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a b s t r a c t

In this paper, we establish exact solutions for complex nonlinear equations. The He’s semi-
inverse and the


G′

G


-expansion methods are used to construct exact solutions of these

equations. We apply He’s semi-inverse method to establish a variational theory for the
coupled Higgs equation and Maccari system. Based on this formulation, a solitary solution
can be easily obtained using the Ritz method. The


G′

G


-expansion method is used to

seek more general exact solutions of the coupled Higgs equation and the Maccari system.
As a result, hyperbolic function solutions, trigonometric function solutions and rational
function solutions with free parameters are obtained. When the parameters are taken
as special values the solitary wave solutions are also derived from the traveling wave
solutions. Moreover, it is observed that the suggested technique is compatible with the
physical nature of such problems.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

There have been various approaches to search for soliton solutions for nonlinear wave equations. These methods
include the inverse scattering method [1], Hirota’s bilinear method [2], Bäcklund transformation method [3], algebra
method [4], sine–cosine method [5], tanh–coth method [6], Jacobi elliptic function method [7], Homotopy perturbation
method (HPM) [8,9], Luapanov’s artificial small parameter method, δ-expansion method, Adomian decomposition method,
variational iterative method, Homotopy analysis method (HAM), Homotopy Padé method (HPadéM) [10–13] and so on.

In the past few decades, qualitative analysis together with ingenious mathematical techniques for handling various
nonlinear problems has been studied. Among them, variational approaches, such as He’s semi-inverse method is a powerful
tool to the search for variational principles for nonlinear physical problems directly from field equations without using the
Lagrange multiplier and provides physical insight into the nature of the solution of the problem. Based on this formulation,
a solitary solution can be obtained using the Ritz method. Variational principles have been studied widely in physics and
mathematics [14–18].

Unlike some knownmethods such as the


G′

G


-expansionmethod, He’s semi- inversemethod is a powerfulmathematical

tool to the construction of variational formulations for physical problems.
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Recently, Wang et al. [19] proposed the


G′

G


-expansion method to find traveling wave solutions of NLEEs. Next, this

method was applied to obtain traveling wave solutions of some NLEEs [20–22]. Zhang generalized the


G′

G


-expansion

method [23–25].
The


G′

G


-expansion method is based on the explicit linearization of nonlinear differential equations for traveling waves

with a certain substitution which leads to a second-order differential equation with constant coefficients. Computations
are performed with a computer algebra system such as Maple to deduce the solutions of the nonlinear equations in an
explicit form. The solution process of the method is direct, effective and convenient due to solving the auxiliary equation of
second-order differential equationwith constant coefficients. Themainmerits of the


G′

G


-expansionmethod over the other

methods are that it gives more general solutions with some free parameters which, by a suitable choice of parameters, turn
out to be some known solutions gained by the existing methods. As a result, hyperbolic function solutions, trigonometric
function solutions and rational function solutions with free parameters are obtained. When the parameters are taken as
special values, some solitary wave solutions are also derived from the hyperbolic function solutions. Whereas only solitary
wave solutions are obtained by using He’s semi-inverse method. Besides, the


G′

G


-expansion method handles NLEEs in a

direct manner with no requirement for initial/boundary conditions or initial trial functions at the outset. But, He’s semi-
inverse method depends on the initial trial function.

Consider the following coupled Higgs equations

utt − uxx + |u|2u − 2uv = 0,

vtt + vxx − (|u|2)xx = 0.
(1)

Tajiri obtainedN-soliton solutions to Eq. (1) in [26]. Zhao constructedmore general travelingwave solutions of Eq. (1) in [27].
Recently, Attilio Maccari derived a new integrable (2 + 1)-dimensional nonlinear system [28]

iut + uxx + uv = 0,

vt + vy + (|u|2)x = 0.
(2)

The integrability property was explicitly demonstrated and the Lax pairs were also obtained. Zhao also constructed more
general traveling wave solutions of system Eq. (2) in [27].

