from (2.18), the action in Palatini f (R) gravity is equivalent
to

𝑆 =

∫︁
d4𝑥

√
−𝑔
[︂

1

2𝜅2
𝜙𝑅(𝑇 )− 𝑈(𝜙)

]︂
+

∫︁
d4𝑥ℒ𝑀 (𝑔𝜇𝜈 ,Ψ𝑀 ) , (9.5)

where

𝜙 = 𝑓 ′(𝑅(𝑇 )) , 𝑈 =
𝑅(𝑇 )𝑓 ′(𝑅(𝑇 ))− 𝑓(𝑅(𝑇 ))

2𝜅2
. (9.6)

Since the derivative of 𝑈 in terms of 𝜙 is 𝑈,𝜙 = 𝑅/(2𝜅2), we obtain the following relation from
Eq. (9.2):

4𝑈 − 2𝜙𝑈,𝜙 = 𝑇 . (9.7)

Using the relation (9.3), the action (9.5) can be written as

𝑆 =

∫︁
d4𝑥

√
−𝑔
[︂

1

2𝜅2
𝜙𝑅(𝑔) +

3

4𝜅2
1

𝜙
(∇𝜙)2 − 𝑈(𝜙)

]︂
+

∫︁
d4𝑥ℒ𝑀 (𝑔𝜇𝜈 ,Ψ𝑀 ) . (9.8)

Comparing this with Eq. (2.23) in the unit 𝜅2 = 1, we find that Palatini f (R) gravity is equivalent
to BD theory with the parameter 𝜔BD = −3/2 [262, 470, 551]. As we will see in Section 10.1, this
equivalence can be also seen by comparing Eqs. (9.1) and (9.4) with those obtained by varying the
action (2.23) in BD theory. In the above discussion we have implicitly assumed that ℒ𝑀 does not
explicitly depend on the Christoffel connections Γ𝜆

𝜇𝜈 . This is true for a scalar field or a perfect
fluid, but it is not necessarily so for other matter Lagrangians such as those describing vector fields.

There is another way for taking the variation of the action, known as the metric-affine formal-
ism [299, 558, 557, 121]. In this formalism the matter action 𝑆𝑀 depends not only on the metric
𝑔𝜇𝜈 but also on the connection Γ𝜆

𝜇𝜈 . Since the connection is independent of the metric in this ap-

proach, one can define the quantity called hypermomentum [299], as Δ𝜇𝜈
𝜆 ≡ (−2/

√
−𝑔)𝛿ℒ𝑀/𝛿Γ

𝜆
𝜇𝜈 .

The usual assumption that the connection is symmetric is also dropped, so that the antisymmetric
quantity called the Cartan torsion tensor, 𝑆𝜆

𝜇𝜈 ≡ Γ𝜆
[𝜇𝜈], is defined. The non-vanishing property of

𝑆𝜆
𝜇𝜈 allows the presence of torsion in this theory. If the condition Δ

[𝜇𝜈]
𝜆 = 0 holds, it follows that

the Cartan torsion tensor vanishes (𝑆𝜆
𝜇𝜈 = 0) [558]. Hence the torsion is induced by matter fields

with the anti-symmetric hypermomentum. The f (R) Palatini gravity belongs to f (R) theories in
the metric-affine formalism with Δ𝜇𝜈

𝜆 = 0. In the following we do not discuss further f (R) the-
ory in the metric-affine formalism. Readers who are interested in those theories may refer to the
papers [557, 556].
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9.2 Background cosmological dynamics

We discuss the background cosmological evolution of dark energy models based on Palatini f (R)
gravity. We shall carry out general analysis without specifying the forms of f (R). We take into
account non-relativistic matter and radiation whose energy densities are 𝜌𝑚 and 𝜌𝑟, respectively.
In the flat FLRW background (2.12) we obtain the following equations

𝐹𝑅− 2𝑓 = −𝜅2𝜌𝑚 , (9.9)

6𝐹

(︃
𝐻 +

𝐹̇

2𝐹

)︃2

− 𝑓 = 𝜅2(𝜌𝑚 + 2𝜌𝑟) , (9.10)

together with the continuity equations, 𝜌̇𝑚 + 3𝐻𝜌𝑚 = 0 and 𝜌̇𝑟 + 4𝐻𝜌𝑟 = 0. Combing Eqs. (9.9)
and (9.10) together with continuity equations, it follows that

𝑅̇ =
3𝜅2𝐻𝜌𝑚
𝐹,𝑅𝑅− 𝐹

= −3𝐻
𝐹𝑅− 2𝑓

𝐹,𝑅𝑅− 𝐹
, (9.11)

𝐻2 =
2𝜅2(𝜌𝑚 + 𝜌𝑟) + 𝐹𝑅− 𝑓

6𝐹𝜉
, (9.12)

where

𝜉 ≡
[︂
1− 3

2

𝐹,𝑅(𝐹𝑅− 2𝑓)

𝐹 (𝐹,𝑅𝑅− 𝐹 )

]︂2
. (9.13)

In order to discuss cosmological dynamics it is convenient to introduce the dimensionless vari-
ables:

𝑦1 ≡ 𝐹𝑅− 𝑓

6𝐹𝜉𝐻2
, 𝑦2 ≡ 𝜅2𝜌𝑟

3𝐹𝜉𝐻2
, (9.14)

by which Eq. (9.12) can be written as

𝜅2𝜌𝑚
3𝐹𝜉𝐻2

= 1− 𝑦1 − 𝑦2 . (9.15)

Differentiating 𝑦1 and 𝑦2 with respect to 𝑁 = ln 𝑎, we obtain [253]

d𝑦1
d𝑁

= 𝑦1 [3− 3𝑦1 + 𝑦2 + 𝐶(𝑅)(1− 𝑦1)] , (9.16)

d𝑦2
d𝑁

= 𝑦2 [−1− 3𝑦1 + 𝑦2 − 𝐶(𝑅)𝑦1] , (9.17)

where

𝐶(𝑅) ≡ 𝑅𝐹̇

𝐻(𝐹𝑅− 𝑓)
= −3

(𝐹𝑅− 2𝑓)𝐹,𝑅𝑅

(𝐹𝑅− 𝑓)(𝐹,𝑅𝑅− 𝐹 )
. (9.18)

The following constraint equation also holds

1− 𝑦1 − 𝑦2
2𝑦1

= −𝐹𝑅− 2𝑓

𝐹𝑅− 𝑓
. (9.19)

Hence the Ricci scalar 𝑅 can be expressed in terms of 𝑦1 and 𝑦2.
Differentiating Eq. (9.11) with respect to 𝑡, it follows that

𝐻̇

𝐻2
= −3

2
+

3

2
𝑦1 −

1

2
𝑦2 −

𝐹̇

2𝐻𝐹
− 𝜉

2𝐻𝜉
+

𝐹̇𝑅

12𝐹𝜉𝐻3
, (9.20)
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from which we get the effective equation of state:

𝑤eff = −1− 2

3

𝐻̇

𝐻2
= −𝑦1 +

1

3
𝑦2 +

𝐹̇

3𝐻𝐹
+

𝜉

3𝐻𝜉
− 𝐹̇𝑅

18𝐹𝜉𝐻3
. (9.21)

The cosmological dynamics is known by solving Eqs. (9.16) and (9.17) with Eq. (9.18). If 𝐶(𝑅) is
not constant, then one can use Eq. (9.19) to express 𝑅 and 𝐶(𝑅) in terms of 𝑦1 and 𝑦2.

The fixed points of Eqs. (9.16) and (9.17) can be found by setting d𝑦1/d𝑁 = 0 and d𝑦2/d𝑁 = 0.
Even when 𝐶(𝑅) is not constant, except for the cases 𝐶(𝑅) = −3 and 𝐶(𝑅) = −4, we obtain the
following fixed points [253]:

1. 𝑃𝑟: (𝑦1, 𝑦2) = (0, 1) ,

2. 𝑃𝑚: (𝑦1, 𝑦2) = (0, 0) ,

3. 𝑃𝑑: (𝑦1, 𝑦2) = (1, 0) .

The stability of the fixed points can be analyzed by considering linear perturbations about them.
As long as d𝐶/d𝑦1 and d𝐶/d𝑦2 are bounded, the eigenvalues 𝜆1 and 𝜆2 of the Jacobian matrix of
linear perturbations are given by

1. 𝑃𝑟: (𝜆1, 𝜆2) = (4 + 𝐶(𝑅), 1) ,

2. 𝑃𝑚: (𝜆1, 𝜆2) = (3 + 𝐶(𝑅),−1) ,

3. 𝑃𝑑: (𝜆1, 𝜆2) = (−3− 𝐶(𝑅),−4− 𝐶(𝑅)) .

In the ΛCDM model (𝑓(𝑅) = 𝑅 − 2Λ) one has 𝑤eff = −𝑦1 + 𝑦2/3 and 𝐶(𝑅) = 0. Then the
points 𝑃𝑟, 𝑃𝑚, and 𝑃𝑑 correspond to 𝑤eff = 1/3, (𝜆1, 𝜆2) = (4, 1) (radiation domination, unstable),
𝑤eff = 0, (𝜆1, 𝜆2) = (3,−1) (matter domination, saddle), and 𝑤eff = −1, (𝜆1, 𝜆2) = (−3,−4)
(de Sitter epoch, stable), respectively. Hence the sequence of radiation, matter, and de Sitter
epochs is in fact realized.

Let us next consider the model 𝑓(𝑅) = 𝑅 − 𝛽/𝑅𝑛 with 𝛽 > 0 and 𝑛 > −1. In this case the
quantity 𝐶(𝑅) is

𝐶(𝑅) = 3𝑛
𝑅1+𝑛 − (2 + 𝑛)𝛽

𝑅1+𝑛 + 𝑛(2 + 𝑛)𝛽
. (9.22)

The constraint equation (9.19) gives

𝛽

𝑅1+𝑛
=

2𝑦1
3𝑦1 + 𝑛(𝑦1 − 𝑦2 + 1)− 𝑦2 + 1

. (9.23)

The late-time de Sitter point corresponds to 𝑅1+𝑛 = (2 + 𝑛)𝛽, which exists for 𝑛 > −2. Since
𝐶(𝑅) = 0 in this case, the de Sitter point 𝑃𝑑 is stable with the eigenvalues (𝜆1, 𝜆2) = (−3,−4).
During the radiation and matter domination we have 𝛽/𝑅1+𝑛 ≪ 1 (i.e., 𝑓(𝑅) ≃ 𝑅) and hence
𝐶(𝑅) = 3𝑛. 𝑃𝑟 corresponds to the radiation point (𝑤eff = 1/3) with the eigenvalues (𝜆1, 𝜆2) =
(4+3𝑛, 1), whereas 𝑃𝑚 to the matter point (𝑤eff = 0) with the eigenvalues (𝜆1, 𝜆2) = (3+3𝑛,−1).
Provided that 𝑛 > −1, 𝑃𝑟 and 𝑃𝑚 correspond to unstable and saddle points respectively, in
which case the sequence of radiation, matter, and de Sitter eras can be realized. For the models
𝑓(𝑅) = 𝑅 + 𝛼𝑅𝑚 − 𝛽/𝑅𝑛, it was shown in [253] that unified models of inflation and dark energy
with radiation and matter eras are difficult to be realized.

In Figure 8 we plot the evolution of 𝑤eff as well as 𝑦1 and 𝑦2 for the model 𝑓(𝑅) = 𝑅 − 𝛽/𝑅𝑛

with 𝑛 = 0.02. This shows that the sequence of (𝑃𝑟) radiation domination (𝑤eff = 1/3), (𝑃𝑚)
matter domination (𝑤eff = 0), and de Sitter acceleration (𝑤eff = −1) is realized. Recall that in
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Figure 8: The evolution of the variables 𝑦1 and 𝑦2 for the model 𝑓(𝑅) = 𝑅−𝛽/𝑅𝑛 with 𝑛 = 0.02, together
with the effective equation of state 𝑤eff . Initial conditions are chosen to be 𝑦1 = 10−40 and 𝑦2 = 1.0−10−5.
From [253].

metric f (R) gravity the model 𝑓(𝑅) = 𝑅 − 𝛽/𝑅𝑛 (𝛽 > 0, 𝑛 > 0) is not viable because 𝑓,𝑅𝑅 is
negative. In Palatini f (R) gravity the sign of 𝑓,𝑅𝑅 does not matter because there is no propagating
degree of freedom with a mass 𝑀 associated with the second derivative 𝑓,𝑅𝑅 [554].

In [21, 253] the dark energy model 𝑓(𝑅) = 𝑅−𝛽/𝑅𝑛 was constrained by the combined analysis
of independent observational data. From the joint analysis of Super-Nova Legacy Survey [39],
BAO [227] and the CMB shift parameter [561], the constraints on two parameters 𝑛 and 𝛽 are
𝑛 ∈ [−0.23, 0.42] and 𝛽 ∈ [2.73, 10.6] at the 95% confidence level (in the unit of 𝐻0 = 1) [253].
Since the allowed values of 𝑛 are close to 0, the above model is not particularly favored over the
ΛCDM model. See also [116, 148, 522, 46, 47] for observational constraints on f (R) dark energy
models based on the Palatini formalism.

9.3 Matter perturbations

We have shown that f (R) theory in the Palatini formalism can give rise to the late-time cosmic
acceleration preceded by radiation and matter eras. In this section we study the evolution of
matter density perturbations to confront Palatini f (R) gravity with the observations of large-scale
structure [359, 356, 357, 598, 380, 597]. Let us consider the perturbation 𝛿𝜌𝑚 of non-relativistic
matter with a homogeneous energy density 𝜌𝑚. Koivisto and Kurki-Suonio [359] derived perturba-
tion equations in Palatini f (R) gravity. Using the perturbed metric (6.1) with the same variables
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as those introduced in Section 6, the perturbation equations are given by

Δ

𝑎2
𝜓 +

(︃
𝐻 +

𝐹̇

2𝐹

)︃
𝐴+

1

2𝐹

(︃
3𝐹̇ 2

2𝐹
+ 3𝐻𝐹̇

)︃
𝛼

=
1

2𝐹

[︃(︃
3𝐻2 − 3𝐹̇ 2

4𝐹 2
− 𝑅

2
− Δ

𝑎2

)︃
𝛿𝐹 +

(︃
3𝐹̇

2𝐹
+ 3𝐻

)︃
˙𝛿𝐹 − 𝜅2𝛿𝜌𝑚

]︃
, (9.24)

𝐻𝛼 − 𝜓̇ =
1

2𝐹

[︃
˙𝛿𝐹 −

(︃
𝐻 +

3𝐹̇

2𝐹

)︃
𝛿𝐹 − 𝐹̇𝛼+ 𝜅2𝜌𝑚𝑣

]︃
, (9.25)

𝜒̇ + 𝐻𝜒− 𝛼− 𝜓 =
1

𝐹
(𝛿𝐹 − 𝐹̇𝜒) , (9.26)

𝐴̇ +

(︃
2𝐻 +

𝐹̇

2𝐹

)︃
𝐴+

(︃
3𝐻̇ +

3𝐹

𝐹
+

3𝐻𝐹̇

2𝐹
− 3𝐹̇ 2

𝐹 2
+

Δ

𝑎2

)︃
𝛼+

3

2

𝐹̇

𝐹
𝛼̇

=
1

2𝐹

[︃
𝜅2𝛿𝜌𝑚 +

(︃
6𝐻2 + 6𝐻̇ +

3𝐹̇ 2

𝐹 2
−𝑅− Δ

𝑎2

)︃
𝛿𝐹 +

(︃
3𝐻 − 6𝐹̇

𝐹

)︃
˙𝛿𝐹 + 3 ¨𝛿𝐹

]︃
, (9.27)

𝑅𝛿𝐹 − 𝐹𝛿𝑅 = −𝜅2𝛿𝜌𝑚 , (9.28)

where the Ricci scalar 𝑅 can be understood as 𝑅(𝑇 ).
From Eq. (9.28) the perturbation 𝛿𝐹 can be expressed by the matter perturbation 𝛿𝜌𝑚, as

𝛿𝐹 =
𝐹,𝑅

𝑅

𝜅2𝛿𝜌𝑚
1−𝑚

, (9.29)

where 𝑚 = 𝑅𝐹,𝑅/𝐹 . This equation clearly shows that the perturbation 𝛿𝐹 is sourced by the
matter perturbation only, unlike metric f (R) gravity in which the oscillating mode of 𝛿𝐹 is present.
The matter perturbation 𝛿𝜌𝑚 and the velocity potential 𝑣 obey the same equations as given in
Eqs. (8.86) and (8.87), which results in Eq. (8.89) in Fourier space.

Let us consider the perturbation equations in Fourier space. We choose the Longitudinal gauge
(𝜒 = 0) with 𝛼 = Φ and 𝜓 = −Ψ. In this case Eq. (9.26) gives

Ψ− Φ =
𝛿𝐹

𝐹
. (9.30)

Under the quasi-static approximation on sub-horizon scales used in Section 8.1, Eqs. (9.24) and
(8.89) reduce to

𝑘2

𝑎2
Ψ ≃ 1

2𝐹

(︂
𝑘2

𝑎2
𝛿𝐹 − 𝜅2𝛿𝜌𝑚

)︂
, (9.31)

𝛿𝑚 + 2𝐻𝛿̇𝑚 +
𝑘2

𝑎2
Φ ≃ 0 . (9.32)

Combining Eq. (9.30) with Eq. (9.31), we obtain

𝑘2

𝑎2
Ψ = −𝜅

2𝛿𝜌𝑚
2𝐹

(︂
1− 𝜁

1−𝑚

)︂
,

𝑘2

𝑎2
Φ = −𝜅

2𝛿𝜌𝑚
2𝐹

(︂
1 +

𝜁

1−𝑚

)︂
, (9.33)

where

𝜁 ≡ 𝑘2

𝑎2
𝐹,𝑅

𝐹
=

𝑘2

𝑎2𝑅
𝑚 . (9.34)
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Then the matter perturbation satisfies the following Eq. [597]

𝛿𝑚 + 2𝐻𝛿̇𝑚 − 𝜅2𝜌𝑚
2𝐹

(︂
1 +

𝜁

1−𝑚

)︂
𝛿𝑚 ≃ 0 . (9.35)

The effective gravitational potential defined in Eq. (8.98) obeys

Φeff ≃ −𝜅
2𝜌𝑚
2𝐹

𝑎2

𝑘2
𝛿𝑚 . (9.36)

In the above approximation we do not need to worry about the dominance of the oscillating mode
of perturbations in the past. Note also that the same approximate equation of 𝛿𝑚 as Eq. (9.35)
can be derived for different gauge choices [597].

The parameter 𝜁 is a crucial quantity to characterize the evolution of perturbations. This
quantity can be estimated as 𝜁 ≈ (𝑘/𝑎𝐻)2𝑚, which is much larger than 𝑚 for sub-horizon modes
(𝑘 ≫ 𝑎𝐻). In the regime 𝜁 ≪ 1 the matter perturbation evolves as 𝛿𝑚 ∝ 𝑡2/3. Meanwhile the
evolution of 𝛿𝑚 in the regime 𝜁 ≫ 1 is completely different from that in GR. If the transition
characterized by 𝜁 = 1 occurs before today, this gives rise to the modification to the matter
spectrum compared to the GR case.

In the regime 𝜁 ≫ 1, let us study the evolution of matter perturbations during the matter
dominance. We shall consider the case in which the parameter 𝑚 (with |𝑚| ≪ 1) evolves as

𝑚 ∝ 𝑡𝑝 , (9.37)

where 𝑝 is a constant. For the model 𝑓(𝑅) = 𝑅 − 𝜇𝑅𝑐(𝑅/𝑅𝑐)
𝑛 (𝑛 < 1) the power 𝑝 corresponds

to 𝑝 = 1+ 𝑛, whereas for the models (4.83) and (4.84) with 𝑛 > 0 one has 𝑝 = 1+ 2𝑛. During the
matter dominance the parameter 𝜁 evolves as 𝜁 = ±(𝑡/𝑡𝑘)

2𝑝+2/3, where the subscript “𝑘” denotes
the value at which the perturbation crosses 𝜁 = ±1. Here + and − signs correspond to the cases
𝑚 > 0 and 𝑚 < 0, respectively. Then the matter perturbation equation (9.35) reduces to

d2𝛿𝑚
d𝑁2

+
1

2

d𝛿𝑚
d𝑁

− 3

2

[︁
1± 𝑒(3𝑝+1)(𝑁−𝑁𝑘)

]︁
𝛿𝑚 = 0 . (9.38)

When 𝑚 > 0, the growing mode solution to Eq. (9.38) is given by

𝛿𝑚 ∝ exp

(︃√
6𝑒(3𝑝+1)(𝑁−𝑁𝑘)/2

3𝑝+ 1

)︃
, 𝑓𝛿 ≡ 𝛿̇𝑚

𝐻𝛿𝑚
=

√
6

2
𝑒(3𝑝+1)(𝑁−𝑁𝑘)/2 . (9.39)

This shows that the perturbations exhibit violent growth for 𝑝 > −1/3, which is not compatible
with observations of large-scale structure. In metric f (R) gravity the growth of matter perturba-
tions is much milder.

When 𝑚 < 0, the perturbations show a damped oscillation:

𝛿𝑚 ∝ 𝑒−(3𝑝+2)(𝑁−𝑁𝑘)/4 cos(𝑥+ 𝜃) , 𝑓𝛿 = −1

4
(3𝑝+ 2)− 3𝑝+ 1

2
𝑥 tan(𝑥+ 𝜃) , (9.40)

where 𝑥 =
√
6𝑒(3𝑝+1)(𝑁−𝑁𝑘)/2/(3𝑝 + 1), and 𝜃 is a constant. The averaged value of the growth

rate 𝑓𝛿 is given by 𝑓𝛿 = −(3𝑝+ 2)/4, but it shows a divergence every time 𝑥 changes by 𝜋. These
negative values of 𝑓𝛿 are also difficult to be compatible with observations.

The f (R) models can be consistent with observations of large-scale structure if the universe
does not enter the regime |𝜁| > 1 by today. This translates into the condition [597]

|𝑚(𝑧 = 0)| . (𝑎0𝐻0/𝑘)
2 . (9.41)
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Let us consider the wavenumbers 0.01ℎ Mpc−1 . 𝑘 . 0.2ℎ Mpc−1 that corresponds to the linear
regime of the matter power spectrum. Since the wavenumber 𝑘 = 0.2ℎ Mpc−1 corresponds to
𝑘 ≈ 600𝑎0𝐻0 (where “0” represents present quantities), the condition (9.41) gives the bound
|𝑚(𝑧 = 0)| . 3× 10−6.

If we use the observational constraint of the growth rate, 𝑓𝛿 . 1.5 [418, 605, 211], then
the deviation parameter 𝑚 today is constrained to be |𝑚(𝑧 = 0)| . 10−5-10−4 for the model
𝑓(𝑅) = 𝑅 − 𝜆𝑅𝑐(𝑅/𝑅𝑐)

𝑛 (𝑛 < 1) as well as for the models (4.83) and (4.84) [597]. Recall that,
in metric f (R) gravity, the deviation parameter 𝑚 can grow to the order of 0.1 by today. Mean-
while f (R) dark energy models based on the Palatini formalism are hardly distinguishable from
the ΛCDM model [356, 386, 385, 597]. Note that the bound on 𝑚(𝑧 = 0) becomes even severer by
considering perturbations in non-linear regime. The above peculiar evolution of matter perturba-
tions is associated with the fact that the coupling between non-relativistic matter and a scalar-field
degree of freedom is very strong (as we will see in Section 10.1).

The above results are based on the fact that dark matter is described by a cold and perfect fluid
with no pressure. In [358] it was suggested that the tight bound on the parameter 𝑚 can be relaxed
by considering imperfect dark matter with a shear stress. Although the approach taken in [358]
did not aim to explain the origin of a dark matter stress Π that cancels the 𝑘-dependent term in
Eq. (9.35), it will be of interest to further study whether some theoretically motivated choice of Π
really allows the possibility that Palatini f (R) dark energy models can be distinguished from the
ΛCDM model.

9.4 Shortcomings of Palatini f (R) gravity

In addition to the fact that Palatini f (R) dark energy models are hardly distinguished from the
ΛCDM model from observations of large-scale structure, there are a number of problems in Palatini
f (R) gravity associated with non-dynamical nature of the scalar-field degree of freedom.

The dark energy model 𝑓 = 𝑅 − 𝜇4/𝑅 based on the Palatini formalism was shown to be in
conflict with the Standard Model of particle physics [261, 262, 260, 318, 55] because of large non-
perturbative corrections to the matter Lagrangian [here we use 𝑅 for the meaning of 𝑅(𝑇 )]. Let
us consider this issue for a more general model 𝑓 = 𝑅 − 𝜇2(𝑛+1)/𝑅𝑛. From the definition of 𝜙 in
Eq. (9.6) the field potential 𝑈(𝜙) is given by

𝑈(𝜙) =
𝑛+ 1

2𝑛𝑛/(𝑛+1)

𝜇2

𝜅2
(𝜙− 1)𝑛/(𝑛+1) , (9.42)

where 𝜙 = 1 + 𝑛𝜇2(𝑛+1)𝑅−𝑛−1. Using Eq. (9.7) for the vacuum (𝑇 = 0), we obtain the solution

𝜙(𝑇 = 0) =
2(𝑛+ 1)

𝑛+ 2
. (9.43)

In the presence of matter we expand the field 𝜙 as 𝜙 = 𝜙(𝑇 = 0) + 𝛿𝜙. Substituting this into
Eq. (9.7), we obtain

𝛿𝜙 ≃ 𝑛

(𝑛+ 2)
𝑛+2
𝑛+1

𝜅2𝑇

𝜇2
. (9.44)

For 𝑛 = 𝒪(1) we have 𝛿𝜙 ≈ 𝜅2𝑇/𝜇2 = 𝑇/(𝜇2𝑀2
pl) with 𝜙(𝑇 = 0) ≈ 1. Let us consider a matter

action of a Higgs scalar field 𝜑 with mass 𝑚𝜑:

𝑆𝑀 =

∫︁
d4𝑥

√
−𝑔
[︂
−1

2
𝑔𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑− 1

2
𝑚2

𝜑𝜑
2

]︂
. (9.45)

Since 𝑇 ≈ 𝑚2
𝜑𝛿𝜑

2 it follows that 𝛿𝜙 ≈ 𝑚2
𝜑𝛿𝜑

2/(𝜇2𝑀2
pl). Perturbing the Jordan-frame action (9.8)

[which is equivalent to the action in Palatini f (R) gravity] to second-order and using the solution
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𝜙 ≈ 1 +𝑚2
𝜑𝛿𝜑

2/(𝜇2𝑀2
pl), we find that the effective action of the Higgs field 𝜑 for an energy scale

𝐸 much lower than 𝑚𝜑 (= 100 – 1000 GeV) is given by [55]

𝛿𝑆𝑀 ≃
∫︁

d4𝑥
√
−𝑔
[︂
−1

2
𝑔𝜇𝜈𝜕𝜇𝛿𝜑𝜕𝜈𝛿𝜑− 1

2
𝑚2

𝜑𝛿𝜑
2

]︂(︃
1 +

𝑚2
𝜑𝛿𝜑

2

𝜇2𝑀2
pl

+ · · ·

)︃
. (9.46)

Since 𝛿𝜑 ≈ 𝑚𝜑 for 𝐸 ≪ 𝑚𝜑, the correction term can be estimated as

𝛿𝜙 ≈
𝑚2

𝜑𝛿𝜑
2

𝜇2𝑀2
pl

≈
(︂
𝑚𝜑

𝜇

)︂2(︂
𝑚𝜑

𝑀pl

)︂2

. (9.47)

In order to give rise to the late-time acceleration we require that 𝜇 ≈ 𝐻0 ≈ 10−42 GeV. For the
Higgs mass 𝑚𝜑 = 100 GeV it follows that 𝛿𝜙 ≈ 1056 ≫ 1. This correction is too large to be
compatible with the Standard Model of particle physics.

The above result is based on the models 𝑓(𝑅) = 𝑅 − 𝜇2(𝑛+1)/𝑅𝑛 with 𝑛 = 𝒪(1). Having a
look at Eq. (9.44), the only way to make the perturbation 𝛿𝜙 small is to choose 𝑛 very close to 0.
This means that the deviation from the ΛCDM model is extremely small (see [388] for a related
work). In fact, this property was already found by the analysis of matter density perturbations in
Section 9.3. While the above analysis is based on the calculation in the Jordan frame in which test
particles follow geodesics [55], the same result was also obtained by the analysis in the Einstein
frame [261, 262, 260, 318].

Another unusual property of Palatini f (R) gravity is that a singularity with the divergent
Ricci scalar can appear at the surface of a static spherically symmetric star with a polytropic
equation of state 𝑃 = 𝑐𝜌Γ0 with 3/2 < Γ < 2 (where 𝑃 is the pressure and 𝜌0 is the rest-mass
density) [56, 55] (see also [107, 331]). Again this problem is intimately related with the particular
algebraic dependence (9.2) in Palatini f (R) gravity. In [56] it was claimed that the appearance of
the singularity does not very much depend on the functional forms of f (R) and that the result is
not specific to the choice of the polytropic equation of state.

