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Abstract:

A novel data association algorithm is developed based on fuzzy genetic algorithms

(FGAs). The static part of data association uses one FGA to determine both the lists of composite

measurement s and the solutions of m-best S-D assignment. In the dynamic part of data association,

the results of the m-best S assignment are then used in turn, with a Kalman filter state estimator,

in a multi-population FGA -based dynamic 2D assignm ent algorithm to estimate the states of the mov—

ing targets over time. Such an assignment-based data association algorithm is demonstrated on a sim—

ulated passive sensor track formation and maint enance problem. The simulation results show its feasi—

bility in multi-sensor multi-target tracking. M oreover, algorithm development and real-time problems

are briefly discussed-

Key words:
( ), 2003, 16(3): 177- 181.

S-D m

’ ’

1000-9361(2003)03-0177-05

The multi-target tracking problem can be di-
vided into two interrelated tasks of state estimation
and data association. Association is the decision
process linking observation of a common origin in
the presence of false alarms and missed detections.
For centralized fusion, static (quasi-state) associa—
tion ( measurements-tomeasurements) is used for
track formation and generation of the composite
measurements for track maintenance, and dynamic
association is used for track maintenance' .

In recent years, multidimensional (i.e. S-D)

“I'were shown to be effec—

assignment algorithms''
tive in data association for multisensor multitarget

tracking in the presence of clutter. In assignment,
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the data association is formulated as the con-
strained combinatorial optim ization problem. How —
ever, the S-D assignment problem (either a static
one or a dynamic one) is known to be NP-

hard'> ¥,

Then the successive Lagrangian relax—

5]

ation technique'” * was developed to construct sub—

optimal solutions with pseudo-polynomial complex—
ity. In addition, m-best assignment algorithms!'®”
obtain top m best assignment solutions by repeat—
edly using the standard S—D assignment algorithm.
A standard genetic algorithm ( GA) based static
data association (for standard S-D assignment)

was proposed in the presence of missed detections

Only[ o
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The focus of this paper is to present an FGAs—
based multidimensional assignment algorithm that
the authors developed. One modified fuzzy GA
(FGA) can obtain m-best S-) assignment solu—
tions n one run. One modified multi-population
FGA has the potential of efficient implementations
of a suboptimal Multiple Hypothesis Tracking
(MHT) . Moreover, this algorithm is essentially a

combination maximum likelihood (ML) approach.

1 Problem Formulation

The problem formulation follows the work' ™
of Bar-Shalom and his co-workers. Now briefly
describe the problem formulation in this section,
and omit detailed exposition. Furthermore, the
problem formation discussed here is applicable to
tracking problems with synchronized sensors and
low speed targets.

1.1 Static assignment problem
The static assignment problem considered in

. . .. . 1-5
this work is a modified version of the one

"in the
literature. The major difference is that the latter
must be divided into two parts of the S assign—
ment and the m-best S assignment, while the
former is a whole.

In a multisensor-multitarget scenario' " > * 7"
there are S lists of measurements from S sensors
which are synchronized and provide lists at discrete
time samples t= 1, , T. For the static assign—
ment problem, the goal is to associate the S lists of
ns measurements obtained at time instant ¢, s= 1,

,S, which is S dimensions. During the course of
implementation, the m-best assignments are deter—
mined and ranked in order of increasing cost. The

. . (2617
generalized S4) assignment problem is' :

m‘jn‘lzla Zci, P (1

where ¢, i, is the cost of associating the S—tuple of

measurements (i1, ,is), 5= 1, ,ns. Pisa bina-
ry indicator variable indicating the association of
this S—tuple. Note that, in Eq. (1), ii= O is a
dummy measurement from alist with the consider—
ation of missed detection. T he cost (negative loga—
2.6, 7]

rithm of the generalized likelihood ratio) is'

Pp W

u(is) In | 2TlR| T+

([Zi - Xo|'R [Zs - X»]) (2)

where Ws is the volume of the field of view of sen—
sor s and u(is) is a binary indicator function. Xp is
the M L state estimation of true target p (here, the

1, 2, 6, 7 . .
t " omitted for

conversion of coordinates
sim plification) . Zsi_is one measurement originated
from p, and is modeled as X, plus additive white
Gaussian noise N (0, R:).

non-unity detection probability of sensor s.

Moreover, Pp_ is the

To determine the m-best assignments, one
only need to rank the S-D assignment solutions in
order of increasing cost (different from the way in

the literature " > * 7).

Define the m-best assign—
ments in the feasible solution space with the m
least costs as: al, , an, with their costs of the as—
signment (or hypothesis) ¢(a1), ,c(an), respec—
tively.