In this paper we will use He’s semi-inverse and


G′

G


-expansion methods to the coupled Higgs equation and Maccari

system.

2. Description of He’s semi-inverse method

We suppose that the given nonlinear partial differential equation for u(x, t) to be in the form

P(u, ux, ut , uxx, uxt , utt , . . .) = 0, (3)

where P is a polynomial in its arguments. The essence of He’s semi-inverse method can be presented in the following steps:
Step 1. Seek solitary wave solutions of Eq. (3) by taking u(x, t) = U(ξ), ξ = x − ct , and transform Eq. (3) to the ordinary
differential equation

Q (U,U ′,U ′′, . . .) = 0, (4)

where prime denotes the derivative with respect to ξ .
Step 2. If possible, integrate Eq. (4) term by term one or more times. This yields constant(s) of integration. For simplicity, the
integration constant(s) can be set to zero.
Step 3. According to He’s semi-inverse method, we construct the following trial-functional

J(U) =

∫
L dξ, (5)

where L is an unknown function of U and its derivatives.
There exist alternative approaches to the construction of the trial-functionals, see Refs. [29–33].

Step 4. By the Ritz method, we can obtain different forms of solitary wave solutions, such as U(ξ) = A sech(Bξ),U(ξ) =

A csch(Bξ),U(ξ) = A tanh(Bξ),U(ξ) = A coth(Bξ) and so on. For example in this paper we search a solitary wave solution
in the form

U(ξ) = A sech(Bξ), (6)

where A and B are constants to be further determined.
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Substituting Eq. (6) into Eq. (5) and making J stationary with respect to A and B results in

∂ J
∂A

= 0, (7)

∂ J
∂B

= 0. (8)

Solving simultaneously Eqs. (7) and (8) we obtain A and B. Hence, the solitary wave solution (6) is well determined.

3. Description of the (G ′/G)-expansion method

We suppose that the given nonlinear partial differential equation for u(x, t) to be in the form

P(u, ux, ut , uxx, uxt , utt , . . .) = 0, (9)

where P is a polynomial in its arguments. The essence of the (G′/G)-expansion method can be presented in the following
steps:
Step 1. Seek traveling wave solutions of Eq. (9) by taking u(x, t) = U(ξ), ξ = x − ct , and transform Eq. (9) to the ordinary
differential equation

Q (U,U ′,U ′′, . . .) = 0, (10)

where prime denotes the derivative with respect to ξ .
Step 2. If possible, integrate Eq. (10) term by term one or more times. This yields constant(s) of integration. For simplicity,
the integration constant(s) can be set to zero.
Step 3. Introduce the solution U(ξ) of Eq. (10) in the finite series form

U(ξ) =

m−
i=0

ai


G′(ξ)

G(ξ)

i

, (11)

where ai are real constants with am ≠ 0 to be determined,m is a positive integer to be determined. The function G(ξ) is the
solution of the auxiliary linear ordinary differential equation

G′′(ξ) + λG′(ξ) + µG(ξ) = 0, (12)

where λ and µ are real constants to be determined.
Step 4. Determine m. This, usually, can be accomplished by balancing the linear term(s) of highest order with the highest
order nonlinear term(s) in Eq. (10).
Step 5. Substituting (11) togetherwith (12) into Eq. (10) yields an algebraic equation involving powers of (G′/G). Equating the
coefficients of each power of (G′/G) to zero gives a system of algebraic equations for ai, λ, µ and c . Then, we solve the system
with the aid of a computer algebra system, such as Maple, to determine these constants. On the other hand, depending on
the sign of the discriminant ∆ = λ2

− 4µ, the solutions of Eq. (12) are well known to us. So, as a final step, we can obtain
exact solutions of the given Eq. (9).

4. Using He’s semi-inverse method

In this section, we apply He’s semi-inverse method to solve the coupled Higgs equation and the Maccari system.