The Palatini gravity has a close relation with an effective action which reproduces the dynamics
of loop quantum cosmology [477]. [474] showed that the model 𝑓(𝑅) = 𝑅+𝑅2/(6𝑀2), where 𝑀
is of the order of the Planck mass, is not plagued by a singularity problem mentioned above, while
the singularity typically arises for the f (R) models constructed to explain the late-time cosmic
acceleration (see also [504] for a related work). Since Planck-scale corrected Palatini f (R) models
may cure the singularity problem, it will be of interest to understand the connection with quantum
gravity around the cosmological singularity (or the black hole singularity). In fact, it was shown
in [60] that non-singular bouncing solutions can be obtained for power-law f (R) Lagrangians with
a finite number of terms.

Finally we note that the extension of Palatini f (R) gravity to more general theories including
Ricci and Riemann tensors was carried out in [384, 387, 95, 236, 388, 509, 476]. While such theories
are more involved than Palatini f (R) gravity, it may be possible to construct viable modified gravity
models of inflation or dark energy.
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10 Extension to Brans–Dicke Theory

So far we have discussed f (R) gravity theories in the metric and Palatini formalisms. In this section
we will see that these theories are equivalent to Brans–Dicke (BD) theory [100] in the presence of
a scalar-field potential, by comparing field equations in f (R) theories with those in BD theory. It
is possible to construct viable dark energy models based on BD theory with a constant parameter
𝜔BD. We will discuss cosmological dynamics, local gravity constraints, and observational signatures
of such generalized theory.

10.1 Brans–Dicke theory and the equivalence with f (R) theories

Let us start with the following 4-dimensional action in BD theory

𝑆 =

∫︁
d4𝑥

√
−𝑔
[︂
1

2
𝜙𝑅− 𝜔BD

2𝜙
(∇𝜙)2 − 𝑈(𝜙)

]︂
+ 𝑆𝑀 (𝑔𝜇𝜈 ,Ψ𝑀 ) , (10.1)

where 𝜔BD is the BD parameter, 𝑈(𝜙) is a potential of the scalar field 𝜙, and 𝑆𝑀 is a matter
action that depends on the metric 𝑔𝜇𝜈 and matter fields Ψ𝑀 . In this section we use the unit
𝜅2 = 8𝜋𝐺 = 1/𝑀2

pl = 1, but we recover the gravitational constant 𝐺 and the reduced Planck mass
𝑀pl when the discussion becomes transparent. The original BD theory [100] does not possess the
field potential 𝑈(𝜙).

Taking the variation of the action (10.1) with respect to 𝑔𝜇𝜈 and 𝜙, we obtain the following
field equations

𝑅𝜇𝜈(𝑔)−
1

2
𝑔𝜇𝜈𝑅(𝑔) =

1

𝜙
𝑇𝜇𝜈 − 1

𝜙
𝑔𝜇𝜈𝑈(𝜙) +

1

𝜙
(∇𝜇∇𝜈𝜙− 𝑔𝜇𝜈�𝜙)

+
𝜔BD

𝜙2

[︂
𝜕𝜇𝜙𝜕𝜈𝜙− 1

2
𝑔𝜇𝜈(∇𝜙)2

]︂
, (10.2)

(3 + 2𝜔BD)�𝜙+ 4𝑈(𝜙)− 2𝜙𝑈,𝜙 = 𝑇 , (10.3)

where 𝑅(𝑔) is the Ricci scalar in metric f (R) gravity, and 𝑇𝜇𝜈 is the energy-momentum tensor of
matter. In order to find the relation with f (R) theories in the metric and Palatini formalisms, we
consider the following correspondence

𝜙 = 𝐹 (𝑅) , 𝑈(𝜙) =
𝑅𝐹 − 𝑓

2
. (10.4)

Recall that this potential (which is the gravitational origin) already appeared in Eq. (2.28). We
then find that Eqs. (2.4) and (2.7) in metric f (R) gravity are equivalent to Eqs. (10.2) and (10.3)
with the BD parameter 𝜔BD = 0. Hence f (R) theory in the metric formalism corresponds to BD
theory with 𝜔BD = 0 [467, 579, 152, 246, 112]. In fact we already showed this by rewriting the
action (2.1) in the form (2.21). We also notice that Eqs. (9.4) and (9.2) in Palatini f (R) gravity
are equivalent to Eqs. (2.4) and (2.7) with the BD parameter 𝜔BD = −3/2. Then f (R) theory in
the Palatini formalism corresponds to BD theory with 𝜔BD = −3/2 [262, 470, 551]. Recall that we
also showed this by rewriting the action (2.1) in the form (9.8).

One can consider more general theories called scalar-tensor theories [268] in which the Ricci
scalar 𝑅 is coupled to a scalar field 𝜙. The general 4-dimensional action for scalar-tensor theories
can be written as

𝑆 =

∫︁
d4𝑥

√
−𝑔
[︂
1

2
𝐹 (𝜙)𝑅− 1

2
𝜔(𝜙)(∇𝜙)2 − 𝑈(𝜙)

]︂
+ 𝑆𝑀 (𝑔𝜇𝜈 ,Ψ𝑀 ) , (10.5)
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where 𝐹 (𝜙) and 𝑈(𝜙) are functions of 𝜙. Under the conformal transformation 𝑔𝜇𝜈 = 𝐹𝑔𝜇𝜈 , we
obtain the action in the Einstein frame [408, 611]

𝑆𝐸 =

∫︁
d4𝑥
√︀

−𝑔
[︂
1

2
𝑅̃− 1

2
(∇̃𝜑)2 − 𝑉 (𝜑)

]︂
+ 𝑆𝑀 (𝐹−1𝑔𝜇𝜈 ,Ψ𝑀 ) , (10.6)

where 𝑉 = 𝑈/𝐹 2. We have introduced a new scalar field 𝜑 to make the kinetic term canonical:

𝜑 ≡
∫︁

d𝜙

√︃
3

2

(︂
𝐹,𝜙

𝐹

)︂2

+
𝜔

𝐹
. (10.7)

We define a quantity 𝑄 that characterizes the coupling between the field 𝜑 and non-relativistic
matter in the Einstein frame:

𝑄 ≡ −𝐹,𝜑

2𝐹
= −𝐹,𝜙

𝐹

[︃
3

2

(︂
𝐹,𝜙

𝐹

)︂2

+
𝜔

𝐹

]︃−1/2

. (10.8)

Recall that, in metric f (R) gravity, we introduced the same quantity 𝑄 in Eq. (2.40), which is
constant (𝑄 = −1/

√
6). For theories with 𝑄 =constant, we obtain the following relations from

Eqs. (10.7) and (10.8):

𝐹 = 𝑒−2𝑄𝜑 , 𝜔 = (1− 6𝑄2)𝐹

(︂
d𝜑

d𝜙

)︂2

. (10.9)

In this case the action (10.5) in the Jordan frame reduces to [596]

𝑆 =

∫︁
d4𝑥

√
−𝑔

[︃
1

2
𝐹 (𝜑)𝑅−1

2
(1−6𝑄2)𝐹 (𝜑)(∇𝜑)2−𝑈(𝜑)

]︃
+𝑆𝑀 (𝑔𝜇𝜈 ,Ψ𝑀 ) , with 𝐹 (𝜑) = 𝑒−2𝑄𝜑 .

(10.10)
In the limit that 𝑄→ 0 we have 𝐹 (𝜑) → 1, so that Eq. (10.10) recovers the action of a minimally
coupled scalar field in GR.

Let us compare the action (10.10) with the action (10.1) in BD theory. Setting 𝜙 = 𝐹 = 𝑒−2𝑄𝜑,
the former is equivalent to the latter if the parameter 𝜔BD is related to 𝑄 via the relation [343, 596]

3 + 2𝜔BD =
1

2𝑄2
. (10.11)

This shows that the GR limit (𝜔BD → ∞) corresponds to the vanishing coupling (𝑄 → 0). Since
𝑄 = −1/

√
6 in metric f (R) gravity one has 𝜔BD = 0, as expected. The Palatini f (R) gravity

corresponds to 𝜔BD = −3/2, which corresponds to the infinite coupling (𝑄2 → ∞). In fact,
Palatini gravity can be regarded as an isolated “fixed point” of a transformation involving a special
conformal rescaling of the metric [247]. In the Einstein frame of the Palatini formalism, the scalar
field 𝜑 does not have a kinetic term and it can be integrated out. In general, this leads to a matter
action which is non-linear, depending on the potential 𝑈(𝜑). This large coupling poses a number
of problems such as the strong amplification of matter density perturbations and the conflict with
the Standard Model of particle physics, as we have discussed in Section 9.

Note that BD theory is one of the examples in scalar-tensor theories and there are some theories
that give rise to non-constant values of 𝑄. For example, the action of a nonminimally coupled scalar
field with a coupling 𝜉 corresponds to 𝐹 (𝜙) = 1−𝜉𝜙2 and 𝜔(𝜙) = 1, which gives the field-dependent
coupling 𝑄(𝜙) = 𝜉𝜙/[1 − 𝜉𝜙2(1 − 6𝜉)]1/2. In fact the dynamics of dark energy in such a theory
has been studied by a number of authors [22, 601, 151, 68, 491, 44, 505]. In the following we shall
focus on the constant coupling models with the action (10.10). We stress that this is equivalent to
the action (10.1) in BD theory.
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10.2 Cosmological dynamics of dark energy models based on Brans–
Dicke theory

The first attempt to apply BD theory to cosmic acceleration is the extended inflation scenario in
which the BD field 𝜙 is identified as an inflaton field [374, 571]. The first version of the inflation
model, which considered a first-order phase transition in BD theory, resulted in failure due to the
graceful exit problem [375, 613, 65]. This triggered further study of the possibility of realizing
inflation in the presence of another scalar field [394, 78]. In general the dynamics of such a multi-
field system is more involved than that in the single-field case [71]. The resulting power spectrum of
density perturbations generated during multi-field inflation in BD theory was studied by a number
of authors [570, 272, 156, 569].

In the context of dark energy it is possible to construct viable single-field models based on BD
theory. In what follows we discuss cosmological dynamics of dark energy models based on the
action (10.10) in the flat FLRW background given by (2.12) (see, e.g., [596, 22, 85, 289, 5, 327,
139, 168] for dynamical analysis in scalar-tensor theories). Our interest is to find conditions under
which a sequence of radiation, matter, and accelerated epochs can be realized. This depends upon
the form of the field potential 𝑈(𝜑). We first carry out general analysis without specifying the
forms of the potential. We take into account non-relativistic matter with energy density 𝜌𝑚 and
radiation with energy density 𝜌𝑟. The Jordan frame is regarded as a physical frame due to the
usual conservation of non-relativistic matter (𝜌𝑚 ∝ 𝑎−3). Varying the action (10.10) with respect
to 𝑔𝜇𝜈 and 𝜑, we obtain the following equations

3𝐹𝐻2 = (1− 6𝑄2)𝐹𝜑̇2/2 + 𝑈 − 3𝐻𝐹̇ + 𝜌𝑚 + 𝜌𝑟 , (10.12)

2𝐹𝐻̇ = −(1− 6𝑄2)𝐹𝜑̇2 − 𝐹 +𝐻𝐹̇ − 𝜌𝑚 − 4𝜌𝑟/3 , (10.13)

(1− 6𝑄2) 𝐹
[︁
𝜑+ 3𝐻𝜑̇+ 𝐹̇ /(2𝐹 )𝜑̇

]︁
+ 𝑈,𝜑 +𝑄𝐹𝑅 = 0 , (10.14)

where 𝐹 = 𝑒−2𝑄𝜑.
We introduce the following dimensionless variables

𝑥1 ≡ 𝜑̇√
6𝐻

, 𝑥2 ≡ 1

𝐻

√︂
𝑈

3𝐹
, 𝑥3 ≡ 1

𝐻

√︂
𝜌𝑟
3𝐹

, (10.15)

and also the density parameters

Ω𝑚 ≡ 𝜌𝑚
3𝐹𝐻2

, Ω𝑟 ≡ 𝑥23 , ΩDE ≡ (1− 6𝑄2)𝑥21 + 𝑥22 + 2
√
6𝑄𝑥1 . (10.16)

These satisfy the relation Ω𝑚 +Ω𝑟 +ΩDE = 1 from Eq. (10.12). From Eq. (10.13) it follows that

𝐻̇

𝐻2
= −1− 6𝑄2

2

(︁
3 + 3𝑥21 − 3𝑥22 + 𝑥23 − 6𝑄2𝑥21 + 2

√
6𝑄𝑥1

)︁
+ 3𝑄(𝜆𝑥22 − 4𝑄) . (10.17)

Taking the derivatives of 𝑥1, 𝑥2 and 𝑥3 with respect to 𝑁 = ln 𝑎, we find

d𝑥1
d𝑁

=

√
6

2
(𝜆𝑥22 −

√
6𝑥1)

+

√
6𝑄

2

[︁
(5− 6𝑄2)𝑥21 + 2

√
6𝑄𝑥1 − 3𝑥22 + 𝑥23 − 1

]︁
− 𝑥1

𝐻̇

𝐻2
, (10.18)

d𝑥2
d𝑁

=

√
6

2
(2𝑄− 𝜆)𝑥1𝑥2 − 𝑥2

𝐻̇

𝐻2
, (10.19)

d𝑥3
d𝑁

=
√
6𝑄𝑥1𝑥3 − 2𝑥3 − 𝑥3

𝐻̇

𝐻2
, (10.20)
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Table 1: The critical points of dark energy models based on the action (10.10) in BD theory with constant
𝜆 = −𝑈,𝜑/𝑈 in the absence of radiation (𝑥3 = 0). The effective equation of state 𝑤eff = −1− 2𝐻̇/(3𝐻2)
is known from Eq. (10.17).

Name 𝑥1 𝑥2 Ω𝑚 𝑤eff

(a) 𝜑MDE
√
6𝑄

3(2𝑄2−1) 0 3−2𝑄2

3(1−2𝑄2)2
4𝑄2

3(1−2𝑄2)

(b1) Kinetic 1 1√
6𝑄+1

0 0 3−
√
6𝑄

3(1+
√
6𝑄)

(b2) Kinetic 2 1√
6𝑄−1

0 0 3+
√
6𝑄

3(1−
√
6𝑄)

(c) Field dominated
√
6(4𝑄−𝜆)

6(4𝑄2−𝑄𝜆−1)

[︁
6−𝜆2+8𝑄𝜆−16𝑄2

6(4𝑄2−𝑄𝜆−1)2

]︁1/2
0 − 20𝑄2−9𝑄𝜆−3+𝜆2

3(4𝑄2−𝑄𝜆−1)

(d) Scaling solution
√
6

2𝜆

√︁
3+2𝑄𝜆−6𝑄2

2𝜆2 1− 3−12𝑄2+7𝑄𝜆
𝜆2 − 2𝑄

𝜆

(e) de Sitter 0 1 0 −1

where 𝜆 ≡ −𝑈,𝜑/𝑈 .

If 𝜆 is a constant, i.e., for the exponential potential 𝑈 = 𝑈0𝑒
−𝜆𝜑, one can derive fixed points

for Eqs. (10.18) – (10.20) by setting d𝑥𝑖/d𝑁 = 0 (𝑖 = 1, 2, 3). In Table 1 we list the fixed points
of the system in the absence of radiation (𝑥3 = 0). Note that the radiation point corresponds to
(𝑥1, 𝑥2, 𝑥3) = (0, 0, 1). The point (a) is the 𝜑-matter-dominated epoch (𝜑MDE) during which the
density of non-relativistic matter is a non-zero constant. Provided that 𝑄2 ≪ 1 this can be used
for the matter-dominated epoch. The kinetic points (b1) and (b2) are responsible neither for the
matter era nor for the accelerated epoch (for |𝑄| . 1). The point (c) is the scalar-field dominated
solution, which can be used for the late-time acceleration for 𝑤eff < −1/3. When 𝑄2 ≪ 1 this
point yields the cosmic acceleration for −

√
2 + 4𝑄 < 𝜆 <

√
2 + 4𝑄. The scaling solution (d) can

be responsible for the matter era for |𝑄| ≪ |𝜆|, but in this case the condition 𝑤eff < −1/3 for
the point (c) leads to 𝜆2 . 2. Then the energy fraction of the pressureless matter for the point
(d) does not satisfy the condition Ω𝑚 ≃ 1. The point (e) gives rise to the de Sitter expansion,
which exists for the special case with 𝜆 = 4𝑄 [which can be also regarded as the special case of
the point (c)]. From the above discussion the viable cosmological trajectory for constant 𝜆 is the
sequence from the point (a) to the scalar-field dominated point (c) under the conditions 𝑄2 ≪ 1
and −

√
2 + 4𝑄 < 𝜆 <

√
2 + 4𝑄. The analysis based on the Einstein frame action (10.6) also gives

rise to the 𝜑MDE followed by the scalar-field dominated solution [23, 22].

Let us consider the case of non-constant 𝜆. The fixed points derived above may be regarded
as “instantaneous” points7 [195, 454] varying with the time-scale smaller than 𝐻−1. As in metric
f (R) gravity (𝑄 = −1/

√
6) we are interested in large coupling models with |𝑄| of the order of

unity. In order for the potential 𝑈(𝜑) to satisfy local gravity constraints, the field needs to be
heavy in the region 𝑅≫ 𝑅0 ∼ 𝐻2

0 such that |𝜆| ≫ 1. Then it is possible to realize the matter era
by the point (d) with |𝑄| ≪ |𝜆|. Moreover the solutions can finally approach the de Sitter solution
(e) with 𝜆 = 4𝑄 or the field-dominated solution (c). The stability of the point (e) was analyzed in
[596, 250, 242] by considering linear perturbations 𝛿𝑥1, 𝛿𝑥2 and 𝛿𝐹 . One can easily show that the

7 In strict mathematical sense the instantaneous fixed point is not formally defined because it varies with time.
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point (e) is stable for

𝑄
d𝜆

d𝐹
(𝐹1) > 0 → d𝜆

d𝜑
(𝜑1) < 0 , (10.21)

where 𝐹1 = 𝑒−2𝑄𝜑1 with 𝜑1 being the field value at the de Sitter point. In metric f (R) gravity
(𝑄 = −1/

√
6) this condition is equivalent to 𝑚 = 𝑅𝑓,𝑅𝑅/𝑓,𝑅 < 1.

For the f (R) model (5.19) the field 𝜑 is related to the Ricci scalar 𝑅 via the relation 𝑒2𝜑/
√
6 =

1− 2𝑛𝜇(𝑅/𝑅𝑐)
−(2𝑛+1). Then the potential 𝑈 = (𝐹𝑅− 𝑓)/2 in the Jordan frame can be expressed

as

𝑈(𝜑) =
𝜇𝑅𝑐

2

[︂
1− 2𝑛+ 1

(2𝑛𝜇)2𝑛/(2𝑛+1)

(︁
1− 𝑒2𝜑/

√
6
)︁2𝑛/(2𝑛+1)

]︂
. (10.22)

For theories with general couplings 𝑄 we consider the following potential [596]

𝑈(𝜑) = 𝑈0

[︀
1− 𝐶(1− 𝑒−2𝑄𝜑)𝑝

]︀
(𝑈0 > 0, 𝐶 > 0, 0 < 𝑝 < 1) , (10.23)

which includes the potential (10.22) in f (R) gravity as a specific case with the correspondence
𝑈0 = 𝜇𝑅𝑐/2 and 𝐶 = (2𝑛 + 1)/(2𝑛𝜇)2𝑛/(2𝑛+1), 𝑄 = −1/

√
6, and 𝑝 = 2𝑛/(2𝑛 + 1). The potential

behaves as 𝑈(𝜑) → 𝑈0 for 𝜑 → 0 and 𝑈(𝜑) → 𝑈0(1 − 𝐶) in the limits 𝜑 → ∞ (for 𝑄 > 0) and
𝜑 → −∞ (for 𝑄 < 0). This potential has a curvature singularity at 𝜑 = 0 as in the models (4.83)
and (4.84) of f (R) gravity, but the appearance of the singularity can be avoided by extending the
potential to the regions 𝜑 > 0 (𝑄 < 0) or 𝜑 < 0 (𝑄 > 0) with a field mass bounded from above.
The slope 𝜆 = −𝑈,𝜑/𝑈 is given by

𝜆 =
2𝐶𝑝𝑄𝑒−2𝑄𝜑(1− 𝑒−2𝑄𝜑)𝑝−1

1− 𝐶(1− 𝑒−2𝑄𝜑)𝑝
. (10.24)

During the radiation and deep matter eras one has 𝑅 = 6(2𝐻2+𝐻̇) ≃ 𝜌𝑚/𝐹 from Eqs. (10.12) –
(10.13) by noting that 𝑈0 is negligibly small relative to the background fluid density. From
Eq. (10.14) the field is nearly frozen at a value satisfying the condition 𝑈,𝜑 + 𝑄𝜌𝑚 ≃ 0. Then
the field 𝜑 evolves along the instantaneous minima given by

𝜑𝑚 ≃ 1

2𝑄

(︂
2𝑈0𝑝𝐶

𝜌𝑚

)︂1/(1−𝑝)

. (10.25)

As long as 𝜌𝑚 ≫ 2𝑈0𝑝𝐶 we have that |𝜑𝑚| ≪ 1. In this regime the slope 𝜆 in Eq. (10.24) is much
larger than 1. The field value |𝜑𝑚| increases for decreasing 𝜌𝑚 and hence the slope 𝜆 decreases
with time.

Since 𝜆≫ 1 around 𝜑 = 0, the instantaneous fixed point (d) can be responsible for the matter-
dominated epoch provided that |𝑄| ≪ 𝜆. The variable 𝐹 = 𝑒−2𝑄𝜑 decreases in time irrespective of
the sign of the coupling 𝑄 and hence 0 < 𝐹 < 1. The de Sitter point is characterized by 𝜆 = 4𝑄,
i.e.,

𝐶 =
2(1− 𝐹1)

1−𝑝

2 + (𝑝− 2)𝐹1
. (10.26)

The de Sitter solution is present as long as the solution of this equation exists in the region
0 < 𝐹1 < 1. From Eq. (10.24) the derivative of 𝜆 in terms of 𝜑 is given by

d𝜆

d𝜑
= −4𝐶𝑝𝑄2𝐹 (1− 𝐹 )𝑝−2[1− 𝑝𝐹 − 𝐶(1− 𝐹 )𝑝]

[1− 𝐶(1− 𝐹 )𝑝]2
. (10.27)

When 0 < 𝐶 < 1, we can show that the function 𝑔(𝐹 ) ≡ 1− 𝑝𝐹 −𝐶(1−𝐹 )𝑝 is positive and hence
the condition d𝜆/d𝜑 < 0 is satisfied. This means that the de Sitter point (e) is a stable attractor.
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When 𝐶 > 1, the function 𝑔(𝐹 ) can be negative. Plugging Eq. (10.26) into Eq. (10.27), we find
that the de Sitter point is stable for

𝐹1 >
1

2− 𝑝
. (10.28)

If this condition is violated, the solutions choose another stable fixed point [such as the point (c)]
as an attractor.

The above discussion shows that for the model (10.23) the matter point (d) can be followed by
the stable de Sitter solution (e) for 0 < 𝐶 < 1. In fact numerical simulations in [596] show that
the sequence of radiation, matter and de Sitter epochs can be in fact realized. Introducing the
energy density 𝜌DE and the pressure 𝑃DE of dark energy as we have done for metric f (R) gravity,
the dark energy equation of state 𝑤DE = 𝑃DE/𝜌DE is given by the same form as Eq. (4.97). Since
for the model (10.23) 𝐹 increases toward the past, the phantom equation of state (𝑤DE < −1) as
well as the cosmological constant boundary crossing (𝑤DE = −1) occurs as in the case of metric
f (R) gravity [596].

As we will see in Section 10.3, for a light scalar field, it is possible to satisfy local gravity
constraints for |𝑄| . 10−3. In those cases the potential does not need to be steep such that
𝜆≫ 1 in the region 𝑅≫ 𝑅0. The cosmological dynamics for such nearly flat potentials have been
discussed by a number of authors in several classes of scalar-tensor theories [489, 451, 416, 271]. It is
also possible to realize the condition 𝑤DE < −1, while avoiding the appearance of a ghost [416, 271].

10.3 Local gravity constraints

We study local gravity constraints (LGC) for BD theory given by the action (10.10). In the absence
of the potential 𝑈(𝜑) the BD parameter 𝜔BD is constrained to be 𝜔BD > 4×104 from solar-system
experiments [616, 83, 617]. This bound also applies to the case of a nearly massless field with the
potential 𝑈(𝜑) in which the Yukawa correction 𝑒−𝑀𝑟 is close to unity (where 𝑀 is a scalar-field
mass and 𝑟 is an interaction length). Using the bound 𝜔BD > 4× 104 in Eq. (10.11), we find that

|𝑄| < 2.5× 10−3 . (10.29)

This is a strong constraint under which the cosmological evolution for such theories is difficult to
be distinguished from the ΛCDM model (𝑄 = 0).

If the field potential is present, the models with large couplings (|𝑄| = 𝒪(1)) can be consistent
with local gravity constraints as long as the mass 𝑀 of the field 𝜑 is sufficiently large in the region
of high density. For example, the potential (10.23) is designed to have a large mass in the high-
density region so that it can be compatible with experimental tests for the violation of equivalence
principle through the chameleon mechanism [596]. In the following we study conditions under
which local gravity constraints can be satisfied for the model (10.23).

As in the case of metric f (R) gravity, let us consider a configuration in which a spherically sym-
metric body has a constant density 𝜌𝐴 inside the body with a constant density 𝜌 = 𝜌𝐵 (≪ 𝜌𝐴) out-
side the body. For the potential 𝑉 = 𝑈/𝐹 2 in the Einstein frame one has 𝑉,𝜑 ≃ −2𝑈0𝑄𝑝𝐶(2𝑄𝜑)

𝑝−1

under the condition |𝑄𝜑| ≪ 1. Then the field values at the potential minima inside and outside
the body are

𝜑𝑖 ≃
1

2𝑄

(︂
2𝑈0 𝑝𝐶

𝜌𝑖

)︂1/(1−𝑝)

, 𝑖 = 𝐴,𝐵 . (10.30)

The field mass squared 𝑚2
𝑖 ≡ 𝑉,𝜑𝜑 at 𝜑 = 𝜑𝑖 (𝑖 = 𝐴,𝐵) is approximately given by

𝑚2
𝑖 ≃ 1− 𝑝

(2𝑝 𝑝𝐶)1/(1−𝑝)
𝑄2

(︂
𝜌𝑖
𝑈0

)︂(2−𝑝)/(1−𝑝)

𝑈0 . (10.31)
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Recall that 𝑈0 is roughly the same order as the present cosmological density 𝜌0 ≃ 10−29 g/cm
3
.

The baryonic/dark matter density in our galaxy corresponds to 𝜌𝐵 ≃ 10−24 g/cm
3
. The mean

density of Sun or Earth is about 𝜌𝐴 = 𝒪(1) g/cm
3
. Hence 𝑚𝐴 and 𝑚𝐵 are in general much

larger than 𝐻0 for local gravity experiments in our environment. For 𝑚𝐴𝑟𝑐 ≫ 1 the chameleon
mechanism we discussed in Section 5.2 can be directly applied to BD theory whose Einstein frame
action is given by Eq. (10.6) with 𝐹 = 𝑒−2𝑄𝜑.

The bound (5.56) coming from the possible violation of equivalence principle in the solar system
translates into

(2𝑈0𝑝𝐶/𝜌𝐵)
1/(1−𝑝)

< 7.4× 10−15 |𝑄| . (10.32)

Let us consider the case in which the solutions finally approach the de Sitter point (e) in Table 1.
At this de Sitter point we have 3𝐹1𝐻

2
1 = 𝑈0[1 − 𝐶(1 − 𝐹1)

𝑝] with 𝐶 given in Eq. (10.26). Then
the following relation holds

𝑈0 = 3𝐻2
1 [2 + (𝑝− 2)𝐹1] /𝑝 . (10.33)

Substituting this into Eq. (10.32) we obtain

(𝑅1/𝜌𝐵)
1/(1−𝑝)

(1− 𝐹1) < 7.4× 10−15|𝑄| , (10.34)

where 𝑅1 = 12𝐻2
1 is the Ricci scalar at the de Sitter point. Since (1−𝐹1) is smaller than 1/2 from

Eq. (10.28), it follows that (𝑅1/𝜌𝐵)
1/(1−𝑝) < 1.5× 10−14|𝑄|. Using the values 𝑅1 = 10−29 g/cm

3

and 𝜌𝐵 = 10−24 g/cm
3
, we get the bound for 𝑝 [596]:

𝑝 > 1− 5

13.8− log10 |𝑄|
. (10.35)

When |𝑄| = 10−1 and |𝑄| = 1 we have 𝑝 > 0.66 and 𝑝 > 0.64, respectively. Hence the model can
be compatible with local gravity experiments even for |𝑄| = 𝒪(1).

10.4 Evolution of matter density perturbations

Let us next study the evolution of perturbations in non-relativistic matter for the action (10.10)
with the potential 𝑈(𝜑) and the coupling 𝐹 (𝜑) = 𝑒−2𝑄𝜑. As in metric f (R) gravity, the matter
perturbation 𝛿𝑚 satisfies Eq. (8.93) in the Longitudinal gauge. We define the field mass squared as
𝑀2 ≡ 𝑈,𝜑𝜑. For the potential consistent with local gravity constraints [such as (10.23)], the mass
𝑀 is much larger than the present Hubble parameter 𝐻0 during the radiation and deep matter
eras. Note that the condition 𝑀2 ≫ 𝑅 is satisfied in most of the cosmological epoch as in the case
of metric f (R) gravity.