1.2 Dynamic 2D assignment problem

I after

The dynamic problem is solved'" *”
each scan to update the tracks, starting with the
second scan. The goal is to associate the ¢t-th list of
composite measurements with the list of tracks

formed at time mstant t— 1. According to a sec—
71

ond-erder kinem atic model, the target state " " is
X(t) = Ht,e - HX(t- 1) +
G(i—- HWi- 1) (3

where @(*) is the state transition matrix, and G
(*) is the disturbance matrix. The process noise
vector W(*) is modeled as a white, zero-mean
Gaussian random variable with known covariance
matrix Q(*). The composite measurements are as—
sumed to be a linear function of the target state

corrupted by measurement noise'" 7',

Z(t) = H(t)X(1) + V(1) (4
where H(*) is the measurement matrix, and V( *)
is zero-mean white measurement noise with known
covariance matrix R(*).

Denote the number of composite measure—
sanby A, A, re-

ments corresponding to al,
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spectively. Let k= 1, , m. Define the true mea—

surem ent plrolg)abilityl 7l by
v - o a
plz) = yA,”: rexp(c(ar) — c( @))
S L explea) - c(a))

where d+is 1, if z

(5

ar. Otherwise, d:kis zero.
Let yi, i= 0, , N, denote one track from
the track list with the time stamp t— 1. T he solu-
tion of the 2D assignment problem can be divided
into two phases:

Phase 1: m minimization costs and their mea—

surem ent—track pairs,

NoA
min i /ch,.zj ?Q»L_zj

{CJ‘iz]} =) (6)

N Am
m ]Il E E Cyiz] X‘Izj

where X : is a binary assignment variable.

Phase 2: minimization costs for each track
from all the corresponding measurement-track
pairs, following the results of step 1.

arg min{cys;} (7)

The cost of assigning measurement zi to track
. 7]

yils
0 ifi= Qorj=0
A(yi, z7) P{z;} . .
OF = - ]n[ A(yO,Zj) if — ]Il( ) <0
o other

(8)
w here the likelihood function calculation A( yi, zj)

from a Kalman filter state estimator is

Nyi,zj) = [ljl 2 (k) | _;_] )

exp[— %[ZdT( s ‘(k)d(k)] (9)

whered(k) is the measurement residual and S(k)
is the residual covariance. In addition, the likeli-
hood of false alarms A(yo0,zj) is assumed uniformly

o N
probable over each sensor’s field of view'™ "', i.e

Alyo,z) = ﬁ[q%] " (10)

2 Algorithm Description

The solution approaches adopt FGAs as the

fundamental association algorithms. Since the GA
is awellknown algorithm, just briefly describe the
FGAs here. After that, discuss the assignment al-
gorithm.

2.1 Description of the FGAs

. 9, 10
In the literature” "

» fuzzy tools or Fuzzy
Logic-based techniques are used for modeling dif-
ferent GA components or adapting GA control pa—
rameters, respectively, with the goal of improving
performance. Generally, GAs resulting from such
a way are called Fuzzy GAs (FGAs). Moreover,
many research results " exhibited the better per—
formance of FGAs, than the standard GAs. An
FGA is more efficient than a standard GA in solv—
ing the traveling salesman and other combinatorial
optimization problems[m]. In preliminary studies,
the authors developed an FGA, which adopts 6
fuzzy logic controllers for adapting control parame—
ters (i. e. selective pressure, crossover probability
and mutation probability) of a modified GA.
2.2 FGA-based static assignment sol ution

Based on the preliminary studies, the compo-
nents of the FGA were modified according to the
static assignment problem. T he main contents will
be provided in this subsection.

The chromosome representation is decoded as
a symbol string. The alleles are the serial number
of measurements corresponding to the targets de—
tected by a sensor. Each chromosome is one list of
measurement from one sensor- S chromosomes
make an individual: Thus, the genotypes are u—
niquely mapped onto the S lists of measurements
from S sensors. The virtue of such a representa—
tion is that it is fit for any measurement data type-.
The length of each chromosome is equal to the
maximum length of the measurement lists. For a
short list, one can use dummy measurements to fill
it- Generally, the S lists of raw measurements in—
clude many efficient association modes. Hence, the
initial population is achieved by copying the indi-
vidual, which denotes the raw measurements (S
lists) . Moreover, a generation gap is adopted as
the Elitist M odel for the same reason.

The goal of the assignment algorithm is to
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globally minimize the cost (see Eq. (1)). To en-
sure that the resulting fitness values are nonmnega—
tive, individuals are assigned fitness according to
their rank in the population rather than their raw
performance. Thus, a selective pressure is used to
limit the reproductive range. The selection method
is Stochastic Universal Sampling with minimum
spread and zero bias. The crossover operation is
Partly M apping Crossover for symbolic code series.
The mutation operation is Randomly T wo—Point
Interchange M utation for transposition representa—
tion of combinatorial optimization problems. The
stop criterion of the FGA is a maximum generation
number.