The perturbation equations for the action (10.10) are given in Eqs. (6.11) – (6.18) with 𝑓 =
𝐹 (𝜑)𝑅, 𝜔 = (1 − 6𝑄2)𝐹 , and 𝑉 = 𝑈 . We use the unit 𝜅2 = 1, but we restore 𝜅2 when it is
necessary. In the Longitudinal gauge one has 𝜒 = 0, 𝛼 = Φ, 𝜓 = −Ψ, and 𝐴 = 3(𝐻Φ + Ψ̇) in
these equations. Since we are interested in sub-horizon modes, we use the approximation that the
terms containing 𝑘2/𝑎2, 𝛿𝜌𝑚, 𝛿𝑅, and 𝑀2 are the dominant contributions in Eqs. (6.11) – (6.19).
We shall neglect the contribution of the time-derivative terms of 𝛿𝜑 in Eq. (6.16). As we have
discussed for metric f (R) gravity in Section 8.1, this amounts to neglecting the oscillating mode
of perturbations. The initial conditions of the field perturbation in the radiation era need to be
chosen so that the oscillating mode 𝛿𝜑osc is smaller than the matter-induced mode 𝛿𝜑ind. In Fourier
space Eq. (6.16) gives (︂

𝑘2

𝑎2
+
𝑀2

𝜔

)︂
𝛿𝜑ind ≃ 1

2𝜔
𝐹,𝜑𝛿𝑅 . (10.36)
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Using this relation together with Eqs. (6.13) and (6.18), it follows that

𝛿𝜑ind ≃ 2𝑄𝐹

(𝑘2/𝑎2)(1− 2𝑄2)𝐹 +𝑀2

𝑘2

𝑎2
Ψ . (10.37)

Combing this equation with Eqs. (6.11) and (6.13), we obtain [596, 547] (see also [84, 632, 631])

𝑘2

𝑎2
Ψ ≃ −𝜅

2𝛿𝜌𝑚
2𝐹

(𝑘2/𝑎2)(1− 2𝑄2)𝐹 +𝑀2

(𝑘2/𝑎2)𝐹 +𝑀2
, (10.38)

𝑘2

𝑎2
Φ ≃ −𝜅

2𝛿𝜌𝑚
2𝐹

(𝑘2/𝑎2)(1 + 2𝑄2)𝐹 +𝑀2

(𝑘2/𝑎2)𝐹 +𝑀2
, (10.39)

where we have recovered 𝜅2. Defining the effective gravitational potential Φeff = (Φ + Ψ)/2, we
find that Φeff satisfies the same form of equation as (8.99).

Substituting Eq. (10.39) into Eq. (8.93), we obtain the equation of matter perturbations on
sub-horizon scales [with the neglect of the r.h.s. of Eq. (8.93)]

𝛿𝑚 + 2𝐻𝛿̇𝑚 − 4𝜋𝐺eff𝜌𝑚𝛿𝑚 ≃ 0 , (10.40)

where the effective gravitational coupling is

𝐺eff =
𝐺

𝐹

(𝑘2/𝑎2)(1 + 2𝑄2)𝐹 +𝑀2

(𝑘2/𝑎2)𝐹 +𝑀2
. (10.41)

In the regime 𝑀2/𝐹 ≫ 𝑘2/𝑎2 (“GR regime”) this reduces to 𝐺eff = 𝐺/𝐹 , so that the evolution
of 𝛿𝑚 and Φeff during the matter domination (Ω𝑚 = 𝜌𝑚/(3𝐹𝐻

2) ≃ 1) is standard: 𝛿𝑚 ∝ 𝑡2/3 and
Φeff ∝ constant.

In the regime 𝑀2/𝐹 ≪ 𝑘2/𝑎2 (“scalar-tensor regime”) we have

𝐺eff ≃ 𝐺

𝐹
(1 + 2𝑄2) =

𝐺

𝐹

4 + 2𝜔BD

3 + 2𝜔BD
, (10.42)

where we used the relation (10.11) between the coupling 𝑄 and the BD parameter 𝜔BD. Since
𝜔BD = 0 in f (R) gravity, it follows that 𝐺eff = 4𝐺/(3𝐹 ). Note that the result (10.42) agrees with
the effective Newtonian gravitational coupling between two test masses [93, 175]. The evolution of
𝛿𝑚 and Φeff during the matter dominance in the regime 𝑀2/𝐹 ≪ 𝑘2/𝑎2 is

𝛿𝑚 ∝ 𝑡(
√

25+48𝑄2−1)/6 , Φeff ∝ 𝑡(
√

25+48𝑄2−5)/6 . (10.43)

Hence the growth rate of 𝛿𝑚 for 𝑄 ̸= 0 is larger than that for 𝑄 = 0.
As an example, let us consider the potential (10.23). During the matter era the field mass

squared around the potential minimum (induced by the matter coupling) is approximately given
by

𝑀2 ≃ 1− 𝑝

(2𝑝𝑝𝐶)1/(1−𝑝)
𝑄2

(︂
𝜌𝑚
𝑈0

)︂(2−𝑝)/(1−𝑝)

𝑈0 , (10.44)

which decreases with time. The perturbations cross the point𝑀2/𝐹 = 𝑘2/𝑎2 at time 𝑡 = 𝑡𝑘, which
depends on the wavenumber 𝑘. Since the evolution of the mass during the matter domination is

given by𝑀 ∝ 𝑡−
2−𝑝
1−𝑝 , the time 𝑡𝑘 has a scale-dependence: 𝑡𝑘 ∝ 𝑘−

3(1−𝑝)
4−𝑝 . More precisely the critical

redshift 𝑧𝑘 at time 𝑡𝑘 can be estimated as [596]

𝑧𝑘 ≃

[︃(︂
𝑘

𝑎0𝐻0

1

|𝑄|

)︂2(1−𝑝)
2𝑝𝑝𝐶

(1− 𝑝)1−𝑝

1

(3𝐹0Ω
(0)
𝑚 )2−𝑝

𝑈0

𝐻2
0

]︃ 1
4−𝑝

− 1 , (10.45)
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where the subscript “0” represents present quantities. For the scales 30𝑎0𝐻0 . 𝑘 . 600𝑎0𝐻0,
which correspond to the linear regime of the matter power spectrum, the critical redshift can be
in the region 𝑧𝑘 > 1. Note that, for larger 𝑝, 𝑧𝑘 decreases.

When 𝑡 < 𝑡𝑘 and 𝑡 > 𝑡𝑘 the matter perturbation evolves as 𝛿𝑚 ∝ 𝑡2/3 and 𝛿𝑚 ∝ 𝑡(
√

25+48𝑄2−1)/6,
respectively (apart from the epoch of the late-time cosmic acceleration). The matter power spec-
trum 𝑃𝛿𝑚 at time 𝑡 = 𝑡Λ (at which 𝑎̈ = 0) shows a difference compared to the ΛCDM model, which
is given by

𝑃𝛿𝑚(𝑡Λ)

𝑃ΛCDM
𝛿𝑚

(𝑡Λ)
=

(︂
𝑡Λ
𝑡𝑘

)︂2

(︂√
25+48𝑄2−1

6 − 2
3

)︂
∝ 𝑘

(1−𝑝)(
√

25+48𝑄2−5)
4−𝑝 . (10.46)

The CMB power spectrum is also modified by the non-standard evolution of the effective
gravitational potential Φeff for 𝑡 > 𝑡𝑘. This mainly affects the low multipoles of CMB anisotropies
through of the ISW effect. Hence there is a difference between the spectral indices of the matter
power spectrum and of the CMB spectrum on the scales (0.01ℎ Mpc−1 . 𝑘 . 0.2ℎ Mpc−1) [596]:

Δ𝑛𝑠(𝑡Λ) =
(1− 𝑝)(

√︀
25 + 48𝑄2 − 5)

4− 𝑝
. (10.47)

Note that this covers the result (8.116) in f (R) gravity (𝑄 = −1/
√
6 and 𝑝 = 2𝑛/(2𝑛 + 1)) as a

special case. Under the criterion Δ𝑛𝑠(𝑡Λ) < 0.05 we obtain the bounds 𝑝 > 0.957 for 𝑄 = 1 and
𝑝 > 0.855 for 𝑄 = 0.5. As long as 𝑝 is close to 1, the model can be consistent with both cosmological
and local gravity constraints. The allowed region coming from the bounds Δ𝑛𝑠(𝑡Λ) < 0.05 and
(10.35) are illustrated in Figure 9.
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Figure 9: The allowed region of the parameter space in the (𝑄, 𝑝) plane for BD theory with the potential
(10.23). We show the allowed region coming from the bounds Δ𝑛𝑠(𝑡Λ) < 0.05 and 𝑓𝛿 < 2 as well as the
the equivalence principle (EP) constraint (10.35).

The growth rate of 𝛿𝑚 for 𝑡 > 𝑡𝑘 is given by 𝑓𝛿 = 𝛿̇𝑚/(𝐻𝛿𝑚) = (
√︀
25 + 48𝑄2 − 1)/4. As we

mentioned in Section 8, the observational bound on 𝑓𝛿 is still weak in current observations. If
we use the criterion 𝑓𝛿 < 2 for the analytic estimation 𝑓𝛿 = (

√︀
25 + 48𝑄2 − 1)/4, we obtain the

bound 𝑄 < 1.08 (see Figure 9). The current observational data on the growth rate 𝑓𝛿 as well as
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its growth index 𝛾 is not enough to place tight bounds on 𝑄 and 𝑝, but this will be improved in
future observations.
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11 Relativistic Stars in f (R) Gravity and Chameleon The-
ories

In Section 5 we discussed the existence of thin-shell solutions in metric f (R) gravity in the
Minkowski background, i.e., without the backreaction of metric perturbations. For the f (R) dark
energy models (4.83) and (4.84), Frolov [266] anticipated that the curvature singularity at 𝜑 = 0
(shown in Figure 3) can be accessed in a strong gravitational background such as neutron stars.
Kobayashi and Maeda [349, 350] studied spherically symmetric solutions for a constant density star
with a vacuum exterior and claimed the difficulty of obtaining thin-shell solutions in the presence
of the backreaction of metric perturbations. In [594] thin-shell solutions were derived analytically
in the Einstein frame of BD theory (including f (R) gravity) under the linear expansion of the grav-
itational potential Φ𝑐 at the surface of the body (valid for Φ𝑐 < 0.3). In fact, the existence of such
solutions was numerically confirmed for the inverse power-law potential 𝑉 (𝜑) =𝑀4+𝑛𝜑−𝑛 [594].

For the f (R) models (4.83) and (4.84), it was numerically shown that thin-shell solutions
exist for Φ𝑐 . 0.3 by the analysis in the Jordan frame [43, 600, 42] (see also [167]). In particular
Babichev and Langlois [43, 42] constructed static relativistic stars both for constant energy density
configurations and for a polytropic equation of state, provided that the pressure does not exceed
one third of the energy density. Since the relativistic pressure tends to be stronger around the
center of the spherically symmetric body for larger Φ𝑐, the boundary conditions at the center of
the body need to be carefully chosen to obtain thin-shell solutions numerically. In this sense the
analytic estimation of thin-shell solutions carried out in [594] can be useful to show the existence
of static star configurations, although such analytic solutions have been so far derived only for a
constant density star.

In the following we shall discuss spherically symmetric solutions in a strong gravitational back-
ground with Φ𝑐 . 0.3 for BD theory with the action (10.10). This analysis covers metric f (R) grav-
ity as a special case (the scalar-field degree of freedom 𝜑 defined in Eq. (2.31) with 𝑄 = −1/

√
6).

While field equations will be derived in the Einstein frame, we can transform back to the Jor-
dan frame to find the corresponding equations (as in the analysis of Babichev and Langlois [42]).
In addition to the papers mentioned above, there are also a number of works about spherically
symmetric solutions for some equation state of matter [330, 332, 443, 444, 300, 533].

11.1 Field equations

We already showed that under the conformal transformation 𝑔𝜇𝜈 = 𝑒−2𝑄𝜅𝜑𝑔𝜇𝜈 the action (10.10)
is transformed to the Einstein frame action:

𝑆𝐸 =

∫︁
d4𝑥
√︀
−𝑔
[︂

1

2𝜅2
𝑅̃− 1

2
(∇̃𝜑)2 − 𝑉 (𝜑)

]︂
+

∫︁
d4𝑥ℒ𝑀 (𝑒2𝑄𝜅𝜑𝑔𝜇𝜈 ,Ψ𝑀 ) . (11.1)

Recall that in the Einstein frame this gives rise to a constant coupling 𝑄 between non-relativistic
matter and the field 𝜑. We use the unit 𝜅2 = 8𝜋𝐺 = 1, but we restore the gravitational constant
𝐺 when it is required.

Let us consider a spherically symmetric static metric in the Einstein frame:

d𝑠2 = −𝑒2Ψ(𝑟)d𝑡2 + 𝑒2Φ(𝑟)d𝑟2 + 𝑟2
(︀
d𝜃2 + sin2 𝜃d𝜑2

)︀
, (11.2)

where Ψ(𝑟) and Φ(𝑟) are functions of the distance 𝑟 from the center of symmetry. For the ac-
tion (11.1) the energy-momentum tensors for the scalar field 𝜑 and the matter are given, respec-
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tively, by

𝑇 (𝜑)
𝜇𝜈 = 𝜕𝜇𝜑𝜕𝜈𝜑− 𝑔𝜇𝜈

[︂
1

2
𝑔𝛼𝛽𝜕𝛼𝜑𝜕𝛽𝜑+ 𝑉 (𝜑)

]︂
, (11.3)

𝑇 (𝑀)
𝜇𝜈 = − 2√

−𝑔
𝛿ℒ𝑀

𝛿𝑔𝜇𝜈
. (11.4)

For the metric (11.2) the (00) and (11) components for the energy-momentum tensor of the
field are

𝑇
0(𝜑)
0 = −1

2
𝑒−2Φ𝜑′2 − 𝑉 (𝜑) , 𝑇

1(𝜑)
1 =

1

2
𝑒−2Φ𝜑′2 − 𝑉 (𝜑) , (11.5)

where a prime represents a derivative with respect to 𝑟. The energy-momentum tensor of matter

in the Einstein frame is given by 𝑇𝜇
𝜈 = diag (−𝜌𝑀 , 𝑃𝑀 , 𝑃𝑀 , 𝑃𝑀 ), which is related to 𝑇

𝜇(𝑀)
𝜈 in the

Jordan frame via 𝑇
𝜇(𝑀)
𝜈 = 𝑒4𝑄𝜑 𝑇

𝜇(𝑀)
𝜈 . Hence it follows that 𝜌𝑀 = 𝑒4𝑄𝜑𝜌𝑀 and 𝑃𝑀 = 𝑒4𝑄𝜑𝑃𝑀 .

Variation of the action (11.1) with respect to 𝜑 gives

−𝜕𝜇
(︂
𝜕(
√
−𝑔ℒ𝜑)

𝜕(𝜕𝜇𝜑)

)︂
+
𝜕(
√
−𝑔ℒ𝜑)

𝜕𝜑
+
𝜕ℒ𝑀

𝜕𝜑
= 0 , (11.6)

where ℒ𝜑 = −(∇̃𝜑)2/2−𝑉 (𝜑) is the field Lagrangian density. Since the derivative of ℒ𝑀 in terms

of 𝜑 is given by Eq. (2.41), i.e., 𝜕ℒ𝑀/𝜕𝜑 =
√
−𝑔𝑄(−𝜌𝑀 + 3𝑃𝑀 ), we obtain the equation of the

field 𝜑 [594, 42]:

𝜑′′ +

(︂
2

𝑟
+Ψ′ − Φ′

)︂
𝜑′ = 𝑒2Φ

[︁
𝑉,𝜑 +𝑄(𝜌𝑀 − 3𝑃𝑀 )

]︁
, (11.7)

where a tilde represents a derivative with respect to 𝑟. From the Einstein equations it follows that

Φ′ =
1− 𝑒2Φ

2𝑟
+ 4𝜋𝐺𝑟

[︂
1

2
𝜑′2 + 𝑒2Φ𝑉 (𝜑) + 𝑒2Φ𝜌𝑀

]︂
, (11.8)

Ψ′ =
𝑒2Φ − 1

2𝑟
+ 4𝜋𝐺𝑟

[︂
1

2
𝜑′2 − 𝑒2Φ𝑉 (𝜑) + 𝑒2Φ𝑃𝑀

]︂
, (11.9)

Ψ′′ + Ψ′2 −Ψ′Φ′ +
Ψ′ − Φ′

𝑟
= −8𝜋𝐺

[︂
1

2
𝜑′2 + 𝑒2Φ𝑉 (𝜑)− 𝑒2Φ𝑃𝑀

]︂
. (11.10)

Using the continuity equation ∇𝜇𝑇
𝜇
1 = 0 in the Jordan frame, we obtain

𝑃 ′
𝑀 + (𝜌𝑀 + 𝑃𝑀 )Ψ′ +𝑄𝜑′(𝜌𝑀 − 3𝑃𝑀 ) = 0 . (11.11)

In the absence of the coupling 𝑄 this reduces to the Tolman–Oppenheimer–Volkoff equation, 𝑃 ′
𝑀 +

(𝜌𝑀 + 𝑃𝑀 )Ψ′ = 0.
If the field potential 𝑉 (𝜑) is responsible for dark energy, we can neglect both 𝑉 (𝜑) and 𝜑′2

relative to 𝜌𝑀 in the local region whose density is much larger than the cosmological density
(𝜌0 ∼ 10−29 g/cm

3
). In this case Eq. (11.8) is integrated to give

𝑒2Φ(𝑟) =

[︂
1− 2𝐺𝑚(𝑟)

𝑟

]︂−1

, 𝑚(𝑟) =

∫︁ 𝑟

0

4𝜋𝑟2𝜌𝑀 d𝑟 . (11.12)

Substituting Eqs. (11.8) and (11.9) into Eq. (11.7), it follows that

𝜑′′ +

[︂
1 + 𝑒2Φ

𝑟
− 4𝜋𝐺𝑟𝑒2Φ(𝜌𝑀 − 𝑃𝑀 )

]︂
𝜑′ = 𝑒2Φ

[︁
𝑉,𝜑 +𝑄(𝜌𝑀 − 3𝑃𝑀 )

]︁
. (11.13)

The gravitational potential Φ around the surface of a compact object can be estimated as
Φ ≈ 𝐺𝜌𝑀𝑟

2
𝑐 , where 𝜌𝑀 is the mean density of the star and 𝑟𝑐 is its radius. Provided that Φ ≪ 1,

Eq. (11.13) reduces to Eq. (5.15) in the Minkowski background (note that the pressure 𝑃𝑀 is also
much smaller than the density 𝜌𝑀 for non-relativistic matter).
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11.2 Constant density star

Let us consider a constant density star with 𝜌𝑀 = 𝜌𝐴. We also assume that the density outside

the star is constant, 𝜌𝑀 = 𝜌𝐵 . We caution that the conserved density 𝜌
(𝑐)
𝑀 in the Einstein frame

is given by 𝜌
(𝑐)
𝑀 = 𝑒−𝑄𝜑𝜌𝑀 [343]. However, since the condition 𝑄𝜑≪ 1 holds in most cases of our

interest, we do not distinguish between 𝜌
(𝑐)
𝑀 and 𝜌𝑀 in the following discussion.

Inside the spherically symmetric body (0 < 𝑟 < 𝑟𝑐), Eq. (11.12) gives

𝑒2Φ(𝑟) =

(︂
1− 8𝜋𝐺

3
𝜌𝐴𝑟

2

)︂−1

. (11.14)

Neglecting the field contributions in Eqs. (11.8) – (11.11), the gravitational background for 0 <
𝑟 < 𝑟𝑐 is characterized by the Schwarzschild interior solution. Then the pressure 𝑃𝑀 (𝑟) inside the
body relative to the density 𝜌𝐴 can be analytically expressed as

𝑃𝑀 (𝑟)

𝜌𝐴
=

√︀
1− 2(𝑟2/𝑟2𝑐 )Φ𝑐 −

√
1− 2Φ𝑐

3
√
1− 2Φ𝑐 −

√︀
1− 2(𝑟2/𝑟2𝑐 )Φ𝑐

(0 < 𝑟 < 𝑟𝑐) , (11.15)

where Φ𝑐 is the gravitational potential at the surface of the body:

Φ𝑐 ≡
𝐺𝑀𝑐

𝑟𝑐
=

1

6
𝜌𝐴𝑟

2
𝑐 . (11.16)

Here 𝑀𝑐 = 4𝜋𝑟3𝑐𝜌𝐴/3 is the mass of the spherically symmetric body. The density 𝜌𝐵 is much
smaller than 𝜌𝐴, so that the metric outside the body can be approximated by the Schwarzschild
exterior solution

Φ(𝑟) ≃ 𝐺𝑀𝑐

𝑟
= Φ𝑐

𝑟𝑐
𝑟
, 𝑃𝑀 (𝑟) ≃ 0 (𝑟 > 𝑟𝑐) . (11.17)

In the following we shall derive the analytic field profile by using the linear expansion in terms
of the gravitational potential Φ𝑐. This approximation is expected to be reliable for Φ𝑐 < 𝒪(0.1).
From Eqs. (11.14) – (11.16) it follows that

Φ(𝑟) ≃ Φ𝑐
𝑟2

𝑟2𝑐
,

𝑃𝑀 (𝑟)

𝜌𝐴
≃ Φ𝑐

2

(︂
1− 𝑟2

𝑟2𝑐

)︂
(0 < 𝑟 < 𝑟𝑐) . (11.18)

Substituting these relations into Eq. (11.13), the field equation inside the body is approximately
given by

𝜑′′ +
2

𝑟

(︂
1− 𝑟2

2𝑟2𝑐
Φ𝑐

)︂
𝜑′ − (𝑉,𝜑 +𝑄𝜌𝐴)

(︂
1 + 2Φ𝑐

𝑟2

𝑟2𝑐

)︂
+

3

2
𝑄𝜌𝐴Φ𝑐

(︂
1− 𝑟2

𝑟2𝑐

)︂
= 0 . (11.19)

If 𝜑 is close to 𝜑𝐴 at 𝑟 = 0, the field stays around 𝜑𝐴 in the region 0 < 𝑟 < 𝑟1. The body has a
thin-shell if 𝑟1 is close to the radius 𝑟𝑐 of the body.

In the region 0 < 𝑟 < 𝑟1 the field derivative of the effective potential around 𝜑 = 𝜑𝐴 can be
approximated by d𝑉eff/d𝜑 = 𝑉,𝜑+𝑄𝜌𝐴 ≃ 𝑚2

𝐴(𝜑−𝜑𝐴). The solution to Eq. (11.19) can be obtained
by writing the field as 𝜑 = 𝜑0 + 𝛿𝜑, where 𝜑0 is the solution in the Minkowski background and 𝛿𝜑
is the perturbation induced by Φ𝑐. At linear order in 𝛿𝜑 and Φ𝑐 we obtain

𝛿𝜑′′ +
2

𝑟
𝛿𝜑′ −𝑚2

𝐴𝛿𝜑 = Φ𝑐

[︂
2𝑚2

𝐴𝑟
2

𝑟2𝑐
(𝜑0 − 𝜑𝐴) +

𝑟

𝑟2𝑐
𝜑′0 −

3

2
𝑄𝜌𝐴

(︂
1− 𝑟2

𝑟2𝑐

)︂]︂
, (11.20)
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where 𝜑0 satisfies the equation 𝜑′′0 + (2/𝑟)𝜑′0 − 𝑚2
𝐴(𝜑0 − 𝜑𝐴) = 0. The solution of 𝜑0 with the

boundary conditions d𝜑0/d𝑟 = 0 at 𝑟 = 0 is given by 𝜑0(𝑟) = 𝜑𝐴 + 𝐴(𝑒−𝑚𝐴𝑟 − 𝑒𝑚𝐴𝑟)/𝑟, where 𝐴
is a constant. Plugging this into Eq. (11.20), we get the following solution for 𝜑(𝑟) [594]:

𝜑(𝑟) = 𝜑𝐴 +
𝐴(𝑒−𝑚𝐴𝑟 − 𝑒𝑚𝐴𝑟)

𝑟

− 𝐴Φ𝑐

𝑚𝐴𝑟2𝑐

[︂(︂
1

3
𝑚2

𝐴𝑟
2 − 1

4
𝑚𝐴𝑟 −

1

4
+

1

8𝑚𝐴𝑟

)︂
𝑒𝑚𝐴𝑟 +

(︂
1

3
𝑚2

𝐴𝑟
2 +

1

4
𝑚𝐴𝑟 −

1

4
− 1

8𝑚𝐴𝑟

)︂
𝑒−𝑚𝐴𝑟

]︂
− 3𝑄𝜌𝐴Φ𝑐

2𝑚4
𝐴𝑟

2
𝑐

[︀
𝑚2

𝐴(𝑟
2 − 𝑟2𝑐 ) + 6

]︀
. (11.21)

In the region 𝑟1 < 𝑟 < 𝑟𝑐 the field |𝜑(𝑟)| evolves towards larger values with increasing 𝑟. Since
the matter coupling term 𝑄𝜌𝐴 dominates over 𝑉,𝜑 in this regime, it follows that d𝑉eff/d𝜑 ≃ 𝑄𝜌𝐴.
Hence the field perturbation 𝛿𝜑 satisfies

𝛿𝜑′′ +
2

𝑟
𝛿𝜑′ = Φ𝑐

[︂
𝑟

𝑟2𝑐
𝜑′0 −

1

2
𝑄𝜌𝐴

(︂
3− 7

𝑟2

𝑟2𝑐

)︂]︂
, (11.22)

where 𝜑0 obeys the equation 𝜑′′0 + (2/𝑟)𝜑′0 −𝑄𝜌𝐴 = 0. Hence we obtain the solution

𝜑(𝑟) = −𝐵
𝑟

(︂
1− Φ𝑐

𝑟2

2𝑟2𝑐

)︂
+ 𝐶 +

1

6
𝑄𝜌𝐴𝑟

2

(︂
1− 3

2
Φ𝑐 +

23

20
Φ𝑐
𝑟2

𝑟2𝑐

)︂
, (11.23)

where 𝐵 and 𝐶 are constants.

In the region outside the body (𝑟 > 𝑟𝑐) the field 𝜑 climbs up the potential hill after it acquires
sufficient kinetic energy in the regime 𝑟1 < 𝑟 < 𝑟𝑐. Provided that the field kinetic energy dominates
over its potential energy, the r.h.s. of Eq. (11.13) can be neglected relative to its l.h.s. of it.
Moreover the terms that include 𝜌𝑀 and 𝑃𝑀 in the square bracket on the l.h.s. of Eq. (11.13) is
much smaller than the term (1 + 𝑒2Φ)/𝑟. Using Eq. (11.17), it follows that

𝜑′′ +
2

𝑟

(︂
1 +

𝐺𝑀𝑐

𝑟

)︂
𝜑′ ≃ 0 , (11.24)

whose solution satisfying the boundary condition 𝜑(𝑟 → ∞) = 𝜑𝐵 is

𝜑(𝑟) = 𝜑𝐵 +
𝐷

𝑟

(︂
1 +

𝐺𝑀𝑐

𝑟

)︂
, (11.25)

where 𝐷 is a constant.

The coefficients 𝐴,𝐵,𝐶,𝐷 are known by matching the solutions (11.21), (11.23), (11.25) and
their derivatives at 𝑟 = 𝑟1 and 𝑟 = 𝑟𝑐. If the body has a thin-shell, then the condition Δ𝑟𝑐 =
𝑟𝑐 − 𝑟1 ≪ 𝑟𝑐 is satisfied. Under the linear expansion in terms of the three parameters Δ𝑟𝑐/𝑟𝑐, Φ𝑐,
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and 1/(𝑚𝐴𝑟𝑐) we obtain the following field profile [594]:

𝜑(𝑟) = 𝜑𝐴 +
𝑄𝜌𝐴

𝑚2
𝐴𝑒

𝑚𝐴𝑟1

𝑟1
𝑟

(︂
1 +

𝑚𝐴𝑟
3
1Φ𝑐

3𝑟2𝑐
− Φ𝑐𝑟

2
1

4𝑟2𝑐

)︂−1

(𝑒𝑚𝐴𝑟 − 𝑒−𝑚𝐴𝑟)

+
3𝑄𝜌𝐴Φ𝑐

2𝑚2
𝐴

[︂
1− 𝑟2

𝑟2𝑐
− 6

(𝑚𝐴𝑟𝑐)2

]︂
+

Φ𝑐𝑟1
𝑚𝐴𝑟2𝑐

𝑄𝜌𝐴
𝑚2

𝐴𝑒
𝑚𝐴𝑟1

(︂
1 +

𝑚𝐴𝑟
3
1Φ𝑐

3𝑟2𝑐
− Φ𝑐𝑟

2
1

4𝑟2𝑐

)︂−1

×
[︂(︂

1

3
𝑚2

𝐴𝑟
2 − 1

4
𝑚𝐴𝑟 −

1

4
+

1

8𝑚𝐴𝑟

)︂
𝑒𝑚𝐴𝑟 +

(︂
1

3
𝑚2

𝐴𝑟
2 +

1

4
𝑚𝐴𝑟 −

1

4
− 1

8𝑚𝐴𝑟

)︂
𝑒−𝑚𝐴𝑟

]︂
(0 < 𝑟 < 𝑟1), (11.26)

𝜑(𝑟) = 𝜑𝐴 +
𝑄𝜌𝐴𝑟

2
𝑐

6

[︃
6𝜖th + 6𝐶1

𝑟1
𝑟

(︂
1− Φ𝑐𝑟

2

2𝑟2𝑐

)︂
− 3

(︂
1− Φ𝑐

4

)︂
+

(︂
𝑟

𝑟𝑐

)︂2(︂
1− 3

2
Φ𝑐 +

23Φ𝑐𝑟
2

20𝑟2𝑐

)︂]︃
(𝑟1 < 𝑟 < 𝑟𝑐), (11.27)

𝜑(𝑟) = 𝜑𝐴 +𝑄𝜌𝐴𝑟
2
𝑐

[︂
𝜖th − 𝐶2

𝑟𝑐
𝑟

(︂
1 + Φ𝑐

𝑟𝑐
𝑟

)︂]︂
(𝑟 > 𝑟𝑐), (11.28)

where 𝜖th = (𝜑𝐵 − 𝜑𝐴)/(6𝑄Φ𝑐) is the thin-shell parameter, and

𝐶1 ≡ (1− 𝛼)

[︂
−𝜖th

(︂
1 +

Φ𝑐𝑟
2
1

2𝑟2𝑐

)︂
+

1

2

(︂
1− Φ𝑐

4
+

Φ𝑐𝑟
2
1

2𝑟2𝑐

)︂
− 𝑟21

2𝑟2𝑐

(︂
1− 3

2
Φ𝑐 +

7Φ𝑐𝑟
2
1

4𝑟2𝑐

)︂]︂
+
𝑟21
3𝑟2𝑐

(︂
1− 3

2
Φ𝑐 +

9Φ𝑐𝑟
2
1

5𝑟2𝑐

)︂
, (11.29)

𝐶2 ≡ (1− 𝛼)

[︂
𝜖th

𝑟1
𝑟𝑐

(︂
1 +

Φ𝑐𝑟
2
1

2𝑟2𝑐
− 3Φ𝑐

2

)︂
− 𝑟1

2𝑟𝑐

(︂
1− 7

4
Φ𝑐 +

Φ𝑐𝑟
2
1

2𝑟2𝑐

)︂
+

𝑟31
2𝑟3𝑐

(︂
1− 3Φ𝑐 +

7Φ𝑐𝑟
2
1

4𝑟2𝑐

)︂]︂
+
1

3

(︂
1− 6

5
Φ𝑐

)︂
− 𝑟31

3𝑟3𝑐

(︂
1− 3Φ𝑐 +

9Φ𝑐𝑟
2
1

5𝑟2𝑐

)︂
, (11.30)

where

𝛼 ≡ (𝑟21/3𝑟
2
𝑐 )Φ𝑐 + 1/(𝑚𝐴𝑟1)

1 + (𝑟21/4𝑟
2
𝑐 )Φ𝑐 + (𝑚𝐴𝑟31Φ𝑐/3𝑟2𝑐 )[1− (𝑟21/2𝑟

2
𝑐 )Φ𝑐]

. (11.31)

As long as 𝑚𝐴𝑟1Φ𝑐 ≫ 1, the parameter 𝛼 is much smaller than 1.
In order to derive the above field profile we have used the fact that the radius 𝑟1 is determined

by the condition 𝑚2
𝐴 [𝜑(𝑟1)− 𝜑𝐴] = 𝑄𝜌𝐴, and hence

𝜑𝐴 − 𝜑𝐵 = −𝑄𝜌𝐴𝑟2𝑐
[︂
Δ𝑟𝑐
𝑟𝑐

(︂
1 + Φ𝑐 −

1

2

Δ𝑟𝑐
𝑟𝑐

)︂
+

1

𝑚𝐴𝑟𝑐

(︂
1− Δ𝑟𝑐

𝑟𝑐

)︂
(1− 𝛽)

]︂
, (11.32)

where 𝛽 is defined by

𝛽 ≡ (𝑚𝐴𝑟
3
1Φ𝑐/3𝑟

2
𝑐 )(𝑟

2
1/𝑟

2
𝑐 )Φ𝑐

1 + (𝑚𝐴𝑟31Φ𝑐/3𝑟2𝑐 )− (𝑟21/4𝑟
2
𝑐 )Φ𝑐

, (11.33)

which is much smaller than 1. Using Eq. (11.32) we obtain the thin-shell parameter

𝜖th =
Δ𝑟𝑐
𝑟𝑐

(︂
1 + Φ𝑐 −

1

2

Δ𝑟𝑐
𝑟𝑐

)︂
+

1

𝑚𝐴𝑟𝑐

(︂
1− Δ𝑟𝑐

𝑟𝑐

)︂
(1− 𝛽) . (11.34)

In terms of a linear expansion of 𝛼, 𝛽,Δ𝑟𝑐/𝑟𝑐,Φ𝑐, the field profile (11.28) outside the body is

𝜑(𝑟) ≃ 𝜑𝐵 − 2𝑄eff
𝐺𝑀𝑐

𝑟

(︂
1 +

𝐺𝑀𝑐

𝑟

)︂
, (11.35)
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where the effective coupling is

𝑄eff = 3𝑄

[︂
Δ𝑟𝑐
𝑟𝑐

(︂
1− Δ𝑟𝑐

𝑟𝑐

)︂
+

1

𝑚𝐴𝑟𝑐

(︂
1− 2

Δ𝑟𝑐
𝑟𝑐

− Φ𝑐 − 𝛼− 𝛽

)︂]︂
. (11.36)

To leading-order this gives 𝑄eff = 3𝑄 [Δ𝑟𝑐/𝑟𝑐 + 1/(𝑚𝐴𝑟𝑐)] = 3𝑄𝜖th, which agrees with the result
(5.45) in the Minkowski background. As long as Δ𝑟𝑐/𝑟𝑐 ≪ 1 and 1/(𝑚𝐴𝑟𝑐) ≪ 1, the effective
coupling |𝑄eff | can be much smaller than the bare coupling |𝑄|, even in a strong gravitational
background.

From Eq. (11.26) the field value and its derivative around the center of the body with radius
𝑟 ≪ 1/𝑚𝐴 are given by

𝜑(𝑟) ≃ 𝜑𝐴 +
2𝑄𝜌𝐴𝑟1
𝑚𝐴𝑒𝑚𝐴𝑟1

(︂
1 +

𝑚𝐴𝑟
3
1Φ𝑐

3𝑟2𝑐
− Φ𝑐𝑟

2
1

4𝑟2𝑐

)︂−1 [︂
1 +

1

6
(𝑚𝐴𝑟)

2 +
Φ𝑐

2(𝑚𝐴𝑟𝑐)2

]︂
+
3𝑄𝜌𝐴Φ𝑐

2𝑚2
𝐴

[︂
1− 𝑟2

𝑟2𝑐
− 6

(𝑚𝐴𝑟𝑐)2

]︂
, (11.37)

𝜑′(𝑟) ≃ 𝑄𝜌𝐴𝑟
2
𝑐

[︃
2𝑚𝐴𝑟1
3𝑒𝑚𝐴𝑟1

(︂
1 +

𝑚𝐴𝑟
3
1Φ𝑐

3𝑟2𝑐
− Φ𝑐𝑟

2
1

4𝑟2𝑐

)︂−1

− 3Φ𝑐

(𝑚𝐴𝑟𝑐)2

]︃
𝑟

𝑟2𝑐
. (11.38)

In the Minkowski background (Φ𝑐 = 0), Eq. (11.38) gives 𝜑′(𝑟) > 0 for 𝑄 > 0 (or 𝜑′(𝑟) < 0 for
𝑄 < 0). In the strong gravitational background (Φ𝑐 ̸= 0) the second term in the square bracket
of Eq. (11.38) can lead to negative 𝜑′(𝑟) for 𝑄 > 0 (or positive 𝜑′(𝑟) for 𝑄 < 0), which leads to
the evolution of |𝜑(𝑟)| toward 0. This effects comes from the presence of the strong relativistic
pressure around the center of the body. Unless the boundary conditions at 𝑟 = 0 are appropriately
chosen the field tends to evolve toward |𝜑(𝑟)| = 0, as seen in numerical simulations in [349, 350]
for the f (R) model (4.84). However there exists a thin-shell field profile even for 𝜑′(𝑟) > 0 (and
𝑄 = −1/

√
6) around the center of the body. In fact, the derivative 𝜑′(𝑟) can change its sign in

the regime 1/𝑚𝐴 < 𝑟 < 𝑟1 for thin-shell solutions, so that the field does not reach the curvature
singularity at 𝜑 = 0 [594].

For the inverse power-law potential 𝑉 (𝜑) =𝑀4+𝑛𝜑−𝑛, the existence of thin-shell solutions was
numerically confirmed in [594] for Φ𝑐 < 0.3. Note that the analytic field profile (11.26) was used
to set boundary conditions around the center of the body. In Figure 10 we show the normalized
field 𝜙 = 𝜑/𝜑𝐴 versus 𝑟/𝑟𝑐 for the model 𝑉 (𝜑) =𝑀6𝜑−2 with Φ𝑐 = 0.2, Δ𝑟𝑐/𝑟𝑐 = 0.1, 𝑚𝐴𝑟𝑐 = 20,
and 𝑄 = 1. While we have neglected the term 𝑉,𝜑 relative to 𝑄𝜌𝐴 to estimate the solution in the
region 𝑟1 < 𝑟 < 𝑟𝑐 analytically, we find that this leads to some overestimation for the field value
outside the body (𝑟 > 𝑟𝑐). In order to obtain a numerical field profile similar to the analytic one
in the region 𝑟 > 𝑟𝑐, we need to choose a field value slightly larger than the analytic value around
the center of the body. The numerical simulation in Figure 10 corresponds to the choice of such
a boundary condition, which explicitly shows the presence of thin-shell solutions even for a strong
gravitational background.

11.3 Relativistic stars in metric f (R) gravity

The results presented above are valid for BD theory including metric f (R) gravity with the coupling
𝑄 = −1/

√
6. While the analysis was carried out in the Einstein frame, thin-shell solutions were

numerically found in the Jordan frame of metric f (R) gravity for the models (4.83) and (4.84) [43,
600, 42]. In these models the field 𝜑 =

√︀
3/2 ln 𝐹 in the region of high density (𝑅 ≫ 𝑅𝑐) is

very close to the curvature singularity at 𝜑 = 0. Originally it was claimed in [266, 349] that
relativistic stars are absent because of the presence of this accessible singularity. However, as
we have discussed in Section 11.2, the crucial point for obtaining thin-shell solutions is not the
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Figure 10: The thin-shell field profile for the model 𝑉 = 𝑀6𝜑−2 with Φ𝑐 = 0.2, Δ𝑟𝑐/𝑟𝑐 = 0.1, 𝑚𝐴𝑟𝑐 = 20,
and 𝑄 = 1. This case corresponds to 𝜌𝐴/𝜌𝐵 = 1.04 × 104, 𝜑𝐴 = 8.99 × 10−3, 𝜑𝐵 = 1.97 × 10−1 and
𝜖th = 1.56 × 10−1. The boundary condition of 𝜙 = 𝜑/𝜑𝐴 at 𝑥𝑖 = 𝑟𝑖/𝑟𝑐 = 10−5 is 𝜙(𝑥𝑖) = 1.2539010,
which is larger than the analytic value 𝜙(𝑥𝑖) = 1.09850009. The derivative 𝜙′(𝑥𝑖) is the same as the
analytic value. The left and right panels show 𝜙(𝑟) for 0 < 𝑟/𝑟𝑐 < 10 and 0 < 𝑟/𝑟𝑐 < 2, respectively. The
black and dotted curves correspond to the numerically integrated solution and the analytic field profile
(11.26) – (11.28), respectively. From [594].

existence of the curvature singularity but the choice of appropriate boundary conditions around
the center of the star. For the correct choice of boundary conditions the field does not reach the
singularity and thin-shell field profiles can be instead realized. In the Starobinsky’s model (4.84),
static configurations of a constant density star have been found for the gravitational potential Φ𝑐

smaller than 0.345 [600].
For the star with an equation of state 𝜌𝑀 < 3𝑃𝑀 , the effective potential of the field 𝜑 (in

the presence of a matter coupling) does not have an extremum, see Eq. (11.7). In those cases the
analytic results in Section 11.2 are no longer valid. For the equation of state 𝜌𝑀 < 3𝑃𝑀 there
is a tachyonic instability that tends to prevent the existence of a static star configuration [42].
For realistic neutron stars, however, the equation of state proposed in the literature satisfies the
condition 𝜌𝑀 > 3𝑃𝑀 throughout the star.

Babichev and Langlois [43, 42] chose a polytropic equation of state for the energy density 𝜌𝑀
and the pressure 𝑃𝑀 in the Jordan frame:

𝜌𝑀 (𝑛) = 𝑚𝐵

(︂
𝑛+𝐾

𝑛2

𝑛0

)︂
, 𝑃𝑀 (𝑛) = 𝐾𝑚𝐵

𝑛2

𝑛0
, (11.39)

where 𝑚𝐵 = 1.66 × 10−27 kg, 𝑛0 = 0.1 fm−1, and 𝐾 = 0.1. Solving the continuity equation
∇𝜇𝑇

𝜇
𝜈 = 0 coupled with Einstein equations, [43, 42] showed that 3𝑃𝑀 can remain smaller than 𝜌𝑀

for realistic neutron stars. Note that the energy density is a decreasing function with respect to the
distance from the center of star. Even for such a varying energy density, static star configurations
have been shown to exist [43, 42].

The ratio between the central density 𝜌center and the cosmological density at infinity is param-
eterized by the quantity 𝑣0 =𝑀2

pl𝑅𝑐/𝜌center. Realistic values of 𝑣0 are extremely small and it is a
challenging to perform precise numerical simulations in such cases. We also note that the field mass
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Figure 11: The profile of the field 𝜑 =
√︀

3/2 ln 𝐹 (in units of 𝑀pl) versus the radius 𝑟 (denoted as 𝑟 in

the figure, in units of 𝑀pl𝜌
−1/2
center) for the model (4.84) with 𝑛 = 1, 𝑅∞/𝑅𝑐 = 3.6, and 𝑣0 = 10−4 (shown

as a solid line). The dashed line corresponds to the value 𝜑min for the minimum of the effective potential.
(Inset) The enlarged figure in the region 0 < 𝑟 < 2.5. From [43].

𝑚𝐴 in the relativistic star is very much larger than its cosmological mass and hence a very high ac-
curacy is required for solving the field equation numerically [600, 581]. The authors in [43, 600, 42]
carried out numerical simulations for the values of 𝑣0 of the order of 10−3 – 10−4. Figure 11 illus-
trates an example of the thin-shell field profile for the polytropic equation of state (11.39) in the
model (4.84) with 𝑛 = 1 and 𝑣0 = 10−4 [43]. In the regime 0 < 𝑟 < 1.5 the field is nearly frozen
around the extremum of the effective potential, but it starts to evolve toward its asymptotic value
𝜑 = 𝜑𝐵 for 𝑟 > 1.5.

Although the above analysis is based on the f (R) models (4.83) and (4.84) having a curvature
singularity at 𝜑 = 0, such a singularity can be cured by adding the 𝑅2 term [350]. The presence of
the 𝑅2 term has an advantage of realizing inflation in the early universe. However, the f (R) models
(4.83) and (4.84) plus the 𝑅2 term cannot relate the epoch of two accelerations smoothly [37]. An
example of viable models that can allow a smooth transition without a curvature singularity is [37]

𝑓(𝑅) = (1− 𝑐)𝑅+ 𝑐𝜖 ln

[︂
cosh(𝑅/𝜖− 𝑏)

cosh 𝑏

]︂
+

𝑅2

6𝑀2
, 𝜖 ≡ 𝑅𝑐

𝑏+ ln(2 cosh 𝑏)
, (11.40)

where 𝑏, 𝑐 (0 < 𝑐 < 1/2), 𝑅𝑐, and 𝑀 are constants. In [42] a static field profile was numerically
obtained even for the model (11.40).

Although we have focused on the stellar configuration with Φ𝑐 . 0.3, there are also works of
finding static or rotating black hole solutions in f (R) gravity [193, 497]. Cruz-Dombriz et al. [193]
derived static and spherically symmetric solutions by imposing that the curvature is constant.
They also used a perturbative approach around the Einstein–Hilbert action and found that only
solutions of the Schwarzschild–Anti de Sitter type are present up to second order in perturbations.
The existence of general black hole solutions in f (R) gravity certainly deserves for further detailed
study. It will be also of interest to study the transition from neutron stars to a strong-scalar-field
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state in f (R) gravity [464]. While such an analysis was carried out for a massless field in scalar-
tensor theory, we need to take into account the field mass in the region of high density for realistic
models of f (R) gravity.

Pun et al. [498] studied physical properties of matter forming an accretion disk in the spherically
symmetric metric in f (R) models and found that specific signatures of modified gravity can appear
in the electromagnetic spectrum. In [92] the virial theorem for galaxy clustering in metric f (R)
gravity was derived by using the collisionless Boltzmann equation. In [398] the construction of
traversable wormhole geometries was discussed in metric f (R) gravity. It was found that the
choice of specific shape functions and several equations of state gives rise to some exact solutions
for f (R).
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12 Gauss–Bonnet Gravity

So far we have studied modification to the Einstein–Hilbert action via the introduction of a general
function of the Ricci scalar. Among the possible modifications of gravity this may be indeed a
very special case. Indeed, one could think of a Lagrangian with all the infinite and possible scalars
made out of the Riemann tensor and its derivatives. If one considers such a Lagrangian as a funda-
mental action for gravity, one usually encounters serious problems in the particle representations
of such theories. It is well known that such a modification would introduce extra tensor degrees
of freedom [635, 283, 284]. In fact, it is possible to show that these theories in general introduce
other particles and that some of them may lead to problems.

For example, besides the graviton, another spin-2 particle typically appears, which however,
has a kinetic term opposite in sign with respect to the standard one [572, 67, 302, 465, 153, 303, 99].
The graviton does interact with this new particle, and with all the other standard particles too.
The presence of ghosts, implies the existence of particles propagating with negative energy. This,
in turn, implies that out of the vacuum a particle (or more than one) and a ghost (or more than
one) can appear at the same time without violating energy conservation. This sort of vacuum
decay makes each single background unstable, unless one considers some explicit Lorentz-violating
cutoff in order to set a typical energy/time scale at which this phenomenon occurs [145, 161].

However, one can treat these higher-order gravity Lagrangians only as effective theories, and
consider the free propagating mode only coming from the strongest contribution in the action, the
Einstein–Hilbert one, for which all the modes are well behaved. The remaining higher-derivative
parts of the Lagrangian can be regarded as corrections at energies below a certain fundamental
scale. This scale is usually set to be equal to the Planck scale, but it can be lower, for example,
in some models of extra dimensions. This scale cannot be nonetheless equal to the dark energy
density today, as otherwise, one would need to consider all these corrections for energies above
this scale. This means that one needs to re-sum all these contributions at all times before the
dark energy dominance. Another possible approach to dealing with the ghost degrees of freedom
consists of using the Euclidean-action path formalism, for which, one can indeed introduce a notion
of probability amplitude for these spurious degrees of freedom [294, 162].

The late-time modifications of gravity considered in this review correspond to those in low
energy scales. Therefore we have a correction which begins to be important at very low energy
scales compared to the Planck mass. In general this means that somehow these corrections cannot
be treated any longer as corrections to the background, but they become the dominant contribution.
In this case the theory cannot be treated as an effective one, but we need to assume that the form
of the Lagrangian is exact, and the theory becomes a fundamental theory for gravity. In this
sense these theories are similar to quintessence, that is, a minimally coupled scalar field with a
suitable potential. The potential is usually chosen such that its energy scale matches with the
dark energy density today. However, for this theory as well, one needs to consider this potential as
fundamental, i.e., it does not get quantum corrections that can spoil the form of the potential itself.
Still it may not be renormalizable, but so far we do not know any 4-dimensional renormalizable
theory of gravity. In this case then, if we introduce a general modification of gravity responsible for
the late-time cosmic acceleration, we should prevent this theory from introducing spurious ghost
degrees of freedom.

12.1 Lovelock scalar invariants

One may wonder whether it is possible to remove these spin-2 ghosts. To answer this point,
one should first introduce the Lovelock scalars [399]. These scalars are particular combina-
tions/contractions of the Riemann tensor which have a fundamental property: if present in the
Lagrangian, they only introduce second-order derivative contributions to the equations of motion.
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Let us give an example of this property [399]. Soon after Einstein proposed General Relativ-
ity [226] and Hilbert found the Lagrangian to describe it [301], Kretschmann [372] pointed out
that general covariance alone cannot explain the form of the Lagrangian for gravity. In the action
he introduced, instead of the Ricci scalar, the scalar which now has been named after him, the
Kretschmann scalar:

𝑆 =

∫︁
d4𝑥

√
−𝑔 𝑅𝛼𝛽𝛾𝛿 𝑅

𝛼𝛽𝛾𝛿 . (12.1)

At first glance this action looks well motivated. The Riemann tensor 𝑅𝛼𝛽𝛾𝛿 is a fundamental
tensor for gravitation, and the scalar quantity 𝑃1 ≡ 𝑅𝛼𝛽𝛾𝛿 𝑅

𝛼𝛽𝛾𝛿 can be constructed by just
squaring it. Furthermore, it is a theory for which Bianchi identities hold, as the equations of
motion have both sides covariantly conserved. However, in the equations of motion, there are
terms proportional to ∇𝜇∇𝜈𝑅

𝜇
𝛼𝛽

𝜈 together with its symmetric partner (𝛼↔ 𝛽). This forces us to
give in general at a particular slice of spacetime, together with the metric elements 𝑔𝜇𝜈 , their first,
second, and third derivatives. Hence the theory has many more degrees of freedom with respect
to GR.

In addition to the Kretschmann scalar there is another scalar 𝑃2 ≡ 𝑅𝛼𝛽𝑅
𝛼𝛽 which is quadratic

in the Riemann tensor 𝑅𝛼𝛽 . One can avoid the appearance of terms proportional to ∇𝜇∇𝜈𝑅
𝜇
(𝛼𝛽)

𝜈

for the scalar quantity,

𝒢 ≡ 𝑅2 − 4𝑅𝛼𝛽 𝑅
𝛼𝛽 +𝑅𝛼𝛽𝛾𝛿 𝑅

𝛼𝛽𝛾𝛿 , (12.2)

which is called the Gauss–Bonnet (GB) term [572, 67]. If one uses this invariant in the action of
𝐷 dimensions, as

𝑆 =

∫︁
d𝐷𝑥

√
−𝑔 𝒢 , (12.3)

then the equations of motion coming from this Lagrangian include only the terms up to second
derivatives of the metric. The difference between this scalar and the Einstein–Hilbert term is that
this tensor is not linear in the second derivatives of the metric itself. It seems then an interesting
theory to study in detail. Nonetheless, it is a topological property of four-dimensional manifolds
that

√
−𝑔 𝒢 can be expressed in terms of a total derivative [150], as

√
−𝑔 𝒢 = 𝜕𝛼𝒟𝛼 , (12.4)

where

𝒟𝛼 =
√
−𝑔 𝜖𝛼𝛽𝛾𝛿𝜖𝜌𝜎𝜇𝜈Γ𝜌

𝜇𝛽

[︀
𝑅𝜎

𝜈𝛾𝛿/2 + Γ𝜎
𝜆𝛾 Γ

𝜆
𝜈𝜎/3

]︀
. (12.5)

Then the contribution to the equations of motion disappears for any boundaryless manifold in four
dimensions.

In order to see the contribution of the GB term to the equations of motion one way is to couple
it with a scalar field 𝜑, i.e., 𝑓(𝜑)𝒢, where 𝑓(𝜑) is a function of 𝜑. More explicitly the action of
such theories is in general given by

𝑆 =

∫︁
d4𝑥

√
−𝑔
[︂
1

2
𝐹 (𝜑)𝑅− 1

2
𝜔(𝜑)(∇𝜑)2 − 𝑉 (𝜑)− 𝑓(𝜑)𝒢

]︂
, (12.6)

where 𝐹 (𝜑), 𝜔(𝜑), and 𝑉 (𝜑) are functions of 𝜑. The GB coupling of this form appears in the low
energy effective action of string-theory [275, 273], due to the presence of dilaton-graviton mixing
terms.

There is another class of general GB theories with a self-coupling of the form [458],

𝑆 =

∫︁
d4𝑥

√
−𝑔

[︂
1

2
𝑅+ 𝑓(𝒢)

]︂
, (12.7)
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where 𝑓(𝒢) is a function in terms of the GB term (here we used the unit 𝜅2 = 1). The equations of
motion, besides the standard GR contribution, will get contributions proportional to∇𝜇∇𝜈𝑓,𝒢 [188,
189]. This theory possesses more degrees of freedom than GR, but the extra information appears
only in a scalar quantity 𝑓,𝒢 and its derivative. Hence it has less degrees of freedom compared to
Kretschmann gravity, and in particular these extra degrees of freedom are not tensor-like. This
property comes from the fact that the GB term is a Lovelock scalar. Theories with the more
general Lagrangian density 𝑅/2+ 𝑓(𝑅,𝑃1, 𝑃2) have been studied by many people in connection to
the dark energy problem [142, 110, 521, 420, 585, 64, 166, 543, 180]. These theories are plagued
by the appearance of spurious spin-2 ghosts, unless the Gauss–Bonnet (GB) combination is chosen
as in the action (12.7) [465, 153, 447] (see also [110, 181, 109]).

Let us go back to discuss the Lovelock scalars. How many are they? The answer is infinite
(each of them consists of linear combinations of equal powers of the Riemann tensor). However,
because of topological reasons, the only non-zero Lovelock scalars in four dimensions are the Ricci
scalar 𝑅 and the GB term 𝒢. Therefore, for the same reasons as for the GB term, a general
function of f (R) will only introduce terms in the equations of motion of the form ∇𝜇∇𝜈𝐹 , where
𝐹 ≡ 𝜕𝑓/𝜕𝑅. Once more, the new extra degrees of freedom introduced into the theory comes from
a scalar quantity, 𝐹 .

In summary, the Lovelock scalars in the Lagrangian prevent the equations of motion from
getting extra tensor degrees of freedom. A more detailed analysis of perturbations on maximally
symmetric spacetimes shows that, if non-Lovelock scalars are used in the action, then new extra
tensor-like degrees of freedom begin to propagate [572, 67, 302, 465, 153, 303, 99]. Effectively these
theories, such as Kretschmann gravity, introduce two gravitons, which have kinetic operators with
opposite sign. Hence one of the two gravitons is a ghost. In order to get rid of this ghost we need
to use the Lovelock scalars. Therefore, in four dimensions, one can in principle study the following
action

𝑆 =

∫︁
d4𝑥

√
−𝑔 𝑓(𝑅,𝒢) . (12.8)

This theory will not introduce spin-2 ghosts. Even so, the scalar modes need to be considered more
in detail: they may still become ghosts. Let us discuss more in detail what a ghost is and why we
need to avoid it in a sensible theory of gravity.

12.2 Ghosts

What is a ghost for these theories? A ghost mode is a propagating degree of freedom with a
kinetic term in the action with opposite sign. In order to see if a ghost is propagating on a given
background, one needs to expand the action at second order around the background in terms of the
perturbation fields. After integrating out all auxiliary fields, one is left with a minimal number of
gauge-invariant fields 𝜑⃗. These are not unique, as we can always perform a field redefinition (e.g.,
a field rotation). However, no matter which fields are used, we typically need – for non-singular
Lagrangians – to define the kinetic operator, the operator which in the Lagrangian appears as

ℒ =
˙⃗
𝜑𝑡𝐴

˙⃗
𝜑 + . . . [186, 185]. Then the sign of the eigenvalues of the matrix 𝐴 defines whether a

mode is a ghost or not. A negative eigenvalue would correspond to a ghost particle. On a FLRW
background the matrix 𝐴 will be in general time-dependent and so does the sign of the eigenvalues.
Therefore one should make sure that the extra scalar modes introduced for these theories do not
possess wrong signs in the kinetic term at any time during the evolution of the Universe, at least
up to today.

An overall sign in the Lagrangian does not affect the classical equations of motion. However,
at the quantum level, if we want to preserve causality by keeping the optical theorem to be valid,
then the ghost can be interpreted as a particle which propagates with negative energy, as already
stated above. In other words, in special relativity, the ghost would have a four-momentum (𝐸𝑔, 𝑝𝑔)
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with 𝐸𝑔 < 0. However it would still be a timelike particle as 𝐸2
𝑔 − 𝑝 2

𝑔 > 0, whether 𝐸𝑔 is negative
or not. The problem arises when this particle is coupled to some other normal particle, because in
this case the process 0 = 𝐸𝑔 + 𝐸1 + 𝐸2 + . . . with 𝐸𝑔 < 0 can be allowed. This means in general
that for such a theory one would expect the pair creation of ghost and normal particles out of
the vacuum. Notice that the energy is still conserved, but the energy is pumped out of the ghost
particle.