The F GA -based static assignment algorithm i-
dentifies the targets and estimates their states by
ML estimation. It searches a population in parallel
by probabilistic transition rules. Only the cost
function and corresponding fitness levels directly
influence the directions of search. It is important
to note that such an algorithm provides a number
of potential solutions to the given problem. Hence,
one can choose the final solution by ranking the ob—
jective association cost. Furthermore, one can se-
lect m best association solutions simultaneously for
the m-best assignment without repeating run.

2.3 FGA-based dynamic assignment solution

The FGA in the dynamic assignment algo—
rithm is a symbolic coded multipopulation FGA.
The genetic operation of this FGA is similar to the
one discussed in the previous subsection. M ore—
over, the stop criterion is the same. The difference
is the population number and the individual m ean—
ing.

Before implementing the dynamic 2D assign—
ment algorithm, Eq.(5) is used to select the com—
posite measurements and calculate their probabili-
ties. The selection discards those com posite mea—
surements with their probabilities less than a cer—
tain threshold. Denote the number of selected
composite measurements corresponding to a,
an by AL

The same technique is applied to form all m
>an. The al-

. A respectively. Let k= k= 1, . m.

subpopulations corresponding to at,

leles of a particular chromosome k are the serial
number of N’Composite measurements in a+ The
alleles of a particular chromosome k are the serial
number of tracks to be associated (i.e. N tracks).

The length of chromosomes k and kis the big one
betw een A and N - Dummy measurements or dum-
my tracks are used to keep A= N. Chromosome k
and k make an individual. Thus, the genotypes
are uniquely mapped onto measurement-track
pairs. T he mitial population is achieved by copying
the individual.

Once the m subpopulations have been built,
one can then be ready to track maintenance. Each
subpopulation assigns A composite measurements
(from the latest scan) to the N most likely previ-
ous tracks using its global cost minimization func—
tion in Eq. (6).
A, A

subpopulations yield their measurement-track pairs

Specially, A,

After the preset generation number, all

, A should replace

with the best fitness level. A decision rule Eq. (7)
is then used to yield the updated tracks.

Specially, in this approach, the track initia—
tion rule and the track maintenance rule are de—
fined as follows. A new track can be born after
two successive scans with measurements assigned
to the track. An old track can be eliminated after
three successive scans with no measurement assign-—

ment to the track.

3  Presentation of Simulation

In this section, a simulated passive multisen—
sor multitarget tracking problem is solved with
this FGAs-based data association algorithm. The
goal is to estimate the feasibility of this algorithm.

The problem is a 7 sensors 5 targets scenario-
The simulated measurement data set includes 10
time samples of measurements from 7 sensors. For
more details on this scenario, e.g. targets simula—
tion and passive sensor specification, see Ref. [ 7,
9] . This scenario results in very complex candidate
assoclations, in the presence of false alarms and
missed detections 7.

The preset parameters of the algorithm are

the following.

© 1994-2010 China Academic Journal Electronic Publishing House. Open access under CC BY-NC-ND license. http://www.cnki.net


http://creativecommons.org/licenses/by-nc-nd/4.0/

August 2003

FGAsBased Data Association Algorithm for
Multi-sensor M ultitarget Tracking

- 181 -

For the FGA -based static assignment phase,
the population size is 80, the generation gap is
0. 6, and the stop generation is 150. 20 best solu-
tions are selected from the S ) assignment results.
The selective pressure and the probability of muta—
tion and crossover are adaptive controlled by the
FGA.

For the FGA -based dynamic 2-D assignment
phase, the number of subpopulations is 20. For
each subpopulation, the population size is 40, the
generation gap is 0. 9, and the stop generation is
50. Each subpopulation has its selective pressure,
the probability of mutation and crossover-

Fig. 1 shows the experiment results. T hese
results are similar to those results in Ref. [ 7] . T his
denotes the feasibility of this algorithm in such a
simulated scenario, although this scenario is simple
for state estimation ( for the target motion models

< 7
w ere constant VC]OClty ) .

500 PN
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true track : s
o A my g A
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Fig.1 Tracking results

4  Conclusions

An FGAs-based data association algorithm for
multi-sensor multi+target tracking is developed in
this paper, and either the FGAs or the m-best S
assignment technique is modified. The feasibility
of the algorithm was demonstrated using a passive
multi-sensor multitarget tracking problem. Due to
the limited testing in the present work, the algo—
rithm requires further analysis and testing, using
both simulated and real multi-sensor multi4arget
data.

Although the algorithm has shown its feasibil-
ity, its practicality seems to be hampered because

of the realtime problem. Generally, there are two

ways to solve the real4ime problem, i.e. parallel
algorithm and hardware-ty pe algorithm. The lat—
ter way is adopted. Design of hardware-type FGA
is presently underway, and design of the hard-
waretype state estimator is planned for future

works.
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