Since all the particles are coupled at least to gravity, one would think that out of the vacuum
particles could be created via the decay of a couple of gravitons emitted in the vacuum into ghosts
and non-ghosts particles. This process does lead to an infinite contribution unless one introduces
a cutoff for the theory [145, 161], for which one can set observational constraints.

We have already seen that, for metric f (R) gravity, the kinetic operator in the FLRW back-
ground reduces to 𝑄𝑠 given in Eq. (7.60) with the perturbed action (7.80). Since the sign of 𝑄𝑠 is
determined by 𝐹 , one needs to impose 𝐹 > 0 in order to avoid the propagation of a ghost mode.

12.3 𝑓(𝒢) gravity

Let us consider the theory (12.7) in the presence of matter, i.e.

𝑆 =
1

𝜅2

∫︁
d4𝑥

√
−𝑔

[︂
1

2
𝑅+ 𝑓(𝒢)

]︂
+ 𝑆𝑀 , (12.9)

where we have recovered 𝜅2. For the matter action 𝑆𝑀 we consider perfect fluids with an equation
of state 𝑤. The variation of the action (12.9) leads to the following field equations [178, 383]

𝐺𝜇𝜈 + 8
[︀
𝑅𝜇𝜌𝜈𝜎 +𝑅𝜌𝜈𝑔𝜎𝜇 −𝑅𝜌𝜎𝑔𝜈𝜇 −𝑅𝜇𝜈𝑔𝜎𝜌 +𝑅𝜇𝜎𝑔𝜈𝜌 + (𝑅/2) (𝑔𝜇𝜈𝑔𝜎𝜌 − 𝑔𝜇𝜎𝑔𝜈𝜌)

]︀
∇𝜌∇𝜎𝑓,𝒢

+ (𝒢𝑓,𝒢 − 𝑓) 𝑔𝜇𝜈 = 𝜅2 𝑇𝜇𝜈 , (12.10)

where 𝑇𝜇𝜈 is the energy-momentum tensor of matter. If 𝑓 ∝ 𝒢, then it is clear that the theory
reduces to GR.

12.3.1 Cosmology at the background level and viable 𝑓(𝒢) models

In the flat FLRW background the (00) component of Eq. (12.10) leads to

3𝐻2 = 𝒢𝑓,𝒢 − 𝑓 − 24𝐻3 ˙𝑓,𝒢 + 𝜅2 (𝜌𝑚 + 𝜌𝑟) , (12.11)

where 𝜌𝑚 and 𝜌𝑟 are the energy densities of non-relativistic matter and radiation, respectively.
The cosmological dynamics in 𝑓(𝒢) dark energy models have been discussed in [458, 165, 383, 188,
633, 430]. We can realize the late-time cosmic acceleration by the existence of a de Sitter point
satisfying the condition [458]

3𝐻2
1 = 𝒢1𝑓,𝒢(𝒢1)− 𝑓(𝒢1) , (12.12)

where 𝐻1 and 𝒢1 are the Hubble parameter and the GB term at the de Sitter point, respectively.
From the stability of the de Sitter point we require the following condition [188]

0 < 𝐻6
1𝑓,𝒢𝒢(𝐻1) < 1/384 . (12.13)

The GB term is given by

𝒢 = 24𝐻2(𝐻2 + 𝐻̇) = −12𝐻4(1 + 3𝑤eff) , (12.14)

where 𝑤eff = −1− 2𝐻̇/(3𝐻2) is the effective equation of state. We have 𝒢 < 0 and 𝒢̇ > 0 during
both radiation and matter domination. The GB term changes its sign from negative to positive dur-
ing the transition from the matter era (𝒢 = −12𝐻4) to the de Sitter epoch (𝒢 = 24𝐻4). Perturbing
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Eq. (12.11) about the background radiation and matter dominated solutions, the perturbations
in the Hubble parameter involve the mass squared given by 𝑀2 ≡ 1/(96𝐻4𝑓,𝒢𝒢) [188]. For the

stability of background solutions we require that 𝑀2 > 0, i.e., 𝑓,𝒢𝒢 > 0. Since the term 24𝐻3𝑓𝒢
in Eq. (12.11) is of the order of 𝐻8𝑓,𝒢𝒢 , this is suppressed relative to 3𝐻2 for 𝐻6𝑓,𝒢𝒢 ≪ 1 during
the radiation and matter dominated epochs. In order to satisfy this condition we require that 𝑓,𝒢𝒢
approaches 0 in the limit |𝒢| → ∞. The deviation from the ΛCDM model can be quantified by
the following quantity [182]

𝜇 ≡ 𝐻 ˙𝑓,𝒢 = 𝐻𝒢̇𝑓,𝒢𝒢 = 72𝐻6𝑓,𝒢𝒢 [(1 + 𝑤eff)(1 + 3𝑤eff)− 𝑤′
eff/2] , (12.15)

where a prime represents a derivative with respect to 𝑁 = ln 𝑎. During the radiation and matter
eras we have 𝜇 = 192𝐻6𝑓,𝒢𝒢 and 𝜇 = 72𝐻6𝑓,𝒢𝒢 , respectively, whereas at the de Sitter attractor
𝜇 = 0.

The GB term inside and outside a spherically symmetric body (mass 𝑀⊙ and radius 𝑟⊙) with
a homogeneous density is given by 𝒢 = −48(𝐺𝑀⊙)

2/𝑟6⊙ and 𝒢 = 48(𝐺𝑀⊙)
2/𝑟6, respectively (𝑟 is

a distance from the center of symmetry). In the vicinity of Sun or Earth, |𝒢| is much larger than
the present cosmological GB term, 𝒢0. As we move from the interior to the exterior of the star,
the GB term crosses 0 from negative to positive. This means that 𝑓(𝒢) and its derivatives with
respect to 𝒢 need to be regular for both negative and positive values of 𝒢 whose amplitudes are
much larger than 𝒢0.

The above discussions show that viable 𝑓(𝒢) models need to obey the following conditions:

1. 𝑓(𝒢) and its derivatives 𝑓,𝒢 , 𝑓,𝒢𝒢 , . . . are regular.

2. 𝑓,𝒢𝒢 > 0 for all 𝒢 and 𝑓,𝒢𝒢 approaches +0 in the limit |𝒢| → ∞.

3. 0 < 𝐻6
1𝑓,𝒢𝒢(𝐻1) < 1/384 at the de Sitter point.

A couple of representative models that can satisfy these conditions are [188]

(A) 𝑓(𝒢) = 𝜆
𝒢√
𝒢*

arctan

(︂
𝒢
𝒢*

)︂
− 1

2
𝜆
√︀

𝒢* ln

(︂
1 +

𝒢2

𝒢2
*

)︂
− 𝛼𝜆

√︀
𝒢* , (12.16)

(B) 𝑓(𝒢) = 𝜆
𝒢√
𝒢*

arctan

(︂
𝒢
𝒢*

)︂
− 𝛼𝜆

√︀
𝒢* , (12.17)

where 𝛼, 𝜆 and 𝒢* ∼ 𝐻4
0 are positive constants. The second derivatives of 𝑓 in terms of 𝒢

for the models (A) and (B) are 𝑓,𝒢𝒢 = 𝜆/[𝒢3/2
* (1 + 𝒢2/𝒢2

*)] and 𝑓,𝒢𝒢 = 2𝜆/[𝒢3/2
* (1 + 𝒢2/𝒢2

*)
2],

respectively. They are constructed to give rise to the positive 𝑓,𝒢𝒢 for all 𝒢. Of course other models
can be introduced by following the same prescription. These models can pass the constraint of
successful expansion history that allows the smooth transition from radiation and matter eras to
the accelerated epoch [188, 633]. Although it is possible to have a viable expansion history at
the background level, the study of matter density perturbations places tight constraints on these
models. We shall address this issue in Section 12.3.4.

12.3.2 Numerical analysis

In order to discuss cosmological solutions in the low-redshift regime numerically for the models
(12.16) and (12.17), it is convenient to introduce the following dimensionless quantities

𝑥 ≡ 𝐻̇

𝐻2
, 𝑦 ≡ 𝐻

𝐻*
, Ω𝑚 ≡ 𝜅2𝜌𝑚

3𝐻2
, Ω𝑟 ≡ 𝜅2𝜌𝑟

3𝐻2
, (12.18)
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where 𝐻* = 𝐺
1/4
* . We then obtain the following equations of motion [188]

𝑥′ = −4𝑥2 − 4𝑥+
1

242𝐻6𝑓,𝒢𝒢

[︂
𝒢𝑓,𝒢 − 𝑓

𝐻2
− 3(1− Ω𝑚 − Ω𝑟)

]︂
, (12.19)

𝑦′ = 𝑥𝑦 , (12.20)

Ω′
𝑚 = −(3 + 2𝑥)Ω𝑚 , (12.21)

Ω′
𝑟 = −(4 + 2𝑥)Ω𝑟 , (12.22)

where a prime represents a derivative with respect to 𝑁 = ln 𝑎. The quantities 𝐻6𝑓,𝒢𝒢 and
(𝒢𝑓,𝒢 − 𝑓)/𝐻2 can be expressed by 𝑥 and 𝑦 once the model is specified.

Figure 12: The evolution of 𝜇 (multiplied by 104) and 𝑤eff versus the redshift 𝑧 = 𝑎0/𝑎 − 1 for the
model (12.16) with parameters 𝛼 = 100 and 𝜆 = 3 × 10−4. The initial conditions are chosen to be
𝑥 = −1.499985, 𝑦 = 20, and Ω𝑚 = 0.99999. We do not take into account radiation in this simulation.
From [182].

Figure 12 shows the evolution of 𝜇 and 𝑤eff without radiation for the model (12.16) with
parameters 𝛼 = 100 and 𝜆 = 3 × 10−4. The quantity 𝜇 is much smaller than unity in the deep
matter era (𝑤eff ≃ 0) and it reaches a maximum value prior to the accelerated epoch. This is
followed by the decrease of 𝜇 toward 0, as the solution approaches the de Sitter attractor with
𝑤eff = −1. While the maximum value of 𝜇 in this case is of the order of 10−4, it is also possible to
realize larger maximum values of 𝜇 such as 𝜇max & 0.1.

For high redshifts the equations become too stiff to be integrated directly. This comes from
the fact that, as we go back to the past, the quantity 𝑓,𝒢𝒢 (or 𝜇) becomes smaller and smaller. In
fact, this also occurs for viable f (R) dark energy models in which 𝑓,𝑅𝑅 decreases rapidly for higher
𝑧. Here we show an iterative method (known as the “fixed-point” method) [420, 188] that can be
used in these cases, provided no singularity is present in the high redshift regime [188]. We define
𝐻̄2 and 𝒢 to be 𝐻̄2 ≡ 𝐻2/𝐻2

0 and 𝒢 ≡ 𝒢/𝐻4
0 , where the subscript “0” represents present values.

The models (A) and (B) can be written in the form

𝑓(𝒢) = 𝑓(𝒢)𝐻2
0 − Λ̄𝐻2

0 , (12.23)
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where Λ̄ = 𝛼𝜆
√
𝐺*/𝐻

2
0 and 𝑓(𝒢) is a function of 𝒢. The modified Friedmann equation reduces to

𝐻̄2 − 𝐻̄2
Λ =

1

3
(𝑓,𝒢𝒢 − 𝑓)− 8

d𝑓,𝒢
d𝑁

𝐻̄4 , (12.24)

where 𝐻̄2
Λ = Ω

(0)
𝑚 /𝑎3+Ω

(0)
𝑟 /𝑎4+Λ̄/3 (which represents the Hubble parameter in the ΛCDM model).

In the following we omit the tilde for simplicity.
In Eq. (12.24) there are derivatives of 𝐻 in terms of 𝑁 up to second-order. Then we write

Eq. (12.24) in the form

𝐻2 −𝐻2
Λ = 𝐶

(︁
𝐻2, 𝐻2′, 𝐻2′′

)︁
, (12.25)

where 𝐶 = (𝑓,𝒢𝒢−𝑓)/3−8𝐻4 (d𝑓,𝒢/d𝑁). At high redshifts (𝑎 . 0.01) the models (A) and (B) are
close to the ΛCDM model, i.e., 𝐻2 ≃ 𝐻2

Λ. As a starting guess we set the solution to be 𝐻2
(0) = 𝐻2

Λ.

The first iteration is then 𝐻2
(1) = 𝐻2

Λ + 𝐶(0), where 𝐶(0) ≡ 𝐶
(︀
𝐻2

(0), 𝐻
2
(0)

′
, 𝐻2

(0)

′′)︀
. The second

iteration is 𝐻2
(2) = 𝐻2

Λ + 𝐶(1), where 𝐶(1) ≡ 𝐶
(︀
𝐻2

(1), 𝐻
2
(1)

′
, 𝐻2

(1)

′′)︀
.
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Figure 13: Plot of the absolute errors log10(|𝐻2
𝑖 −𝐻2

Λ −𝐶𝑖|) (left) and log10

[︁
|𝐻2

𝑖 −𝐻2
Λ−𝐶𝑖|

|𝐻2
𝑖 −𝐻2

Λ+𝐶𝑖|

]︁
(right) versus

𝑁 = ln 𝑎 for the model (12.16) with 𝑖 = 0, 1, · · · , 6. The model parameters are 𝛼 = 10 and 𝜆 = 0.075. The
iterative method provides the solutions with high accuracy in the regime 𝑁 . −4. From [188].

If the starting guess is in the basin of a fixed point, 𝐻2
(𝑖) will converge to the solution of the

equation after the 𝑖-th iteration. For the convergence we need the following condition

𝐻2
𝑖+1 −𝐻2

𝑖

𝐻2
𝑖+1 +𝐻2

𝑖

<
𝐻2

𝑖 −𝐻2
𝑖−1

𝐻2
𝑖 +𝐻2

𝑖−1

, (12.26)

which means that each correction decreases for larger 𝑖. The following relation is also required to
be satisfied:

𝐻2
𝑖+1 −𝐻2

Λ − 𝐶𝑖+1

𝐻2
𝑖+1 −𝐻2

Λ + 𝐶𝑖+1
<
𝐻2

𝑖 −𝐻2
Λ − 𝐶𝑖

𝐻2
𝑖 −𝐻2

Λ + 𝐶𝑖
. (12.27)

Once the solution begins to converge, one can stop the iteration up to the required/available level of
precision. In Figure 13 we plot absolute errors for the model (12.16), which shows that the iterative
method can produce solutions accurately in the high-redshift regime. Typically this method stops
working when the initial guess is outside the basin of convergence. This happen for low redshifts
in which the modifications of gravity come into play. In this regime we just need to integrate
Eqs. (12.19) – (12.22) directly.
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12.3.3 Solar system constraints

We study local gravity constraints on cosmologically viable 𝑓(𝒢) models. First of all there is a big
difference between 𝑓(𝒢) and f (R) theories. The vacuum GR solution of a spherically symmetric
manifold, the Schwarzschild metric, corresponds to a vanishing Ricci scalar (𝑅 = 0) outside the
star. In the presence of non-relativistic matter, 𝑅 approximately equals to the matter density 𝜅2𝜌𝑚
for viable f (R) models.

On the other hand, even for the vacuum exterior of the Schwarzschild metric, the GB term
has a non-vanishing value 𝒢 = 𝑅𝛼𝛽𝛾𝛿𝑅

𝛼𝛽𝛾𝛿 = 12 𝑟2𝑠/𝑟
6 [178, 185], where 𝑟𝑠 = 2𝐺𝑀⊙/𝑟⊙ is the

Schwarzschild radius of the object. In the regime |𝒢| ≫ 𝒢* the models (A) and (B) have a correction
term of the order 𝜆

√
𝒢* 𝒢2

*/𝒢2 plus a cosmological constant term −(𝛼+1)𝜆
√
𝒢*. Since 𝒢 does not

vanish even in the vacuum, the correction term 𝒢2
*/𝒢2 can be much smaller than 1 even in the

absence of non-relativistic matter. If matter is present, this gives rise to the contribution of the
order of 𝑅2 ≈ (𝜅2𝜌𝑚)2 to the GB term. The ratio of the matter contribution to the vacuum value
𝒢(0) = 12 𝑟2𝑠/𝑟

6 is estimated as

𝑅𝑚 ≡ 𝑅2

𝒢(0)
≈ (8𝜋)2

48

𝜌2𝑚𝑟
6

𝑀2
⊙
. (12.28)

At the surface of Sun (radius 𝑟⊙ = 6.96 × 1010 cm = 3.53 × 1024 GeV−1 and mass 𝑀⊙ = 1.99 ×
1033 g = 1.12 × 1057 GeV), the density 𝜌𝑚 drops down rapidly from the order 𝜌𝑚 ≈ 10−2 g/cm

3

to the order 𝜌𝑚 ≈ 10−16 g/cm
3
. If we take the value 𝜌𝑚 = 10−2 g/cm

3
we have 𝑅𝑚 ≈ 4 × 10−5

(where we have used 1 g/cm
3
= 4.31 × 10−18 GeV4). Taking the value 𝜌𝑚 = 10−16 g/cm

3
leads

to a much smaller ratio: 𝑅𝑚 ≈ 4 × 10−33. The matter density approaches a constant value
𝜌𝑚 ≈ 10−24 g/cm

3
around the distance 𝑟 = 103𝑟⊙ from the center of Sun. Even at this distance

we have 𝑅𝑚 ≈ 4 × 10−31, which means that the matter contribution to the GB term can be
neglected in the solar system we are interested in.

In order to discuss the effect of the correction term 𝒢2
*/𝒢2 on the Schwarzschild metric, we

introduce a dimensionless parameter
𝜀 =

√︀
𝒢*/𝒢𝑠 , (12.29)

where 𝒢𝑠 = 12/𝑟4𝑠 is the scale of the GB term in the solar system. Since
√
𝒢* is of the order of the

Hubble parameter 𝐻0 ≈ 70 km sec−1 Mpc−1, the parameter for the Sun is approximately given by
𝜀 ≈ 10−46. We can then decompose the vacuum equations in the form

𝐺𝜇𝜈 + 𝜀Σ𝜇𝜈 = 0 , (12.30)

where 𝐺𝜇𝜈 is the Einstein tensor and

Σ𝜇𝜈 = 8 [𝑅𝜇𝜌𝜈𝜎 +𝑅𝜌𝜈𝑔𝜎𝜇 −𝑅𝜌𝜎𝑔𝜈𝜇 −𝑅𝜇𝜈𝑔𝜎𝜌 +𝑅𝜇𝜎𝑔𝜈𝜌 +𝑅(𝑔𝜇𝜈𝑔𝜎𝜌 − 𝑔𝜇𝜎𝑔𝜈𝜌)/2]∇𝜌∇𝜎𝑓,𝒢

+(𝒢𝑓,𝒢 − 𝑓)𝑔𝜇𝜈 . (12.31)

Here 𝑓 is defined by 𝑓 = 𝜀𝑓 .
We introduce the following ansatz for the metric

d𝑠2 = −𝐴(𝑟, 𝜀) d𝑡2 +𝐵−1(𝑟, 𝜀)d𝑟2 + 𝑟2(d𝜃2 + sin2 𝜃d𝜑2) , (12.32)

where the functions 𝐴 and 𝐵 are expanded as power series in 𝜀, as

𝐴 = 𝐴0(𝑟) +𝐴1(𝑟)𝜀+𝑂(𝜀2) , 𝐵 = 𝐵0(𝑟) +𝐵1(𝑟)𝜀+𝑂(𝜀2) . (12.33)

Then we can solve Eq. (12.30) as follows. At zero-th order the equations read

𝐺𝜇
𝜈
(0)(𝐴0, 𝐵0) = 0 , (12.34)
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which leads to the usual Schwarzschild solution, 𝐴0 = 𝐵0 = 1− 𝑟𝑠/𝑟. At linear order one has

𝜀 [𝐺𝜇
𝜈
(1)(𝐴1, 𝐵1, 𝐴0, 𝐵0) + Σ𝜇

𝜈
(0)(𝐴0, 𝐵0)] = 0 . (12.35)

Since 𝐴0 and 𝐵0 are known, one can solve the differential equations for 𝐴1 and 𝐵1. This process
can be iterated order by order in 𝜀.

For the model (A) introduced in (12.16), we obtain the following differential equations for 𝐴1

and 𝐵1 [185]:

𝜌
d𝐵1

d𝜌
+𝐵1 = 32

√
3𝜆𝜌3 + 12

√
3𝜆𝜌2 ln(𝜌) + (4 ln 𝜀− 2𝛼− 28)

√
3𝜆𝜌2 , (12.36)

(𝜌− 𝜌2)
d𝐴1

d𝜌
+𝐴1 = 8

√
3𝜆𝜌4 − 2

√
3(10 + 6 ln 𝜌+ 2 ln 𝜀− 𝛼)𝜆𝜌3

−2
√
3(𝛼− 6 ln 𝜌− 2 ln 𝜀− 6)𝜆𝜌2 + 𝜌𝐵1, (12.37)

where 𝜌 ≡ 𝑟/𝑟𝑠. The solutions to these equations are

𝐵1 = 8
√
3𝜆𝜌3 + 4

√
3𝜆𝜌2 ln 𝜌+

2

3

√
3 (2 ln 𝜀− 𝛼− 16)𝜆𝜌2 , (12.38)

𝐴1 = −16

3

√
3𝜆𝜌3 +

2

3

√
3 (4− 𝛼+ 6 ln 𝜌+ 2 ln 𝜀)𝜆𝜌2 . (12.39)

Here we have neglected the contribution coming from the homogeneous solution, as this would
correspond to an order 𝜀 renormalization contribution to the mass of the system. Although 𝜀≪ 1,
the term in ln 𝜀 only contributes by a factor of order 102. Since 𝜌 ≫ 1 the largest contributions
to 𝐵1 and 𝐴1 correspond to those proportional to 𝜌3, which are different from the Schwarzschild–
de Sitter contribution (which grows as 𝜌2). Hence the model (12.16) gives rise to the corrections
larger than that in the cosmological constant case by a factor of 𝜌. Since 𝜀 is very small, the
contributions to the solar-system experiments due to this modification are too weak to be detected.
The strongest bound comes from the shift of the perihelion of Mercury, which gives the very mild
bound 𝜆 < 2× 105 [185]. For the model (12.17) the constraint is even weaker, 𝜆(1 +𝛼) < 1014. In
other words, the corrections look similar to the Schwarzschild–de Sitter metric on which only very
weak bounds can be placed.

12.3.4 Ghost conditions in the FLRW background

In the following we shall discuss ghost conditions for the action (12.9). For simplicity let us
consider the vacuum case (𝑆𝑀 = 0) in the FLRW background. The action (12.9) can be expanded
at second order in perturbations for the perturbed metric (6.1), as we have done for the action (6.2)
in Section 7.4. Before doing so, we introduce the gauge-invariant perturbed quantity

ℛ = 𝜓 − 𝐻

𝜉
𝛿𝜉 , where 𝜉 ≡ 𝑓,𝒢 . (12.40)

This quantity completely describes the dynamics of all the scalar perturbations. Note that for
the gauge choice 𝛿𝜉 = 0 one has ℛ = 𝜓. Integrating out all the auxiliary fields, we obtain the
second-order perturbed action [186]

𝛿𝑆(2) =

∫︁
d𝑡d3𝑥 𝑎3𝑄𝑠

[︂
1

2
ℛ̇2 − 1

2

𝑐2𝑠
𝑎2

(∇ℛ)2
]︂
, (12.41)

where we have defined

𝑄𝑠 ≡
24(1 + 4𝜇)𝜇2

𝜅2(1 + 6𝜇)2
, (12.42)

𝑐2𝑠 ≡ 1 +
2𝐻̇

𝐻2
= −2− 3𝑤eff . (12.43)
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Recall that 𝜇 has been introduced in Eq. (12.15).
In order to avoid that the scalar mode becomes a ghost, one requires that 𝑄𝑠 > 0, i.e.

𝜇 > −1/4 . (12.44)

This relation is dynamical, as one requires to know how 𝐻 and its derivatives change in time.
Therefore whatever 𝑓(𝒢) is, the propagating scalar mode can still become a ghost. If ˙𝑓,𝒢 > 0
and 𝐻 > 0, then 𝜇 > 0 and hence the ghost does not appear. The quantity 𝑐𝑠 characterizes
the speed of propagation for the scalar mode, which is again dependent on the dynamics. For
any GB theory, one can give initial conditions of 𝐻 and 𝐻̇ such that 𝑐2𝑠 becomes negative. This
instability, if present, governs the high momentum modes in Fourier space, which corresponds to
an Ultra-Violet (UV) instability. In order to avoid this UV instability in the vacuum, we require
that the effective equation of state satisfies 𝑤eff < −2/3. At the de Sitter point (𝑤eff = −1) the
speed 𝑐𝑠 is time-independent and reduces to the speed of light (𝑐𝑠 = 1).

Suppose that the scalar mode does not have a ghost mode, i.e., 𝑄𝑠 > 0. Making the field
redefinition 𝑢 = 𝑧𝑠ℛ and 𝑧𝑠 = 𝑎

√
𝑄𝑠, the action (12.41) can be written as

𝛿𝑆(2) =

∫︁
d𝜂 d3𝑥

[︂
1

2
𝑢′2 − 1

2
𝑐2𝑠(∇𝑢)2 −

1

2
𝑎2𝑀2

𝑠 𝑢
2

]︂
, (12.45)

where a prime represents a derivative with respect to 𝜂 =
∫︀
𝑎−1d𝑡 and 𝑀2

𝑠 ≡ −𝑧′′𝑠 /(𝑎2𝑧𝑠). In order
to realize the positive mass squared (𝑀2

𝑠 > 0), the condition 𝑓,𝒢𝒢 > 0 needs to be satisfied in the
regime 𝜇≪ 1 (analogous to the condition 𝑓,𝑅𝑅 > 0 in metric f (R) gravity).

12.3.5 Viability of 𝑓(𝒢) gravity in the presence of matter

In the presence of matter, other degrees of freedom appear in the action. Let us take into account
a perfect fluid with the barotropic equation of state 𝑤𝑀 = 𝑃𝑀/𝜌𝑀 . It can be proved that, for
small scales (i.e., for large momenta 𝑘) in Fourier space, there are two different propagation speeds
given by [182]

𝑐21 = 𝑤𝑀 , (12.46)

𝑐22 = 1 +
2𝐻̇

𝐻2
+

1 + 𝑤𝑀

1 + 4𝜇

𝜅2𝜌𝑀
3𝐻2

. (12.47)

The first result is expected, as it corresponds to the matter propagation speed. Meanwhile the
presence of matter gives rise to a correction term to 𝑐22 in Eq. (12.43). This latter result is due
to the fact that the background equations of motion are different between the two cases. Recall
that for viable 𝑓(𝒢) models one has |𝜇| ≪ 1 at high redshifts. Since the background evolution is
approximately given by 3𝐻2 ≃ 8𝜋𝐺𝜌𝑀 and 𝐻̇/𝐻2 ≃ −(3/2)(1 + 𝑤𝑀 ), it follows that

𝑐22 ≃ −1− 2𝑤𝑀 . (12.48)

Hence the UV instability can be avoided for 𝑤𝑀 < −1/2. During the radiation era (𝑤𝑀 = 1/3) and
the matter era (𝑤𝑀 = 0), the large momentum modes are unstable. In particular this leads to the
violent growth of matter density perturbations incompatible with the observations of large-scale
structure [383, 182]. The onset of the negative instability can be characterized by the condition [182]

𝜇 ≈ (𝑎𝐻/𝑘)2 . (12.49)

As long as 𝜇 ̸= 0 we can always find a wavenumber 𝑘 (≫ 𝑎𝐻) satisfying the condition (12.49).
For those scales linear perturbation theory breaks down, and in principle one should look for all
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higher-order contributions. Hence the background solutions cannot be trusted any longer, at least
for small scales, which makes the theory unpredictable. In the same regime, one can easily see that
the scalar mode is not a ghost, as Eq. (12.44) is satisfied (see Figure 12). Therefore the instability
is purely classical. This kind of UV instability sets serious problems for any theory, including 𝑓(𝒢)
gravity.

12.3.6 The speed of propagation in more general modifications of gravity

We shall also discuss more general theories given by Eq. (12.8), i.e.

𝑆 =

∫︁
d4𝑥

√
−𝑔 𝑓(𝑅,𝒢) , (12.50)

where we do not take into account the matter term here. It is clear that this function allows more
freedom with respect to the background cosmological evolution8, as now one needs a two-parameter
function to choose. However, once more the behavior of perturbations proves to be a strong tool
in order to have a deep insight into the theory.

The second-order action for perturbations is given by

𝑆 =

∫︁
d𝑡d3𝑥 𝑎3𝑄𝑠

[︂
1

2
ℛ̇2 − 1

2

𝐵1

𝑎2
(∇ℛ)2 − 1

2

𝐵2

𝑎4
(∇2ℛ)2

]︂
, (12.51)

where we have introduced the gauge-invariant field

ℛ = 𝜓 − 𝐻(𝛿𝐹 + 4𝐻2𝛿𝜉)

𝐹̇ + 4𝐻2𝜉
, (12.52)

with 𝐹 ≡ 𝑓,𝑅 and 𝜉 ≡ 𝑓,𝒢 . The forms of 𝑄𝑠(𝑡), 𝐵1(𝑡) and 𝐵2(𝑡) are given explicitly in [186].

The quantity 𝐵2 vanishes either on the de Sitter solution or for those theories satisfying

Δ ≡ 𝜕2𝑓

𝜕𝑅2

𝜕2𝑓

𝜕𝒢2
−
(︂

𝜕2𝑓

𝜕𝑅𝜕𝒢

)︂2

= 0 . (12.53)

If Δ ̸= 0, then the modes with high momenta 𝑘 have a very different propagation. Indeed the
frequency 𝜔 becomes 𝑘-dependent, that is [186]

𝜔2 = 𝐵2
𝑘4

𝑎4
. (12.54)

If 𝐵2 < 0, then a violent instability arises. If 𝐵2 > 0, then these modes propagate with a group
velocity

𝑣𝑔 = 2
√︀
𝐵2

𝑘

𝑎
. (12.55)

This result implies that the superluminal propagation is always present in these theories, and
the speed is scale-dependent. On the other hand, when Δ = 0, this behavior is not present at
all. Therefore, there is a physical property by which different modifications of gravity can be
distinguished. The presence of an extra matter scalar field does not change this regime at high
𝑘 [185], because the Laplacian of the gravitational field is not modified by the field coupled to
gravity in the form 𝑓(𝜑,𝑅,𝒢).

8 There are several works about the background cosmological dynamics for some 𝑓(𝑅,𝒢) models [15, 14, 229].
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12.4 Gauss–Bonnet gravity coupled to a scalar field

At the end of this section we shall briefly discuss theories with a GB term coupled to a scalar
field with the action given in Eq. (12.6). The scalar coupling with the GB term often appears as
higher-order corrections to low-energy, tree-level effective string theory based on toroidal compact-
ifications [275, 276]. More explicitly the low-energy string effective action in four dimensions is
given by

𝑆 =

∫︁
d4𝑥

√
−𝑔𝑒−𝜑

[︂
1

2
𝑅+

1

2
(∇𝜑)2 + ℒ𝑀 + ℒ𝑐 · · ·

]︂
, (12.56)

where 𝜑 is a dilaton field that controls the string coupling parameter, 𝑔2𝑠 = 𝑒𝜑. The above action
is the string frame action in which the dilaton is directly coupled to a scalar curvature, 𝑅. The
Lagrangian ℒ𝑀 is that of additional matter fields (fluids, axion, modulus etc.). The Lagrangian
ℒ𝑐 corresponds to higher-order string corrections including the coupling between the GB term and
the dilaton. A possible set of corrections include terms of the form [273, 105, 147]

ℒ𝑐 = −1

2
𝛼′𝜆𝜁(𝜑)

[︀
𝑐𝒢 + 𝑑(∇𝜑)4

]︀
, (12.57)

where 𝛼′ is a string expansion parameter and 𝜁(𝜑) is a general function of 𝜑. The constant 𝜆 is
an additional parameter which depends on the types of string theories: 𝜆 = −1/4,−1/8, and 0
correspond to bosonic, heterotic, and superstrings, respectively. If we require that the full action
agrees with the three-graviton scattering amplitude, the coefficients 𝑐 and 𝑑 are fixed to be 𝑐 = −1,
𝑑 = 1, and 𝜁(𝜑) = −𝑒−𝜑 [425].

In the Pre-Big-Bang (PBB) scenario [275] the dilaton evolves from a weakly coupled regime
(𝑔𝑠 ≪ 1) toward a strongly coupled region (𝑔𝑠 & 1) during which the Hubble parameter grows in
the string frame (superinflation). This superinflation is driven by a kinetic energy of the dilaton
field and it is called a PBB branch. There exists another Friedmann branch with a decreasing
curvature. If ℒ𝑐 = 0 these branches are disconnected to each other with the appearance of a
curvature singularity. However the presence of the correction ℒ𝑐 allows the existence of non-
singular solutions that connect two branches [273, 105, 147].

The corrections ℒ𝑐 are the sum of the tree-level 𝛼′ corrections and the quantum 𝑛-loop cor-
rections (𝑛 = 1, 2, 3, · · · ) with the function 𝜁(𝜑) given by 𝜁(𝜑) = −

∑︀
𝑛=0 𝐶𝑛𝑒

(𝑛−1)𝜑, where 𝐶𝑛

(𝑛 ≥ 1) are coefficients of 𝑛-loop corrections (with 𝐶0 = 1). In the context of the PBB cosmology
it was shown in [105] there exist regular cosmological solutions in the presence of tree-level and
one-loop corrections, but this is not realistic in that the Hubble rate in Einstein frame contin-
ues to increase after the bounce. Nonsingular solutions that connect to a Friedmann branch
can be obtained by accounting for the corrections up to two-loop with a negative coefficient
(𝐶2 < 0) [105, 147]. In the context of Ekpyrotic cosmology where a negative potential 𝑉 (𝜑)
is present in the Einstein frame, it is possible to realize nonsingular solutions by taking into ac-
count corrections similar to ℒ𝑐 given above [588]. For a system in which a modulus field is coupled
to the GB term, one can also realize regular solutions even without the higher-derivative term
(∇𝜑)4 in Eq. (12.57) [34, 224, 336, 337, 338, 623, 12, 582]. These results show that the GB term
can play a crucial role to eliminate the curvature singularity.

In the context of dark energy there are some works which studied the effect of the GB term
on the late-time cosmic acceleration. A simple model that can give rise to cosmic acceleration is
provided by the action [463]

𝑆 =

∫︁
d4𝑥

√
−𝑔
[︂
1

2
𝑅− 1

2
(∇𝜑)2 − 𝑉 (𝜑)− 𝑓(𝜑)𝒢

]︂
+ 𝑆𝑀 , (12.58)

where 𝑉 (𝜑) and 𝑓(𝜑) are functions of a scalar field 𝜑. This can be viewed as the action in the
Einstein frame corresponding to the Jordan frame action (12.56). We note that the conformal
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transformation gives rise to a coupling between the field 𝜑 and non-relativistic matter in the
Einstein frame. Such a coupling is assumed to be negligibly small at low energy scales, as in the
case of the runaway dilaton scenario [274, 176]. For the exponential potential 𝑉 (𝜑) = 𝑉0𝑒

−𝜆𝜑 and
the coupling 𝑓(𝜑) = (𝑓0/𝜇)𝑒

𝜇𝜑, cosmological dynamics has been extensively studied in [463, 360,
361, 593] (see also [523, 452, 453, 381]). In particular it was found in [360, 593] that a scaling
matter era can be followed by a late-time de Sitter solution which appears due to the presence of
the GB term.

Koivisto and Mota [360] placed observational constraints on the above model using the Gold
data set of Supernovae Ia together with the CMB shift parameter data of WMAP. The parameter
𝜆 is constrained to be 3.5 < 𝜆 < 4.5 at the 95% confidence level. In the second paper [361], they
included the constraints coming from the BBN, LSS, BAO and solar system data and showed that
these data strongly disfavor the GB model discussed above. Moreover, it was shown in [593] that
tensor perturbations are subject to negative instabilities in the above model when the GB term
dominates the dynamics (see also [290]). Amendola et al. [25] studied local gravity constraints on
the model (12.58) and showed that the energy contribution coming from the GB term needs to be
strongly suppressed for consistency with solar-system experiments. This is typically of the order of
ΩGB . 10−30 and hence the GB term of the coupling 𝑓(𝜑)𝒢 cannot be responsible for the current
accelerated expansion of the universe.

In summary the GB gravity with a scalar field coupling allows nonsingular solutions in the high
curvature regime, but such a coupling is difficult to be compatible with the cosmic acceleration
at low energy scales. Recall that dark energy models based on 𝑓(𝒢) gravity also suffers from the
UV instability problem. This shows how the presence of the GB term makes it difficult to satisfy
all experimental and observational constraints if such a modification is responsible for the late-
time acceleration. This property is different from metric f (R) gravity in which viable dark energy
models can be constructed.
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13 Other Aspects of f (R) Theories and Modified Gravity

In this section we discuss a number of topics related with f (R) theories and modified gravity.
These include weak lensing, thermodynamics and horizon entropy, unified models of inflation and
dark energy, f (R) theories in the extra dimensions, Vainshtein mechanism, DGP model, Noether
and Galileon symmetries.

13.1 Weak lensing

Weak gravitational lensing is sensitive to the growth of large scale structure as well as the relation
between matter and gravitational potentials. Since the evolution of matter perturbations and
gravitational potentials is different from that of GR, the observations of weak lensing can provide
us an important test for probing modified gravity on galactic scales (see [2, 527, 27, 595, 528, 548]
for theoretical aspects and [546, 348, 322, 3, 629, 373, 326, 177, 73] for observational aspects). In
particular a number of wide-field galaxy surveys are planned to measure galaxy counts and weak
lensing shear with high accuracy, so these will be useful to distinguish between modified gravity
and the ΛCDM model in future observations.

Let us consider BD theory with the action (10.10), which includes f (R) gravity as a specific
case. Note that the method explained below can be applied to other modified gravity models as
well. The equations of matter perturbations 𝛿𝑚 and gravitational potentials Φ,Ψ in BD theory
have been already derived under the quasi-static approximation on sub-horizon scales (𝑘 ≫ 𝑎𝐻),
see Eqs. (10.38), (10.39), and (10.40). In order to discuss weak lensing observables, we define the
lensing deflecting potential

Φwl ≡ Φ+Ψ , (13.1)

and the effective density field

𝛿eff ≡ − 𝑎

3𝐻2
0Ω

(0)
𝑚

𝑘2Φwl , (13.2)

where the subscript “0” represents present values with 𝑎0 = 1. Using the relation 𝜌𝑚 = 3𝐹0𝐻
2
0Ω

(0)
𝑚 /𝑎3

with Eqs. (13.1) and (13.2), it follows that

Φwl = −𝑎
2

𝑘2
𝜌𝑚
𝐹
𝛿𝑚 , 𝛿eff =

𝐹0

𝐹
𝛿𝑚 . (13.3)

Writing the angular position of a source and the direction of weak lensing observation to be 𝜃𝑆
and 𝜃𝐼 , respectively, the deformation of the shape of galaxies can be quantified by the amplification
matrix 𝒜 = d𝜃𝑆/d𝜃𝐼 . The components of the matrix 𝒜 are given by [66]

𝒜𝜇𝜈 = 𝐼𝜇𝜈 −
∫︁ 𝜒

0

𝜒′(𝜒− 𝜒′)

𝜒
𝜕𝜇𝜈Φwl[𝜒

′𝜃, 𝜒′]d𝜒′ , (13.4)

where 𝜒 =
∫︀ 𝑧

0
d𝑧′/𝐻(𝑧′) is a comoving radial distance (𝑧 is a redshift). The convergence 𝜅wl and the

shear 𝛾⃗ = (𝛾1, 𝛾2) can be derived from the components of the 2×2 matrix 𝒜, as 𝜅wl = 1−(1/2)Tr𝒜
and 𝛾⃗ = ([𝒜22 −𝒜11]/2,𝒜12). For a redshift distribution 𝑝(𝜒)d𝜒 of the source, the convergence

can be expressed as 𝜅wl(𝜃) =
∫︀
𝑝(𝜒)𝜅wl(𝜃, 𝜒)d𝜒. Using Eqs. (13.2) and (13.4) it follows that

𝜅wl(𝜃) =
3

2
𝐻2

0Ω
(0)
𝑚

∫︁ 𝜒𝐻

0

𝑔(𝜒)𝜒
𝛿eff [𝜒 𝜃, 𝜒]

𝑎
d𝜒 , (13.5)

where 𝜒𝐻 is the maximum distance to the source and 𝑔(𝜒) ≡
∫︀ 𝜒𝐻

𝜒
𝑝(𝜒′) (𝜒′ − 𝜒)/𝜒′d𝜒′.

The convergence is a function on the 2-sphere and hence it can be expanded in the form

𝜅wl(𝜃) =
∫︀
𝜅̂wl(ℓ⃗)𝑒

𝑖ℓ⃗·𝜃 d2ℓ⃗
2𝜋 , where ℓ⃗ = (ℓ1, ℓ2) with ℓ1 and ℓ2 integers. We define the power spectrum
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of the shear to be ⟨𝜅̂wl(ℓ⃗)𝜅̂
*
wl(ℓ⃗

′)⟩ = 𝑃𝜅(ℓ)𝛿
(2)(ℓ⃗ − ℓ⃗′). Then the convergence has the same power

spectrum as 𝑃𝜅, which is given by [66, 601]

𝑃𝜅(ℓ) =
9𝐻4

0 (Ω
(0)
𝑚 )2

4

∫︁ 𝜒𝐻

0

[︂
𝑔(𝜒)

𝑎(𝜒)

]︂2
𝑃𝛿eff

[︂
ℓ

𝜒
, 𝜒

]︂
d𝜒 . (13.6)

We assume that the sources are located at the distance 𝜒𝑠 (corresponding to the redshift 𝑧𝑠), giving
the relations 𝑝(𝜒) = 𝛿(𝜒− 𝜒𝑠) and 𝑔(𝜒) = (𝜒𝑠 − 𝜒)/𝜒𝑠. From Eq. (13.3) 𝑃𝛿eff can be expressed as
𝑃𝛿eff = (𝐹0/𝐹 )

2𝑃𝛿𝑚 , where 𝑃𝛿𝑚 is the matter power spectrum. Hence the convergence spectrum
(13.6) reads

𝑃𝜅(ℓ) =
9𝐻4

0 (Ω
(0)
𝑚 )2

4

∫︁ 𝜒𝑠

0

(︂
𝜒𝑠 − 𝜒

𝜒𝑠𝑎

𝐹0

𝐹

)︂2

𝑃𝛿𝑚

[︂
ℓ

𝜒
, 𝜒

]︂
d𝜒. (13.7)

We recall that, during the matter era, the transition from the GR regime (𝛿𝑚 ∝ 𝑡2/3 and

Φwl = constant) to the scalar-tensor regime (𝛿𝑚 ∝ 𝑡(
√

25+48𝑄2−1)/6 and Φwl ∝ 𝑡(
√

25+48𝑄2−5)/6)
occurs at the redshift 𝑧𝑘 characterized by the condition (10.45). Since the early evolution of
perturbations is similar to that in the ΛCDM model, the weak lensing potential at late times is
given by the formula [214]

Φwl(𝑘, 𝑎) =
9

10
Φwl(𝑘, 𝑎𝑖)𝑇 (𝑘)

𝐷(𝑘, 𝑎)

𝑎
, (13.8)

where Φwl(𝑘, 𝑎𝑖) ≃ 2Φ(𝑘, 𝑎𝑖) is the initial potential generated during inflation, 𝑇 (𝑘) is a transfer
function describing the epochs of horizon crossing and radiation/matter transition (50 . 𝑧 .
106), and 𝐷(𝑘, 𝑎) is the growth function at late times defined by 𝐷(𝑘, 𝑎)/𝑎 = Φwl(𝑎)/Φwl(𝑎𝐼) (𝑎𝐼
corresponds to the scale factor at a redshift 1 ≪ 𝑧𝐼 < 50). Our interest is the case in which
the transition redshift 𝑧𝑘 is smaller than 50, so that we can use the standard transfer function of
Bardeen–Bond–Kaiser–Szalay [58]:

𝑇 (𝑥) =
ln(1 + 0.171𝑥)

0.171𝑥

[︂
1.0 + 0.284𝑥+ (1.18𝑥)2 + (0.399𝑥)3 + (0.490𝑥)4

]︂−0.25

, (13.9)

where 𝑥 ≡ 𝑘/𝑘EQ and 𝑘EQ = 0.073Ω
(0)
𝑚 ℎ2 Mpc−1. In the ΛCDM model the growth function

𝐷(𝑘, 𝑎) during the matter dominance is scale-independent (𝐷(𝑎) = 𝑎), but in BD theory with the
action (10.10) the growth of perturbations is generally scale-dependent.

From Eqs. (13.2) and (13.8) we obtain the matter perturbation 𝛿𝑚 for 𝑧 < 𝑧𝐼 :

𝛿𝑚(𝑘, 𝑎) = − 3

10

𝐹

𝐹0

𝑘2

Ω
(0)
𝑚 𝐻2

0

Φwl(𝑘, 𝑎𝑖)𝑇 (𝑘)𝐷(𝑘, 𝑎) . (13.10)

The initial power spectrum generated during inflation is 𝑃Φwl
≡ 4|Φ|2 = (200𝜋2/9𝑘3)(𝑘/𝐻0)

𝑛Φ−1𝛿2𝐻 ,
where 𝑛Φ is the spectral index and 𝛿2𝐻 is the amplitude of Φwl [71, 214]. Therefore we obtain the
power spectrum of matter perturbations, as

𝑃𝛿𝑚(𝑘, 𝑎) ≡ |𝛿𝑚|2 = 2𝜋2

(︂
𝐹

𝐹0

)︂2
𝑘𝑛Φ

(Ω
(0)
𝑚 )2𝐻𝑛Φ+3

0

𝛿2𝐻𝑇
2(𝑘)𝐷2(𝑘, 𝑎). (13.11)

Plugging Eq. (13.11) into Eq. (13.7), we find that the convergence spectrum is given by

𝑃𝜅(ℓ) =
9𝜋2

2

∫︁ 𝑧𝑠

0

(︂
1− 𝑋

𝑋𝑠

)︂2
1

𝐸(𝑧)
𝛿2𝐻

(︂
ℓ

𝑋

)︂𝑛Φ

𝑇 2(𝑥)

(︂
Φwl(𝑧)

Φwl(𝑧𝐼)

)︂2

d𝑧 , (13.12)
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Figure 14: The convergence power spectrum 𝑃𝜅(ℓ) in f (R) gravity (𝑄 = −1/
√
6) for the model (5.19).

This model corresponds to the field potential (10.23). Each case corresponds to (a) 𝑝 = 0.5, 𝐶 = 0.9, (b)

𝑝 = 0.7, 𝐶 = 0.9, and (c) the ΛCDM model. The model parameters are chosen to be Ω
(0)
𝑚 = 0.28, 𝑛Φ = 1,

and 𝛿2𝐻 = 3.2× 10−10. From [595].

where

𝐸(𝑧) =
𝐻(𝑧)

𝐻0
, 𝑋 = 𝐻0𝜒 , 𝑥 =

𝐻0

𝑘EQ

ℓ

𝑋
. (13.13)

Note that 𝑋 satisfies the differential equation d𝑋/d𝑧 = 1/𝐸(𝑧).
In Figure 14 we plot the convergence spectrum in f (R) gravity with the potential (10.23) for

two different values of 𝑝 together with the ΛCDM spectrum. Recall that this model corresponds
to the f (R) model 𝑓(𝑅) = 𝑅 − 𝜇𝑅𝑐

[︀
1− (𝑅/𝑅𝑐)

−2𝑛
]︀
with the correspondence 𝑝 = 2𝑛/(2𝑛 + 1).

Figure 14 shows the convergence spectrum in the linear regime characterized by ℓ . 200. The
ΛCDM model corresponds to the limit 𝑛→ ∞, i.e., 𝑝→ 1. The deviation from the ΛCDM model
becomes more significant for smaller 𝑝 away from 1. Since the evolution of Φwl changes from

Φwl = constant to Φwl ∝ 𝑡(
√

25+48𝑄2−5)/6 at the transition time 𝑡ℓ characterized by the condition
𝑀2/𝐹 = (ℓ/𝜒)2/𝑎2, this leads to a difference of the spectral index of the convergence spectrum
compared to that of the ΛCDM model [595]:

𝑃𝜅(ℓ)

𝑃ΛCDM
𝜅 (ℓ)

∝ ℓΔ𝑛𝑠 , where Δ𝑛𝑠 =
(1− 𝑝)(

√︀
25 + 48𝑄2 − 5)

4− 𝑝
. (13.14)

This estimation is reliable for the transition redshift 𝑧ℓ much larger than 1. In the simulation of
Figure 14 the numerical value of Δ𝑛𝑠 for 𝑝 = 0.7 at ℓ = 200 is 0.056 (with 𝑧ℓ = 3.26), which is
slightly smaller than the analytic value Δ𝑛𝑠 = 0.068 estimated by Eq. (13.14). The deviation of
the spectral index of 𝑃𝜅 from the ΛCDM model will be useful to probe modified gravity in future
high-precision observations. Note that the galaxy-shear correlation spectrum will be also useful to
constrain modified gravity models [528].

Recent data analysis of the weak lensing shear field from the Hubble Space Telescope’s COSMOS
survey along with the ISW effect of CMB and the cross-correlation between the ISW and galaxy
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distributions from 2MASS and SDSS surveys shows that the anisotropic parameter 𝜂 ≡ Ψ/Φ is
constrained to be 𝜂 < 1 at the 98% confidence level [73]. For BD theory with the action (10.10)
the quasi-static results (10.38) and (10.39) of the gravitational potentials give

𝜂 ≃ (𝑘2/𝑎2)(1− 2𝑄2)𝐹 +𝑀2

(𝑘2/𝑎2)(1 + 2𝑄2)𝐹 +𝑀2
. (13.15)

Since 𝜂 ≃ (1− 2𝑄2)/(1+ 2𝑄2) in the scalar-tensor regime (𝑘2/𝑎2 ≫𝑀2/𝐹 ), one can realize 𝜂 < 1
in BD theory. Of course we need to wait for further observational data to reach the conclusion
that modified gravity is favored over the ΛCDM model.

To conclude this session we would like to point out the possibility of using the method of
gravitational lensing tomography [574]. This method consists of considering lensing on different
redshift data-bins. In order to use this method, one needs to know the evolution of both the
linear growth rate and the non-linear one (typically found through a standard linear-to-non-linear
mapping). Afterward, from observational data, one can separate different bins in order to make
fits to the models. Having good data sets, this procedure is strong enough to further constrain the
models, especially together with other probes such as CMB [322, 320, 632, 292].

13.2 Thermodynamics and horizon entropy

It is known that in Einstein gravity the gravitational entropy 𝑆 of stationary black holes is propor-
tional to the horizon area 𝐴, such that 𝑆 = 𝐴/(4𝐺), where 𝐺 is gravitational constant [75]. A black
hole with mass 𝑀 obeys the first law of thermodynamics, 𝑇d𝑆 = d𝑀 [59], where 𝑇 = 𝜅𝑠/(2𝜋) is
a Hawking temperature determined by the surface gravity 𝜅𝑠 [293]. This shows a deep physical
connection between gravity and thermodynamics. In fact, Jacobson [324] showed that Einstein
equations can be derived by using the Clausius relation 𝑇d𝑆 = d𝑄 on local horizons in the Rindler
spacetime together with the relation 𝑆 ∝ 𝐴, where d𝑄 and 𝑇 are the energy flux across the horizon
and the Unruh temperature seen by an accelerating observer just inside the horizon respectively.

Unlike stationary black holes the expanding universe with a cosmic curvature 𝐾 has a dynam-
ically changing apparent horizon with the radius 𝑟𝐴 = (𝐻2 + 𝐾/𝑎2)−1/2, where 𝐾 is a cosmic
curvature [108] (see also [296]). Even in the FLRW spacetime, however, the Friedmann equation
can be written in the thermodynamical form 𝑇d𝑆 = −d𝐸 +𝑊d𝑉 , where 𝑊 is the work density
present in the dynamical background [8]. For matter contents of the universe with energy density
𝜌 and pressure 𝑃 , the work density is given by 𝑊 = (𝜌−𝑃 )/2 [297, 298]. This method is identical
to the one established by Jacobson [324], that is, d𝑄 = −d𝐸 +𝑊d𝑉 .

In metric f (R) gravity Eling et al. [228] showed that a non-equilibrium treatment is required
such that the Clausius relation is modified to d𝑆 = d𝑄/𝑇 + d𝑖𝑆, where 𝑆 = 𝐹𝐴/(4𝐺) is the
Wald horizon entropy [610] and d𝑖𝑆 is the bulk viscosity entropy production term. Note that
𝑆 corresponds to a Noether charge entropy. Motivated by this work, the connections between
thermodynamics and modified gravity have been extensively discussed – including metric f (R)
gravity [6, 7, 281, 431, 619, 620, 230, 103, 51, 50, 157] and scalar-tensor theory [281, 619, 620, 108].

Let us discuss the relation between thermodynamics and modified gravity for the following
general action [53]

𝐼 =

∫︁
d4𝑥

√
−𝑔
[︂
𝑓(𝑅,𝜑,𝑋)

16𝜋𝐺
+ ℒ𝑀

]︂
, (13.16)

where 𝑋 ≡ − (1/2) 𝑔𝜇𝜈∇𝜇𝜑∇𝜈𝜑 is a kinetic term of a scalar field 𝜑. For the matter Lagrangian
ℒ𝑀 we take into account perfect fluids (radiation and non-relativistic matter) with energy density
𝜌𝑀 and pressure 𝑃𝑀 . In the FLRW background with the metric d𝑠2 = ℎ𝛼𝛽d𝑥

𝛼d𝑥𝛽+𝑟2dΩ2, where
𝑟 = 𝑎(𝑡)𝑟 and 𝑥0 = 𝑡, 𝑥1 = 𝑟 with the two dimensional metric ℎ𝛼𝛽 = diag(−1, 𝑎2(𝑡)/[1 −𝐾𝑟2]),

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2010-3

http://www.livingreviews.org/lrr-2010-3


f (R) Theories 109

the Friedmann equations are given by

𝐻2 +
𝐾

𝑎2
=

8𝜋𝐺

3𝐹
(𝜌𝑑 + 𝜌𝑀 ) , (13.17)

𝐻̇ − 𝐾

𝑎2
= −4𝜋𝐺

𝐹
(𝜌𝑑 + 𝑃𝑑 + 𝜌𝑀 + 𝑃𝑀 ) , (13.18)

𝜌̇𝑀 + 3𝐻(𝜌𝑀 + 𝑃𝑀 ) = 0 , (13.19)

where 𝐹 ≡ 𝜕𝑓/𝜕𝑅 and

𝜌𝑑 ≡ 1

8𝜋𝐺

[︂
𝑓,𝑋𝑋 +

1

2
(𝐹𝑅− 𝑓)− 3𝐻𝐹̇

]︂
, (13.20)

𝑃𝑑 ≡ 1

8𝜋𝐺

[︂
𝐹 + 2𝐻𝐹̇ − 1

2
(𝐹𝑅− 𝑓)

]︂
. (13.21)

Note that 𝜌𝑑 and 𝑃𝑑 originate from the energy-momentum tensor 𝑇
(𝑑)
𝜇𝜈 defined by

𝑇 (𝑑)
𝜇𝜈 ≡ 1

8𝜋𝐺

[︂
1

2
𝑔𝜇𝜈(𝑓 −𝑅𝐹 ) +∇𝜇∇𝜈𝐹 − 𝑔𝜇𝜈�𝐹 +

1

2
𝑓,𝑋∇𝜇𝜑∇𝜈𝜑

]︂
, (13.22)

where the Einstein equation is given by

𝐺𝜇𝜈 =
8𝜋𝐺

𝐹

(︁
𝑇 (𝑑)
𝜇𝜈 + 𝑇 (𝑀)

𝜇𝜈

)︁
. (13.23)

Defining the density 𝜌𝑑 and the pressure 𝑃𝑑 of “dark” components in this way, they obey the
following equation

𝜌̇𝑑 + 3𝐻(𝜌𝑑 + 𝑃𝑑) =
3

8𝜋𝐺
(𝐻2 +𝐾/𝑎2)𝐹̇ . (13.24)

For the theories with 𝐹̇ ̸= 0 (including f (R) gravity and scalar-tensor theory) the standard conti-
nuity equation does not hold because of the presence of the last term in Eq. (13.24).

In the following we discuss the thermodynamical property of the theories given above. The ap-

parent horizon is determined by the condition ℎ𝛼𝛽𝜕𝛼𝑟𝜕𝛽𝑟 = 0, which gives 𝑟𝐴 =
(︀
𝐻2 +𝐾/𝑎2

)︀−1/2

in the FLRW spacetime. Taking the differentiation of this relation with respect to 𝑡 and using
Eq. (13.18), we obtain

𝐹d𝑟𝐴
4𝜋𝐺

= 𝑟3𝐴𝐻 (𝜌𝑑 + 𝑃𝑑 + 𝜌𝑀 + 𝑃𝑀 ) d𝑡 . (13.25)

In Einstein gravity the horizon entropy is given by the Bekenstein–Hawking entropy 𝑆 =
𝐴/(4𝐺), where 𝐴 = 4𝜋𝑟2𝐴 is the area of the apparent horizon [59, 75, 293]. In modified gravity
theories one can introduce the Wald entropy associated with the Noether charge [610]:

𝑆 =
𝐴𝐹

4𝐺
. (13.26)

Then, from Eqs. (13.25) and (13.26), it follows that

1

2𝜋𝑟𝐴
d𝑆 = 4𝜋𝑟3𝐴𝐻 (𝜌𝑑 + 𝑃𝑑 + 𝜌𝑀 + 𝑃𝑀 ) d𝑡+

𝑟𝐴
2𝐺

d𝐹 . (13.27)

The apparent horizon has the Hawking temperature 𝑇 = |𝜅𝑠|/(2𝜋), where 𝜅𝑠 is the surface gravity
given by

𝜅𝑠 = − 1

𝑟𝐴

(︂
1−

˙̄𝑟𝐴
2𝐻𝑟𝐴

)︂
= −𝑟𝐴

2

(︂
𝐻̇ + 2𝐻2 +

𝐾

𝑎2

)︂
= −2𝜋𝐺

3𝐹
𝑟𝐴 (𝜌𝑇 − 3𝑃𝑇 ) . (13.28)
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Here we have defined 𝜌𝑇 ≡ 𝜌𝑑+𝜌𝑀 and 𝑃𝑇 ≡ 𝑃𝑑+𝑃𝑀 . For the total equation of state 𝑤𝑇 = 𝑃𝑇 /𝜌𝑇
less than 1/3, as is the case for standard cosmology, one has 𝜅𝑠 ≤ 0 so that the horizon temperature
is given by

𝑇 =
1

2𝜋𝑟𝐴

(︂
1−

˙̄𝑟𝐴
2𝐻𝑟𝐴

)︂
. (13.29)

Multiplying the term 1− ˙̄𝑟𝐴/(2𝐻𝑟𝐴) for Eq. (13.27), we obtain

𝑇d𝑆 = 4𝜋𝑟3𝐴𝐻(𝜌𝑑 + 𝑃𝑑 + 𝜌𝑀 + 𝑃𝑀 )d𝑡− 2𝜋𝑟2𝐴(𝜌𝑑 + 𝑃𝑑 + 𝜌𝑀 + 𝑃𝑀 )d𝑟𝐴 +
𝑇

𝐺
𝜋𝑟2𝐴d𝐹. (13.30)

In Einstein gravity the Misner-Sharp energy [428] is defined by 𝐸 = 𝑟𝐴/(2𝐺). In f (R) gravity
and scalar-tensor theory this can be extended to 𝐸 = 𝑟𝐴𝐹/(2𝐺) [281]. Using this expression for
𝑓(𝑅,𝜑,𝑋) theory, we have

𝐸 =
𝑟𝐴𝐹

2𝐺
= 𝑉

3𝐹 (𝐻2 +𝐾/𝑎2)

8𝜋𝐺
= 𝑉 (𝜌𝑑 + 𝜌𝑀 ) , (13.31)

where 𝑉 = 4𝜋𝑟3𝐴/3 is the volume inside the apparent horizon. Using Eqs. (13.19) and (13.24), we
find

d𝐸 = −4𝜋𝑟3𝐴𝐻(𝜌𝑑 + 𝑃𝑑 + 𝜌𝑀 + 𝑃𝑀 )d𝑡+ 4𝜋𝑟2𝐴(𝜌𝑑 + 𝜌𝑀 )d𝑟𝐴 +
𝑟𝐴
2𝐺

d𝐹 . (13.32)

From Eqs. (13.30) and (13.32) it follows that

𝑇d𝑆 = −d𝐸 + 2𝜋𝑟2𝐴(𝜌𝑑 + 𝜌𝑀 − 𝑃𝑑 − 𝑃𝑀 )d𝑟𝐴 +
𝑟𝐴
2𝐺

(1 + 2𝜋𝑟𝐴𝑇 ) d𝐹 . (13.33)

Following [297, 298, 108] we introduce the work density 𝑊 = (𝜌𝑑 + 𝜌𝑀 − 𝑃𝑑 − 𝑃𝑀 )/2. Then
Eq. (13.33) reduces to

𝑇d𝑆 = −d𝐸 +𝑊d𝑉 +
𝑟𝐴
2𝐺

(1 + 2𝜋𝑟𝐴𝑇 ) d𝐹 , (13.34)

which can be written in the form [53]

𝑇d𝑆 + 𝑇d𝑖𝑆 = −d𝐸 +𝑊d𝑉 , (13.35)

where

d𝑖𝑆 = − 1

𝑇

𝑟𝐴
2𝐺

(1 + 2𝜋𝑟𝐴𝑇 ) d𝐹 = −
(︂
𝐸

𝑇
+ 𝑆

)︂
d𝐹

𝐹
. (13.36)

The modified first-law of thermodynamics (13.35) suggests a deep connection between the horizon
thermodynamics and Friedmann equations in modified gravity. The term d𝑖𝑆 can be interpreted
as a term of entropy production in the non-equilibrium thermodynamics [228]. The theories with
𝐹 = constant lead to d𝑖𝑆 = 0, which means that the first-law of equilibrium thermodynamics
holds. The theories with d𝐹 ̸= 0, including f (R) gravity and scalar-tensor theory, give rise to the
additional non-equilibrium term (13.36) [6, 7, 281, 619, 620, 108, 50, 53].

The main reason why the non-equilibrium term d𝑖𝑆 appears is that the energy density 𝜌𝑑 and
the pressure 𝑃𝑑 defined in Eqs. (13.20) and (13.21) do not satisfy the standard continuity equation

for 𝐹̇ ̸= 0. On the other hand, if we define the effective energy-momentum tensor 𝑇
(𝐷)
𝜇𝜈 as Eq. (2.9)

in Section 2, it satisfies the continuity equation (2.10). This correspond to rewriting the Einstein
equation in the form (2.8) instead of (13.23). Using this property, [53] showed that equilibrium
description of thermodynamics can be possible by introducing the Bekenstein–Hawking entropy
𝑆 = 𝐴/(4𝐺). In this case the horizon entropy 𝑆 takes into account the contribution of both the
Wald entropy 𝑆 in the non-equilibrium thermodynamics and the entropy production term.
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13.3 Curing the curvature singularity in f (R) dark energy models, uni-
fied models of inflation and dark energy

In Sections 5.2 and 8.1 we showed that there is a curvature singularity for viable f (R) models such
as (4.83) and (4.84). More precisely this singularity appears for the models having the asymptotic
behavior (5.19) in the region of high density (𝑅 ≫ 𝑅𝑐). As we see in Figure 3, the field potential
𝑉 (𝜑) = (𝐹𝑅 − 𝑓)/(2𝜅2𝐹 ) has a finite value 𝜇𝑅𝑐/(2𝜅

2) in the limit 𝜑 =
√︀

3/(16𝜋)𝑚pl ln 𝐹 → 0.
In this limit one has 𝑓,𝑅𝑅 → 0, so that the scalaron mass 1/(3𝑓,𝑅𝑅) goes to infinity.

This problem of the past singularity can be cured by adding the term 𝑅2/(6𝑀2) to the La-
grangian in f (R) dark energy models [37]. Let us then consider the modified version of the
model (4.83):

𝑓(𝑅) = 𝑅− 𝜇𝑅𝑐
(𝑅/𝑅𝑐)

2𝑛

(𝑅/𝑅𝑐)2𝑛 + 1
+

𝑅2

6𝑀2
. (13.37)

For this model one can easily show that the potential 𝑉 (𝜑) = (𝐹𝑅 − 𝑓)/(2𝜅2𝐹 ) extends to the
region 𝜑 > 0 and that the curvature singularity disappears accordingly. Also the scalaron mass
approaches the finite value 𝑀 in the limit 𝜑 → ∞. The perturbation 𝛿𝑅 is bounded from above,
which can evade the problem of the dominance of the oscillation mode in the past.

Since the presence of the term 𝑅2/(6𝑀2) can drive inflation in the early universe, one may
anticipate that both inflation and the late-time acceleration can be realized for the model of
the type (13.37). This is like a modified gravity version of quintessential inflation based on a
single scalar field [486, 183, 187, 392]. However, we have to caution that the transition between
two accelerated epochs needs to occur smoothly for successful cosmology. In other words, after
inflation, we require a mechanism in which the universe is reheated and then the radiation/matter
dominated epochs follow. However, for the model (13.37), the Ricci scalar 𝑅 evolves to the point
𝑓,𝑅𝑅 = 0 and it enters the region 𝑓,𝑅𝑅 < 0. Crossing the point 𝑓,𝑅𝑅 = 0 implies the divergence of
the scalaron mass. Moreover, in the region 𝑓,𝑅𝑅 < 0, the Minkowski space is not a stable vacuum
state. This is problematic for the particle creation from the vacuum during reheating. The similar
problem arises for the models (4.84) and (4.89) in addition to the model proposed by Appleby
and Battye [35]. Thus unified f (R) models of inflation and dark energy cannot be constructed
easily in general (unlike a number of related works [456, 460, 462]). Brookfield et al. [104] studied
the viability of the model 𝑓(𝑅) = 𝑅 − 𝛼/𝑅𝑛 + 𝛽𝑅𝑚 (𝑛,𝑚 > 0) by using the constraints coming
from Big Bang Nucleosynthesis and fifth-force experiments and showed that it is difficult to find a
unique parameter range for consistency of this model.

In order to cure the above mentioned problem, Appleby et al. [37] proposed the f (R) model
(11.40). Note that the case 𝑐 = 0 corresponds to the Starobinsky inflationary model 𝑓(𝑅) =
𝑅 + 𝑅2/(6𝑀2) [564] and the case 𝑐 = 1/2 corresponds to the model of Appleby and Battye [35]
plus the 𝑅2/(6𝑀2) term. Although the above mentioned problem can be evaded in this model,
the reheating proceeds in a different way compared to that in the model 𝑓(𝑅) = 𝑅 + 𝑅2/(6𝑀2)
[which we discussed in Section 3.3]. Since the Hubble parameter periodically evolves between
𝐻 = 1/(2𝑡) and 𝐻 = 𝜖/𝑀 , the reheating mechanism does not occur very efficiently [37]. The
reheating temperature can be significantly lower than that in the model 𝑓(𝑅) = 𝑅 + 𝑅2/(6𝑀2).
It will be of interest to study observational signatures in such unified models of inflation and dark
energy.

13.4 f (R) theories in extra dimensions

Although f (R) theories have been introduced mainly in four dimensions, the same models may
appear in the context of braneworld [502, 501] in which our universe is described by a brane
embedded in extra dimensions (see [404] for a review). This scenario implies a careful use of
f (R) theories, because a boundary (brane) appears. Before looking at the real working scenario
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in braneworld, it is necessary to focus on the mathematical description of f (R) models through a
sensible definition of boundary conditions for the metric elements on the surface of the brane.

Some works appeared regarding the possibility of introducing f (R) theories in the context of
braneworld scenarios [499, 40, 96, 513, 97]. In doing so one requires a surface term [222, 482, 69,
48, 49, 286], which is known as the Hawking–Luttrell term [295] (analogous to the York–Gibbons–
Hawking one for General Relativity). The action we consider is given by

𝑆 =

∫︁
Ω

d𝑛𝑥
√
−𝑔𝑓(𝑅) + 2

∫︁
𝜕Ω

d𝑛−1𝑥
√︀
|𝛾|𝐹𝐾 , (13.38)

where 𝐹 ≡ 𝜕𝑓/𝜕𝑅, 𝛾 is the determinant of the induced metric on the 𝑛− 1 dimensional boundary,
and 𝐾 is the trace of the extrinsic curvature tensor.

In this case particular attention should be paid to boundary conditions on the brane, that is,
the Israel junction conditions [323]. In order to have a well-defined geometry in five dimensions,
we require that the metric is continuous across the brane located at 𝑦 = 0. However its derivatives
with respect to 𝑦 can be discontinuous at 𝑦 = 0. The Ricci tensor 𝑅𝜇𝜈 in Eq. (2.4) is made of
the metric up to the second derivatives 𝑔′′ with respect to 𝑦. This means that 𝑔′′ have a delta-
function dependence proportional to the energy-momentum tensor at a distributional source (i.e.,
with a Dirac’s delta function centered on the brane) [87, 86, 536]. In general this also leads to
the discontinuity of the Ricci scalar 𝑅 across the brane. Since the discontinuity of 𝑅 can lead to
inconsistencies in f (R) gravity, one should add this extra-constraint as a junction condition. In
other words, one needs to impose that, although the metric derivative is discontinuous, the Ricci
scalar should still remain continuous on the brane.

This is tantamount to imposing that the extra scalar degree of freedom introduced is continuous
on the brane. We use Gaussian normal coordinates with the metric

d𝑠2 = d𝑦2 + 𝛾𝜇𝜈 d𝑥
𝜇d𝑥𝜈 . (13.39)

In terms of the extrinsic curvature tensor 𝐾𝜇𝜈 = −𝜕𝑦𝛾𝜇𝜈/2 for a brane, the l.h.s. of the equations
of motion tensor [which is analogous to the l.h.s. of Eq. (2.4) in 4 dimensions] is defined by

Σ𝐴𝐵 ≡ 𝐹𝑅𝐴𝐵 − 1

2
𝑓𝑔𝐴𝐵 −∇𝐴∇𝐵𝐹 (𝑅) + 𝑔𝐴𝐵�𝐹 (𝑅) . (13.40)

This has a delta function behavior for the 𝜇-𝜈 components, leading to [207]

𝐷𝜇𝜈 ≡ [𝐹 (𝐾𝜇𝜈 −𝐾 𝛾𝜇𝜈) + 𝛾𝜇𝜈 𝐹,𝑅 𝜕𝑦𝑅]
+
− = 𝑇𝜇𝜈 , (13.41)

where 𝑇𝜇𝜈 is the matter stress-energy tensor on the brane. Hence 𝑅 is continuous, whereas its first
derivative is not, in general. This imposes an extra condition on the metric crossing the brane at
𝑦 = 0, compared to General Relativity in which the condition for the continuity of 𝑅 is not present.
However, it is not easy to find a solution for which the metric derivative is discontinuous but 𝑅 is
not. Therefore some authors considered matter on the brane which is not universally coupled with
the induced metric. This approach leads to the relaxation of the condition that 𝑅 is continuous.
Such a matter action can be found by analyzing the action in the Einstein frame and introducing
a scalar field 𝜓 coupled to the scalaron 𝜑 on the brane as follows [207]

𝑆𝑀 =

∫︁
d𝑛−1𝑥

√
−𝛾 exp[(𝑛− 1)𝐶(𝜑)]

[︂
−1

2
exp[−2𝐶(𝜑)]𝛾𝜇𝜈∇𝜇𝜓∇𝜈𝜓 − 𝑉 (𝜓)

]︂
. (13.42)

The presence of the coupling 𝐶(𝜑) with the field 𝜑 modifies the Israel junction conditions. Indeed,
if 𝐶 = 0, then 𝑅 must be continuous, but if 𝐶 ̸= 0, 𝑅 can have a delta function profile. This
method may help for finding a solution for the bulk that satisfies boundary conditions on the brane.
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13.5 Vainshtein mechanism

Modifications of gravity in recent works have been introduced mostly in order to explain the
late-time cosmic acceleration. This corresponds to the large-distance modification of gravity, but
gravity at small distances is subject to change as well. Modified gravity models of dark energy must
pass local gravity tests in the solar system. The f (R) models discussed in Section 4 are designed
to satisfy local gravity constraints by having a large scalar-field mass, while at the same time they
are responsible for dark energy with a small mass compatible with the Hubble parameter today.

It is interesting to see which modified gravity theories have successful Newton limits. There are
two known mechanisms for satisfying local gravity constraints, (i) the Vainshtein mechanism [602],
and (ii) the chameleon mechanism [344, 343] (already discussed in Section 5.2). Both consist of us-
ing non-linearities in order to prevent any other fifth force from propagating freely. The chameleon
mechanism uses the non-linearities coming from matter couplings, whereas the Vainshtein mecha-
nism uses the self-coupling of a scalar-field degree of freedom as a source for the non-linear effect.

There are several examples where the Vainshtein mechanism plays an important role. One
is the massive gravity in which a consistent free massive graviton is uniquely defined by Pauli–
Fierz theory [258, 259]. The massive gravity described by the Fierz–Pauli action cannot be studied
through the linearization close to a point-like mass source, because of the crossing of the Vainshtein
radius, that is the distance under which the linearization fails to study the metric properly [602].
Then the theory is in the strong-coupling regime, and things become obscure as the theory cannot
be understood well mathematically. A similar behavior also appears for the Dvali–Gabadadze–
Porrati (DGP) model (we will discuss in the next section), in which the Vainshtein mechanism
plays a key role for the small-scale behavior of this model.

Besides a standard massive term, other possible operators which could give rise to the Vainshtein
mechanism come from non-linear self-interactions in the kinetic term of a matter field 𝜑. One of
such terms is given by

∇𝜇𝜑∇𝜇𝜑�𝜑 , (13.43)

which respects the Galilean invariance under which 𝜑’s gradient shifts by a constant [455] (treated in
section 13.7.2). This allows a robust implementation of the Vainshtein mechanism in that nonlinear
self-interacting term can allow the decoupling of the field 𝜑 from matter in the gravitationally
bounded system without introducing ghosts.

Another example of the Vainshtein mechanism may be seen in 𝑓(𝒢) gravity. Recall that in
this theory the contribution to the GB term from matter can be neglected relative to the vacuum
value 𝒢(0) = 12 (2𝐺𝑀)2/𝑟6. In Section 12.3.3 we showed that on the Schwarzschild geometry the
modification of gravity is very small for the models (12.16) and (12.17), because the GB term has a
value much larger than its cosmological value today. The scalar-field degree of freedom acquires a
large mass in the region of high density, so that it does not propagate freely. For the model (12.16)
we already showed that at the linear level the coefficients 𝐴 and 𝐵 of the spherically symmetric
metric (12.32) are

𝐴 = 1− 1

𝜌
+𝐴1(𝜌) 𝜀+𝑂(𝜀2) , 𝐵 = 1− 1

𝜌
+𝐵1(𝜌) 𝜀+𝑂(𝜀2) , (13.44)

where 𝜌 ≡ 𝑟/(2𝐺𝑀), 𝐴1(𝜌) and 𝐵1(𝜌) are given by Eqs. (12.38) and (12.39), and 𝜀 ≈ 10−46 for our
solar system. Of course this result is trustable only in the region for which 𝐴1𝜀 ≪ 1/𝜌. Outside
this region non-linearities are important and one cannot rely on approximate methods any longer.
Therefore, for this model, we can define the Vainshtein radius 𝑟𝑉 as

𝜆𝜀𝜌3𝑉 ∼ 1

𝜌𝑉
→ 𝑟𝑉 ∼ 2𝐺𝑀(𝜆𝜀)−1/4 . (13.45)

For 𝜆 ∼ 1, this value is well outside the region in which solar-system experiments are carried out.
This example shows that the Vainshtein radius is generally model-dependent.
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In metric f (R) gravity a non-linear effect coming from the coupling to matter fields (in the Ein-
stein frame) is crucially important, because 𝑅 vanishes in the vacuum Schwarzschild background.
The local gravity constraints can be satisfied under the chameleon mechanism rather than the
non-linear self coupling of the Vainshtein mechanism.

13.6 DGP model

The Dvali–Gabadadze–Porrati (DGP) [220] braneworld model has been considered as a model
which could modify gravity because of the existence of the extra-dimensions. In the DGP model
the 3-brane is embedded in a Minkowski bulk spacetime with infinitely large 5th extra dimensions.
The Newton’s law can be recovered by adding a 4-dimensional (4D) Einstein–Hilbert action sourced
by the brane curvature to the 5D action [219]. While the DGP model recovers the standard 4D
gravity for small distances, the effect from the 5D gravity manifests itself for large distances.
Remarkably it is possible to realize the late-time cosmic acceleration without introducing an exotic
matter source [201, 203].

The DGP model is given by the action

𝑆 =
1

2𝜅2(5)

∫︁
d5𝑋

√︀
−𝑔 𝑅̃+

1

2𝜅2(4)

∫︁
d4𝑥

√
−𝑔 𝑅+

∫︁
d4𝑥

√
−𝑔ℒbrane

𝑀 , (13.46)

where 𝑔𝐴𝐵 is the metric in the 5D bulk and 𝑔𝜇𝜈 = 𝜕𝜇𝑋
𝐴𝜕𝜈𝑋

𝐵𝑔𝐴𝐵 is the induced metric on the
brane with 𝑋𝐴(𝑥𝑐) being the coordinates of an event on the brane labeled by 𝑥𝑐. The first and
second terms in Eq. (13.46) correspond to Einstein–Hilbert actions in the 5D bulk and on the brane,
respectively. Note that 𝜅2(5) and 𝜅2(4) are 5D and 4D gravitational constants, respectively, which

are related with 5D and 4D Planck masses, 𝑀(5) and 𝑀(4), via 𝜅
2
(5) = 1/𝑀3

(5) and 𝜅
2
(4) = 1/𝑀2

(4).

The Lagrangian ℒbrane
𝑀 describes matter localized on the 3-brane.

The equations of motion read

𝐺
(5)
𝐴𝐵 = 0 , (13.47)

where 𝐺
(5)
𝐴𝐵 is the 5D Einstein tensor. The Israel junction conditions on the brane, under which a

𝑍2 symmetry is imposed, read [304]

𝐺𝜇𝜈 − 1

𝑟𝑐
(𝐾𝜇𝜈 − 𝑔𝜇𝜈𝐾) = 𝜅2(4)𝑇𝜇𝜈 , (13.48)

where𝐾𝜇𝜈 is the extrinsic curvature [609] calculated on the brane and 𝑇𝜇𝜈 is the energy-momentum
tensor of localized matter. Since ∇𝜇(𝐾𝜇𝜈 − 𝑔𝜇𝜈𝐾) = 0, the continuity equation ∇𝜇𝑇𝜇𝜈 = 0 follows
from Eq. (13.48). The length scale 𝑟𝑐 is defined by

𝑟𝑐 ≡
𝜅2(5)

2𝜅2(4)
=

𝑀2
(4)

2𝑀3
(5)

. (13.49)

If we consider the flat FLRW brane (𝐾 = 0), we obtain the modified Friedmann equation [201,
203]

𝐻2 − 𝜖

𝑟𝑐
𝐻 =

𝜅2(4)

3
𝜌𝑀 , (13.50)

where 𝜖 = ±1, 𝐻 and 𝜌𝑀 are the Hubble parameter and the matter energy density on the brane,
respectively. In the regime 𝑟𝑐 ≫ 𝐻−1 the first term in Eq. (13.50) dominates over the second one
and hence the standard Friedmann equation is recovered. Meanwhile, in the regime 𝑟𝑐 . 𝐻−1, the
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second term in Eq. (13.50) leads to a modification to the standard Friedmann equation. If 𝜖 = 1,
there is a de Sitter solution characterized by

𝐻dS = 1/𝑟𝑐 . (13.51)

One can realize the cosmic acceleration today if 𝑟𝑐 is of the order of the present Hubble radius
𝐻−1

0 . This self acceleration is the result of gravitational leakage into extra dimensions at large
distances. In another branch (𝜖 = −1) such cosmic acceleration is not realized.

In the DGP model the modification of gravity comes from a scalar-field degree of freedom,
usually called 𝜋, which is identified as a brane bending mode in the bulk. Then one may wonder if
such a field mediates a fifth force incompatible with local gravity constraints. However, this is not
the case, as the Vainshtein mechanism is at work in the DGP model for the length scale smaller
than the Vainshtein radius 𝑟* = (𝑟𝑔𝑟

2
𝑐 )

1/3, where 𝑟𝑔 is the Schwarzschild radius of a source. The
model can evade solar system constraints at least under some range of conditions on the energy-
momentum tensor [204, 285, 496]. The Vainshtein mechanism in the DGP model originates from
a non-linear self-interaction of the scalar-field degree of freedom.

Although the DGP model is appealing and elegant, it is also plagued by some problems. The
first one is that, although the model does not possess ghosts on asymptotically flat manifolds,
at the quantum level, it does have the problem of strong coupling for typical distances smaller
than 1000 km, so that the theory is not easily under control [401]. Besides the model typically
possesses superluminal modes. This may not directly violate causality, but it implies a non-trivial
non-Lorentzian UV completion of the theory [304]. Also, on scales relevant for structure formation
(between cluster scales and the Hubble radius), a quasi-static approximation to linear cosmological
perturbations shows that the DGP model contains a ghost mode [369]. This linear analysis is valid
as long as the Vainshtein radius 𝑟* is smaller than the cluster scales.

The original DGP model has been tested by using a number of observational data at the
background level [525, 238, 405, 9, 549]. The joint constraints from the data of SN Ia, BAO, and the
CMB shift parameter show that the flat DGP model is under strong observational pressure, while
the open DGP model gives a slightly better fit [405, 549]. Xia [622] showed that the parameter
𝛼 in the modified Friedmann equation 𝐻2 − 𝐻𝛼/𝑟2−𝛼

𝑐 = 𝜅2(4)𝜌𝑀/3 [221] is constrained to be

𝛼 = 0.254 ± 0.153 (68% confidence level) by using the data of SN Ia, BAO, CMB, gamma ray
bursts, and the linear growth factor of matter perturbations. Hence the flat DGP model (𝛼 = 1)
is not compatible with current observations.

On the sub-horizon scales larger than the Vainshtein radius, the equation for linear matter
perturbations 𝛿𝑚 in the DGP model was derived in [400, 369] under a quasi-static approximation:

𝛿𝑚 + 2𝐻𝛿̇𝑚 − 4𝜋𝐺eff𝜌𝑚𝛿𝑚 ≃ 0 , (13.52)

where 𝜌𝑚 is the non-relativistic matter density on the brane and

𝐺eff =

(︂
1 +

1

3𝛽

)︂
𝐺 , 𝛽(𝑡) ≡ 1− 2𝐻𝑟𝑐

(︃
1 +

𝐻̇

3𝐻2

)︃
. (13.53)

In the deep matter era one has 𝐻𝑟𝑐 ≫ 1 and hence 𝛽 ≃ −𝐻𝑟𝑐, so that 𝛽 is largely negative
(|𝛽| ≫ 1). In this regime the evolution of 𝛿𝑚 is similar to that in GR (𝛿𝑚 ∝ 𝑡2/3). Since
the background solution finally approaches the de Sitter solution characterized by Eq. (13.51), it
follows that 𝛽 ≃ 1 − 2𝐻𝑟𝑐 ≃ −1 asymptotically. Since 1 + 1/(3𝛽) ≃ 2/3, the growth rate in this
regime is smaller than that in GR.

The index 𝛾 of the growth rate 𝑓𝛿 = (Ω𝑚)𝛾 is approximated by 𝛾 ≈ 0.68 [395]. This is quite
different from the value 𝛾 ≃ 0.55 for the ΛCDM model. If the future imaging survey of galaxies
can constrain 𝛾 within 20%, it will be possible to distinguish the ΛCDM model from the DGP
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model observationally [624]. We recall that in metric f (R) gravity the growth index today can be
as small as 𝛾 = 0.4 because of the enhanced growth rate, which is very different from the value in
the DGP model.

Comparing Eq. (13.53) with the effective gravitational constant (10.42) in BD theory with a
massless limit (or the absence of the field potential), we find that the parameter 𝜔BD has the
following relation with 𝛽:

𝜔BD =
3

2
(𝛽 − 1) . (13.54)

Since 𝛽 < 0 for the self-accelerating DGP solution, it follows that 𝜔BD < −3/2. This corresponds
to the theory with ghosts, because the kinetic energy of a scalar-field degree of freedom becomes
negative in the Einstein frame [175]. There is a claim that the ghost may disappear for the
Vainshtein radius 𝑟* of the order of 𝐻−1

0 , because the linear perturbation theory is no longer
applicable [218]. In fact, a ghost does not appear in a Minkowski brane in the DGP model.
In [370] it was shown that the Vainshtein radius in the early universe is much smaller than the one
in the Minkowski background, while in the self accelerating universe they agree with each other.
Hence the perturbative approach seems to be still possible for the weak gravity regime beyond the
Vainshtein radius.

There have been studies regarding a possible regularization in order to avoid the ghost/strong
coupling limit. Some of these studies have focused on smoothing out the delta profile of the
Ricci scalar on the brane, by coupling the Ricci scalar to some other scalar field with a given
profile [363, 362]. In [516] the authors included the brane and bulk cosmological constants in
addition to the scalar curvature in the action for the brane and showed that the effective equation
of state of dark energy can be smaller than −1. A monopole in seven dimensions generated by a
SO(3) invariant matter Lagrangian is able to change the gravitational law at its core, leading to
a lower dimensional gravitational law. This is a first approach to an explanation of trapping of
gravitons, due to topological defects in classical field theory [508, 184]. Other studies have focused
on re-using the delta function profile but in a higher-dimensional brane [334, 333, 197]. There
is also an interesting work about the possibility of self-acceleration in the normal DGP branch
[𝜖 = −1 in Eq. (13.50)] by considering an f (R) term on the brane action [97] (see also [4]). All
these attempts indeed point to the direction that some mechanism, if not exactly DGP rather
similar to it, may avoid a number of problems associated with the original DGP model.

13.7 Special symmetries

Since general covariance alone does not restrict the choice of the Lagrangian function, e.g., for
f (R) theory, one can try to shrink the set of allowed functions by imposing some extra symmetry.
In particular one can assume that the theory possesses a symmetry on some special background.
However, allowing some theories to be symmetrical on some backgrounds does not imply these
theories are viable by default. Nevertheless, this symmetry helps to give stronger constraints
on them, as the allowed parameter space drastically reduces. We will discuss here two of the
symmetries studied in the literature: Noether symmetries on a FLRW background and the Galileon
symmetry on a Minkowski background.

13.7.1 Noether symmetry on FLRW

The action for metric f (R) gravity can be evaluated on a FLRW background, in terms of the fields
𝑎(𝑡) and 𝑅(𝑡), see [125, 124] (and also [129, 128, 415, 433, 429, 604, 603, 199, 200, 132]). Then the
Lagrangian turns out to be non-singular, ℒ(𝑞𝑖, 𝑞𝑖), where 𝑞1 = 𝑎, and 𝑞2 = 𝑅. Its Euler–Lagrange
equation is given by (𝜕ℒ/𝜕𝑞𝑖)· − 𝜕ℒ/𝜕𝑞𝑖 = 0. Contracting these equations with a vector function
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𝛼𝑗(𝑞𝑖), (where 𝛼
1 = 𝛼 and 𝛼2 = 𝛽 are two unknown functions of the 𝑞𝑖), we obtain

𝛼𝑖

(︂
d

d𝑡

𝜕ℒ
𝜕𝑞𝑖

− 𝜕ℒ
𝜕𝑞𝑖

)︂
= 0 . → d

d𝑡

(︂
𝛼𝑖 𝜕ℒ
𝜕𝑞𝑖

)︂
= 𝐿𝑋ℒ . (13.55)

Here 𝐿𝑋ℒ is the Lie derivative of ℒ with respect to the vector field

𝑋 = 𝛼𝑖(𝑞)
𝜕

𝜕𝑞𝑖
+

(︂
d

d𝑡
𝛼𝑖(𝑞)

)︂
𝜕

𝜕𝑞𝑖
. (13.56)

If 𝐿𝑋ℒ = 0, the Noether Theorem states that the function Σ0 = 𝛼𝑖(𝜕ℒ/𝜕𝑞𝑖) is a constant of motion.
The generator of the Noether symmetry in metric f (R) gravity on the flat FLRW background is

𝑋 = 𝛼
𝜕

𝜕𝑎
+ 𝛽

𝜕

𝜕𝑅
+ 𝛼̇

𝜕

𝜕𝑎̇
+ 𝛽̇

𝜕

𝜕𝑅̇
. (13.57)

A symmetry exists if the equation 𝐿𝑋ℒ = 0 has non-trivial solutions. As a byproduct, the form
of f (R), not specified in the point-like Lagrangian ℒ, is determined in correspondence to such a
symmetry.

It can be proved that such 𝛼𝑖 do exist [124], and they correspond to

𝛼 = 𝑐1 𝑎+
𝑐2
𝑎
, 𝛽 = −

[︁
3 𝑐1 +

𝑐2
𝑎2

]︁ 𝑓,𝑅
𝑓,𝑅𝑅

+
𝑐3

𝑎 𝑓,𝑅𝑅
, (13.58)

where 𝑐1, 𝑐2, 𝑐3 are constants. However, in order that 𝐿𝑋ℒ vanishes, one also needs to set the
constraint (provided that 𝑐2𝑅 ̸= 0)

𝑓,𝑅 =
3(𝑐1 𝑎

2 + 𝑐2) 𝑓 − 𝑐3𝑎𝑅

2𝑐2𝑅
+

(𝑐1𝑎
2 + 𝑐2)𝜅

2𝜌
(0)
𝑟

𝑎4𝑐2𝑅
, (13.59)

where 𝜌
(0)
𝑟 is the radiation density today. Since now 𝐿𝑋 = 0, then 𝛼𝑖(𝜕ℒ/𝜕𝑞𝑖) = constant. This

constant of motion corresponds to

𝛼 (6 𝑓,𝑅𝑅 𝑎
2 𝑅̇+ 12 𝑓,𝑅 𝑎 𝑎̇) + 𝛽 (6 𝑓,𝑅𝑅 𝑎

2 𝑎̇) = 6𝜇3
0 = constant , (13.60)

where 𝜇0 has a dimension of mass.
For a general 𝑓 it is not possible to solve the Euler–Lagrange equation and the constraint

equation (13.59) at the same time. Hence, we have to use the Noether constraint in order to
find the subset of those 𝑓 which make this possible. Some partial solutions (only when 𝜇0 = 0)
were found, but whether this symmetry helps finding viable models of f (R) is still not certain.
However, the f (R) theories which possess Noether currents can be more easily constrained, as now
the original freedom for the function 𝑓 in the Lagrangian reduced to the choice of the parameters
𝑐𝑖 and 𝜇0.

13.7.2 Galileon symmetry

Recently another symmetry, the Galileon symmetry, for a scalar field Lagrangian was imposed
on the Minkowski background [455]. This idea is interesting as it tries to decouple light scalar
fields from matter making use of non-linearities, but without introducing new ghost degrees of
freedom [455]. This symmetry was chosen so that the theory could naturally implement the
Vainshtein mechanism. However, the same mechanism, at least in cosmology, seems to appear also
in the FLRW background for scalar fields which do not possess such a symmetry (see [539, 351,
190]).
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Keeping a universal coupling with matter (achieved through a pure nonminimal coupling with
𝑅), Nicolis et al. [455] imposed a symmetry called the Galilean invariance on a scalar field 𝜋 in the
Minkowski background. If the equations of motion are invariant under a constant gradient-shift
on Minkowski spacetime, that is

𝜋 → 𝜋 + 𝑐+ 𝑏𝜇𝑥
𝜇 , (13.61)

where both 𝑐 and 𝑏𝜇 are constants, we call 𝜋 a Galileon field. This implies that the equations of
motion fix the field up to such a transformation. The point is that the Lagrangian must implement
the Vainshtein mechanism in order to pass solar-system constraints. This is achieved by introducing
self-interacting non-linear terms in the Lagrangian. It should be noted that the Lagrangian is
studied only at second order in the fields (having a nonminimal coupling with 𝑅) and the metric
itself, whereas the non-linearities are fully kept by neglecting their backreaction on the metric
(as the biggest contribution should come only from standard matter). The equations of motion
respecting the Galileon symmetry contain terms such as a constant, �𝜋 (up to fourth power), and
other power contraction of the tensor ∇𝜇∇𝜈𝜋. It is due to these non-linear derivative terms by
which the Vainshtein mechanism can be implemented, as it happens in the DGP model [401].

Nicolis et al. [455] found that there are only five terms ℒ𝑖 with 𝑖 = 1, . . . , 5 which can be
inserted into a Lagrangian, such that the equations of motion respect the Galileon symmetry in
4-dimensional Minkowski spacetime. The first three terms are given by

ℒ1 = 𝜋 , (13.62)

ℒ2 = ∇𝜇𝜋∇𝜇𝜋 , (13.63)

ℒ3 = �𝜋∇𝜇𝜋∇𝜇𝜋 . (13.64)

All these terms generate second-order derivative terms only in the equations of motion. The
approach in the Minkowski spacetime has motivated to try to find a fully covariant framework in
the curved spacetime. In particular, Deffayet et al. [205] found that all the previous 5-terms can
be written in a fully covariant way. However, if we want to write down ℒ4 and ℒ5 covariantly in
curved spacetime and keep the equations of motion free from higher-derivative terms, we need to
introduce couplings between the field 𝜋 and the Riemann tensor [205]. The following two terms
keep the field equations to second-order,

ℒ4 = (∇𝜇𝜋∇𝜇𝜋)
[︀
2(�𝜋)2 − 2(∇𝛼𝛽𝜋) (∇𝛼𝛽𝜋)− (1/2)𝑅∇𝜇𝜋∇𝜇𝜋

]︀
, (13.65)

ℒ5 = (∇𝜆𝜋∇𝜆𝜋)
[︀
(�𝜋)3 − 3�𝜋 (∇𝛼𝛽𝜋) (∇𝛼𝛽𝜋) + 2(∇𝜇∇𝜈𝜋) (∇𝜈∇𝜌𝜋) (∇𝜌∇𝜇𝜋)

−6(∇𝜇𝜋) (∇𝜇∇𝜈𝜋) (∇𝜌𝜋)𝐺𝜈𝜌

]︀
, (13.66)

where the last terms in Eqs. (13.65) and (13.66) are newly introduced in the curved spacetime.
These terms possess the required symmetry in Minkowski spacetime, but mostly, they do not intro-
duce derivatives higher than two into the equations of motion. In this sense, although originated
from an implementation of the DGP idea, the covariant Galileon field is closer to the approach of
the modifications of gravity in 𝑓(𝑅,𝒢), that is, a formalism which would introduce only second-
order equations of motion.

This result can be extended to arbitrary 𝐷 dimensions [202]. One can find, analogously to the
Lovelock action-terms, an infinite tower of terms that can be introduced with the same property
of keeping the equations of motion at second order. In particular, let us consider the action

𝑆 =

∫︁
d𝐷𝑥

√
−𝑔

𝑝max∑︁
𝑝=0

𝒞(𝑛+1,𝑝)ℒ(𝑛+1,𝑝) , (13.67)

where 𝑝max is the integer part of (𝑛− 1)/2 (𝑛 ≤ 𝐷),

𝒞(𝑛+1,𝑝) =

(︂
−1

8

)︂𝑝
(𝑛− 1)!

(𝑛− 1− 2𝑝)!(𝑝!)2
, (13.68)
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and

ℒ(𝑛+1,𝑝) = − 1

(𝐷 − 𝑛)!
𝜀𝜇1𝜇3...𝜇2𝑛−1𝜈1...𝜈𝐷−𝑛𝜀𝜇2𝜇4...𝜇2𝑛

𝜈1...𝜈𝐷−𝑛
𝜋;𝜇1

𝜋;𝜇2
(𝜋;𝜆𝜋;𝜆)

𝑝

×
𝑝∏︁

𝑖=1

𝑅𝜇4𝑖−1𝜇4𝑖+1𝜇4𝑖𝜇4𝑖+2

𝑛−2−2𝑝∏︁
𝑗=0

𝜋;𝜇2𝑛−1−2𝑗𝜇2𝑛−2𝑗
. (13.69)

Here 𝜀1···𝑛 is the Levi-Civita tensor. The first product in Eq. (13.69) is defined to be one when
𝑝 = 0 and 0 for 𝑝 < 0, and the second product is one when 𝑛 = 1+ 2𝑝, and 0 when 𝑛 < 2 + 2𝑝. In
ℒ(𝑛+1,𝑝) there will be 𝑛+ 1 powers of 𝜋, and 𝑝 powers of the Riemann tensor. In four dimensions,
for example, ℒ(1,0) and ℒ(2,0) are identical to ℒ1 and ℒ2 introduced before, respectively. Instead,
ℒ(3,0), ℒ(4,0)−(1/4)ℒ(4,1), and ℒ(5,0)−(3/4)ℒ(5,1) reduce to ℒ3, ℒ4, and ℒ5, up to total derivatives,
respectively.

In general non-linear terms discussed above may introduce the Vainshtein mechanism to de-
couple the scalar field from matter around a star, so that solar-system constraints can be satisfied.
However the modes can have superluminal propagation, which is not surprising as the kinetic terms
get heavily modified in the covariant formalism. Some studies have focused especially on the ℒ3

term only, as this corresponds to the simplest case. For some models the background cosmological
evolution is similar to that in the DGP model, although there are ghostlike modes depending on
the sign of the time-velocity of the field 𝜋 [158]. There are some works for cosmological dynamics in
Brans–Dicke theory in the presence of the non-linear term ℒ3 [539, 351, 190] (although the original
Galileon symmetry is not preserved in this scenario). Interestingly the ghost can disappear even
for the case in which the Brans–Dicke parameter 𝜔BD is smaller than −2. Moreover this theory
leaves a number of distinct observational signatures such as the enhanced growth rate of matter
perturbations and the significant ISW effect in CMB anisotropies.

At the end of this section we should mention conformal gravity in which the conformal invariance
forces the gravitational action to be uniquely given by a Weyl action [414, 340]. Interestingly the
conformal symmetry also forces the cosmological constant to be zero at the level of the action [413].
It will be of interest to study the cosmological aspects of such theory, together with the possibility
for the avoidance of ghosts and instabilities.
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14 Conclusions

We have reviewed many aspects of f (R) theories studied extensively over the past decade. This
burst of activities is strongly motivated by the observational discovery of dark energy. The idea
is that the gravitational law may be modified on cosmological scales to give rise to the late-time
acceleration, while Newton’s gravity needs to be recovered on solar-system scales. In fact, f (R)
theories can be regarded as the simplest extension of General Relativity.

The possibility of the late-time cosmic acceleration in metric f (R) gravity was first suggested
by Capozziello in 2002 [113]. Even if f (R) gravity looks like a simple theory, successful f (R) dark
energy models need to satisfy a number of conditions for consistency with successful cosmological
evolution (a late-time accelerated epoch preceded by a matter era) and with local gravity tests on
solar-system scales. We summarize the conditions under which metric f (R) dark energy models
are viable:

1. 𝑓,𝑅 > 0 for 𝑅 ≥ 𝑅0, where 𝑅0 is the Ricci scalar today. This is required to avoid a ghost
state.

2. 𝑓,𝑅𝑅 > 0 for 𝑅 ≥ 𝑅0. This is required to avoid the negative mass squared of a scalar-field
degree of freedom (tachyon).

3. 𝑓(𝑅) → 𝑅 − 2Λ for 𝑅 ≥ 𝑅0. This is required for the presence of the matter era and for
consistency with local gravity constraints.

4. 0 <
𝑅𝑓,𝑅𝑅

𝑓,𝑅
(𝑟 = −2) < 1 at 𝑟 = −𝑅𝑓,𝑅

𝑓 = −2. This is required for the stability and the

presence of a late-time de Sitter solution. Note that there is another fixed point that can be
responsible for the cosmic acceleration (with an effective equation of state 𝑤eff > −1).

We clarified why the above conditions are required by providing detailed explanation about the
background cosmological dynamics (Section 4), local gravity constraints (Section 5), and cosmo-
logical perturbations (Sections 6 – 8).

After the first suggestion of dark energy scenarios based on metric f (R) gravity, it took almost
five years to construct viable models that satisfy all the above conditions [26, 382, 31, 306, 568,
35, 587]. In particular, the models (4.83), (4.84), and (4.89) allow appreciable deviation from
the ΛCDM model during the late cosmological evolution, while the early cosmological dynamics
is similar to that of the ΛCDM. The modification of gravity manifests itself in the evolution
of cosmological perturbations through the change of the effective gravitational coupling. As we
discussed in Sections 8 and 13, this leaves a number of interesting observational signatures such as
the modification to the galaxy and CMB power spectra and the effect on weak lensing. This is very
important to distinguish f (R) dark energy models from the ΛCDM model in future high-precision
observations.

As we showed in Section 2, the action in metric f (R) gravity can be transformed to that
in the Einstein frame. In the Einstein frame, non-relativistic matter couples to a scalar-field
degree of freedom (scalaron) with a coupling 𝑄 of the order of unity (𝑄 = −1/

√
6). For the

consistency of metric f (R) gravity with local gravity constraints, we require that the chameleon
mechanism [344, 343] is at work to suppress such a large coupling. This is a non-linear regime in
which the linear expansion of the Ricci scalar 𝑅 into the (cosmological) background value 𝑅0 and
the perturbation 𝛿𝑅 is no longer valid, that is, the condition 𝛿𝑅≫ 𝑅0 holds in the region of high
density. As long as a spherically symmetric body has a thin-shell, the effective matter coupling
𝑄eff is suppressed to avoid the propagation of the fifth force. In Section 5 we provided detailed
explanation about the chameleon mechanism in f (R) gravity and showed that the models (4.83)
and (4.84) are consistent with present experimental bounds of local gravity tests for 𝑛 > 0.9.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2010-3

http://www.livingreviews.org/lrr-2010-3


f (R) Theories 121

The construction of successful f (R) dark energy models triggered the study of spherically
symmetric solutions in those models. Originally it was claimed that a curvature singularity present
in the models (4.83) and (4.84) may be accessed in the strong gravitational background like neutron
stars [266, 349]. Meanwhile, for the Schwarzschild interior and exterior background with a constant
density star, one can approximately derive analytic thin-shell solutions in metric f (R) and Brans–
Dicke theory by taking into account the backreaction of gravitational potentials [594]. In fact, as we
discussed in Section 11, a static star configuration in the f (R) model (4.84) was numerically found
both for the constant density star and the star with a polytropic equation of state [43, 600, 42].
Since the relativistic pressure is strong around the center of the star, the choice of correct boundary
conditions along the line of [594] is important to obtain static solutions numerically.

The model 𝑓(𝑅) = 𝑅+𝑅2/(6𝑀2) proposed by Starobinsky in 1980 is the first model of inflation
in the early universe. Inflation occurs in the regime 𝑅 ≫ 𝑀2, which is followed by the reheating
phase with an oscillating Ricci scalar. In Section 3 we studied the dynamics of inflation and
(p)reheating (with and without nonminimal couplings between a field 𝜒 and 𝑅) in detail. As we
showed in Section 7, this model is well consistent with the WMAP 5-year bounds of the spectral
index 𝑛𝑠 of curvature perturbations and of the tensor-to-scalar ratio 𝑟. It predicts the values of
𝑟 smaller than the order of 0.01, unlike the chaotic inflation model with 𝑟 = 𝒪(0.1). It will be of
interest to see whether this model continues to be favored in future observations.

Besides metric f (R) gravity, there is another formalism dubbed the Palatini formalism in which
the metric 𝑔𝜇𝜈 and the connection Γ𝛼

𝛽𝛾 are treated as independent variables when we vary the action
(see Section 9). The Palatini f (R) gravity gives rise to the specific trace equation (9.2) that does
not have a propagating degree of freedom. Cosmologically we showed that even for the model
𝑓(𝑅) = 𝑅 − 𝛽/𝑅𝑛 (𝛽 > 0, 𝑛 > −1) it is possible to realize a sequence of radiation, matter, and
de Sitter epochs (unlike the same model in metric f (R) gravity). However the Palatini f (R) gravity
is plagued by a number of shortcomings such as the inconsistency with observations of large-scale
structure, the conflict with Standard Model of particle physics, and the divergent behavior of the
Ricci scalar at the surface of a static spherically symmetric star with a polytropic equation of state
𝑃 = 𝑐𝜌Γ0 with 3/2 < Γ < 2. The only way to avoid these problems is that the f (R) models need
to be extremely close to the ΛCDM model. This property is different from metric f (R) gravity in
which the deviation from the ΛCDM model can be significant for 𝑅 of the order of the Ricci scalar
today.

In Brans–Dicke (BD) theories with the action (10.1), expressed in the Einstein frame, non-
relativistic matter is coupled to a scalar field with a constant coupling 𝑄. As we showed in in
Section 10.1, this coupling 𝑄 is related to the BD parameter 𝜔BD with the relation 1/(2𝑄2) =
3 + 2𝜔BD. These theories include metric and Palatini f (R) gravity theories as special cases where
the coupling is given by 𝑄 = −1/

√
6 (i.e., 𝜔BD = 0) and 𝑄 = 0 (i.e., 𝜔BD = −3/2), respectively.

In BD theories with the coupling 𝑄 of the order of unity we constructed a scalar-field potential
responsible for the late-time cosmic acceleration, while satisfying local gravity constraints through
the chameleon mechanism. This corresponds to the generalization of metric f (R) gravity, which
covers the models (4.83) and (4.84) as specific cases. We discussed a number of observational
signatures in those models such as the effects on the matter power spectrum and weak lensing.

Besides the Ricci scalar 𝑅, there are other scalar quantities such as 𝑅𝜇𝜈𝑅
𝜇𝜈 and 𝑅𝜇𝜈𝜌𝜎𝑅

𝜇𝜈𝜌𝜎

constructed from the Ricci tensor 𝑅𝜇𝜈 and the Riemann tensor 𝑅𝜇𝜈𝜌𝜎. For the Gauss–Bonnet
(GB) curvature invariant 𝒢 ≡ 𝑅2 − 4𝑅𝜇𝜈𝑅

𝜇𝜈 + 𝑅𝜇𝜈𝜌𝜎𝑅
𝜇𝜈𝜌𝜎 one can avoid the appearance of

spurious spin-2 ghosts. There are dark energy models in which the Lagrangian density is given
by ℒ = 𝑅 + 𝑓(𝒢), where 𝑓(𝒢) is an arbitrary function in terms of 𝒢. In fact, it is possible to
explain the late-time cosmic acceleration for the models such as (12.16) and (12.17), while at
the same time local gravity constraints are satisfied. However density perturbations in perfect
fluids exhibit violent negative instabilities during both the radiation and the matter domination,
irrespective of the form of 𝑓(𝒢). The growth of perturbations gets stronger on smaller scales,
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which is incompatible with the observed galaxy spectrum unless the deviation from GR is very
small. Hence these models are effectively ruled out from this Ultra-Violet instability. This implies
that metric f (R) gravity may correspond to the marginal theory that can avoid such instability
problems.

In Section 13 we discussed other aspects of f (R) gravity and modified gravity theories – such
as weak lensing, thermodynamics and horizon entropy, Noether symmetry in f (R) gravity, unified
f (R) models of inflation and dark energy, f (R) theories in extra dimensions, Vainshtein mechanism,
DGP model, and Galileon field. Up to early 2010 the number of papers that include the word
“f (R)” in the title is over 460, and more than 1050 papers including the words “f (R)” or “modified
gravity” or “Gauss–Bonnet” have been written so far. This shows how this field is rich and fruitful
in application to many aspects to gravity and cosmology.

Although in this review we have focused on f (R) gravity and some extended theories such as
BD theory and Gauss–Bonnet gravity, there are other classes of modified gravity theories, e.g.,
Einstein–Aether theory [325], tensor-vector-scalar theory of gravity [76], ghost condensation [38],
Lorentz violating theories [144, 282, 389], and Hořava–Lifshitz gravity [305]. There are also at-
tempts to study f (R) gravity in the context of Hořava–Lifshitz gravity [346, 347]. We hope that
future high-precision observations can distinguish between these modified gravity theories, in con-
nection to solving the fundamental problems for the origin of inflation, dark matter, and dark
energy.
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[93] Boisseau, B., Esposito-Farèse, G., Polarski, D. and Starobinsky, A.A., “Reconstruction of a
scalar-tensor theory of gravity in an accelerating universe”, Phys. Rev. Lett., 85, 2236–2239,
(2000). [DOI]. (Cited on pages 29, 53, and 80.)

[94] Borisov, A. and Jain, B., “Three-point correlations in 𝑓(𝑅) models of gravity”, Phys. Rev.
D, 79, 103506, (2009). [DOI]. (Cited on page 55.)

[95] Borunda, M., Janssen, B. and Bastero-Gil, M., “Palatini versus metric formulation in higher-
curvature gravity”, J. Cosmol. Astropart. Phys., 2008(11), 008, (2008). [DOI]. (Cited on
page 72.)

[96] Borzou, A., Sepangi, H.R., Shahidi, S. and Yousefi, R., “Brane 𝑓(ℛ) gravity”, Europhys.
Lett., 88, 29001, (2009). [DOI]. (Cited on page 112.)
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[205] Deffayet, C., Esposito-Farèse, G. and Vikman, A., “Covariant Galileon”, Phys. Rev. D, 79,
084003, (2009). [DOI]. (Cited on page 118.)

[206] Deruelle, N., Sasaki, M. and Sendouda, Y., “ ‘Detuned’ 𝑓(𝑅) gravity and dark energy”, Phys.
Rev. D, 77, 124024, (2008). [DOI]. (Cited on page 6.)

[207] Deruelle, N., Sasaki, M. and Sendouda, Y., “Junction Conditions in 𝑓(𝑅) Theories of Grav-
ity”, Prog. Theor. Phys., 119, 237–251, (2008). [DOI]. (Cited on page 112.)

[208] Deruelle, N., Sasaki, M., Sendouda, Y. and Yamauchi, D., “Hamiltonian formulation of
f(Riemann) theories of gravity”, Prog. Theor. Phys., 123, 169–185, (2010). [DOI]. (Cited on
page 50.)

[209] Deruelle, N., Sendouda, Y. and Youssef, A., “Various Hamiltonian formulations of 𝑓(𝑅)
gravity and their canonical relationships”, Phys. Rev. D, 80, 084032, (2009). [DOI]. (Cited
on page 50.)

[210] Dev, A., Jain, D., Jhingan, S., Nojiri, S., Sami, M. and Thongkool, I., “Delicate 𝑓(𝑅) gravity
models with disappearing cosmological constant and observational constraints on the model
parameters”, Phys. Rev. D, 78, 083515, (2008). [DOI]. (Cited on pages 29 and 30.)

[211] Di Porto, C. and Amendola, L., “Observational constraints on the linear fluctuation growth
rate”, Phys. Rev. D, 77, 083508, (2008). [DOI]. (Cited on page 71.)

[212] Dick, R., “Letter: On the Newtonian limit in gravity models with inverse powers of R”, Gen.
Relativ. Gravit., 36, 217–224, (2004). [DOI]. (Cited on page 24.)

[213] Dicke, R.H., “Mach’s Principle and Invariance under Transformation of Units”, Phys. Rev.,
125, 2163–2167, (1962). [DOI]. (Cited on pages 7 and 11.)

[214] Dodelson, S., Modern Cosmology, (Academic Press, London; Burlington, MA, 2003). [Google

Books]. (Cited on pages 61 and 106.)

[215] Dolgov, A.D. and Kawasaki, M., “Can modified gravity explain accelerated cosmic expan-
sion?”, Phys. Lett. B, 573, 1–4, (2003). [DOI]. (Cited on pages 6 and 24.)

[216] Domı́nguez, A.E. and Barraco, D.E., “Newtonian limit of the singular 𝑓(𝑅) gravity in the
Palatini formalism”, Phys. Rev. D, 70, 043505, (2004). [DOI]. (Cited on page 64.)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2010-3

http://dx.doi.org/10.1088/0264-9381/26/13/135008
http://dx.doi.org/10.1016/S0370-2693(01)00160-5
http://dx.doi.org/10.1103/PhysRevD.80.064015
http://dx.doi.org/10.1103/PhysRevD.65.044023
http://dx.doi.org/10.1103/PhysRevD.65.044026
http://dx.doi.org/10.1103/PhysRevD.79.084003
http://dx.doi.org/10.1103/PhysRevD.77.124024
http://dx.doi.org/10.1143/PTP.119.237
http://dx.doi.org/10.1143/PTP.123.169
http://dx.doi.org/10.1103/PhysRevD.80.084032
http://dx.doi.org/10.1103/PhysRevD.78.083515
http://dx.doi.org/10.1103/PhysRevD.77.083508
http://dx.doi.org/10.1023/B:GERG.0000006968.53367.59
http://dx.doi.org/10.1103/PhysRev.125.2163
http://books.google.com/books?id=iBc9TmNLD7kC
http://books.google.com/books?id=iBc9TmNLD7kC
http://dx.doi.org/10.1016/j.physletb.2003.08.039
http://dx.doi.org/10.1103/PhysRevD.70.043505
http://www.livingreviews.org/lrr-2010-3


f (R) Theories 137

[217] Durrer, R. and Maartens, R., “Dark Energy and Modified Gravity”, arXiv e-print, (2008).
[arXiv:0811.4132 [astro-ph]]. (Cited on page 8.)

[218] Dvali, G., “Predictive power of strong coupling in theories with large distance modified
gravity”, New J. Phys., 8, 326, (2006). [DOI]. URL (accessed 25 February 2010):
http://stacks.iop.org/1367-2630/8/i=12/a=326. (Cited on page 116.)

[219] Dvali, G.R. and Gabadadze, G., “Gravity on a brane in infinite-volume extra space”, Phys.
Rev. D, 63, 065007, (2001). [DOI]. (Cited on page 114.)

[220] Dvali, G.R., Gabadadze, G. and Porrati, M., “4D gravity on a brane in 5D Minkowski space”,
Phys. Lett. B, 485, 208–214, (2000). [DOI], [ADS], [hep-th/0005016]. (Cited on page 114.)

[221] Dvali, G. and Turner, M.S., “Dark energy as a modification of the Friedmann equation”,
arXiv e-print, (2003). [astro-ph/0301510]. (Cited on page 115.)

[222] Dyer, E. and Hinterbichler, K., “Boundary terms, variational principles, and higher derivative
modified gravity”, Phys. Rev. D, 79, 024028, (2009). [DOI]. (Cited on page 112.)

[223] Easson, D.A., “Modified gravitational theories and cosmic acceleration”, Int. J. Mod. Phys.
A, 19, 5343–5350, (2004). [DOI]. (Cited on page 24.)

[224] Easther, R. and Maeda, K.=I., “One-loop superstring cosmology and the nonsingular uni-
verse”, Phys. Rev. D, 54, 7252–7260, (1996). [DOI]. (Cited on page 103.)

[225] Einstein, A., “Die Feldgleichungen der Gravitation”, Sitzungsber. K. Preuss. Akad. Wiss.,
Phys.-Math. Kl., 1915, 844–847, (1915). Online version (accessed 12 May 2010):
http://einstein-annalen.mpiwg-berlin.mpg.de/related_texts/sitzungsberichte/

6E3MAXK4. (Cited on page 5.)

[226] Einstein, A., “Die Grundlage der allgemeinen Relativitätstheorie”, Ann. Phys. (Leipzig), 49,
769–822, (1916). [DOI]. (Cited on pages 5 and 93.)

[227] Eisenstein, D.J., et al. (SDSS Collaboration), “Detection of the Baryon Acoustic Peak in
the Large-Scale Correlation Function of SDSS Luminous Red Galaxies”, Astrophys. J., 633,
560–574, (2005). [DOI], [ADS]. (Cited on pages 5 and 68.)

[228] Eling, C., Guedens, R. and Jacobson, T., “Nonequilibrium Thermodynamics of Spacetime”,
Phys. Rev. Lett., 96, 121301, (2006). [DOI]. (Cited on pages 108 and 110.)

[229] Elizalde, E., Myrzakulov, R., Obukhov, V.V. and Sáez-Gómez, D., “ΛCDM epoch recon-
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