4.1. Coupled Higgs equation

We first consider the coupled Higgs equation (1). Using the wave variables

u = eiθU(ξ), v = V (ξ), θ = px + rt, ξ = x + ct. (13)

Substituting (13) into (1), we have

(c2 − 1)U ′′
+ (p2 − r2)U − 2UV + U3

= 0,

(c2 + 1)V ′′
− 2(U ′)2 − 2UU ′′

= 0.
(14)

Integrating the second equation in (14) and neglecting the constant of integration we find

(c2 + 1)V = U2. (15)
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Substituting (15) into the first equation of the system and integrating we find

(c4 − 1)U ′′
+ (c2 + 1)(p2 − r2)U + (c2 − 1)U3

= 0, (16)

where prime denotes differentiation with respect to ξ .
By He’s semi-inverse method [14], we can obtain the following variational formulation

J =

∫
∞

0

[
−

(c4 − 1)
2

(U ′)2 +
(c2 + 1)(p2 − r2)

2
U2

+
(c2 − 1)

4
U4
]
dξ . (17)

By a Ritz-like method, we search a solitary wave solution in the form

U(ξ) = A sech(Bξ), (18)

where A and B are unknown constants to be further determined. Substituting Eq. (18) into Eq. (17), we have

J =

∫
∞

0

[
−

A2B2(c4 − 1)
2

sech2(Bξ) tanh2(Bξ)

+
(c2 + 1)(p2 − r2)A2

2
sech2(Bξ) +

(c2 − 1)A4

4
sech4(Bξ)

]
dξ

= −
A2B(c4 − 1)

6
+

(c2 + 1)(p2 − r2)A2

2B
+

(c2 − 1)A4

6B
.

(19)

Making J stationary with A and B results in

∂ J
∂A

= −
AB(c4 − 1)

3
+

(c2 + 1)(p2 − r2)A
B

+
2(c2 − 1)A3

3B
= 0, (20)

∂ J
∂B

= −
A2(c4 − 1)

6
−

(c2 + 1)(p2 − r2)A2

2B2
−

(c2 − 1)A4

6B2
= 0. (21)

From Eqs. (20) and (21), we get

A = i


2(c2 + 1)(r2 − p2)

c2 − 1
(22)

and

B =


r2 − p2

c2 − 1
,

(p2 − r2)
c2 − 1

< 0. (23)

The soliton solutions are, therefore, obtained as follows

U(x, t) = i


2(c2 + 1)(r2 − p2)

c2 − 1
sech

 r2 − p2

c2 − 1
(x + ct)

 ,

V (x, t) =
2(r2 − p2)
c2 − 1

sech2

 r2 − p2

c2 − 1
(x + ct)

 ,

u(x, t) =

i


2(c2 + 1)(r2 − p2)

c2 − 1
sech

 r2 − p2

c2 − 1
(x + ct)

 exp[i(px + rt)], (24)

v(x, t) =
2(r2 − p2)
c2 − 1

sech2

 r2 − p2

c2 − 1
(x + ct)

 .

The solutions (24) are same Eq. (4.11) in [34] respectively. If we take the solution in the form U(ξ) = A csch(Bξ),U(ξ) =

A tanh(Bξ) and U(ξ) = A coth(Bξ), the other solutions in [34] can be derived.
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4.2. Maccari system

We next consider the Maccari system (2). Let us assume the traveling wave solution of (2) has the form

u = eiθU(ξ), v = V (ξ), θ = px + qy + rt, ξ = x + y + ct. (25)

Substituting (25) into (2), we have

U ′′
− (r + p2)U + UV = 0,

(c + 1)V ′
+ 2UU ′′

= 0.
(26)

Integrating the second equation in the system and neglecting the constant of integration we find

− (c + 1)V = U2. (27)

Substituting (27) into the first equation of the system and integrating we find

(c + 1)U ′′
− (c + 1)(r − p2)U − U3

= 0, (28)

where prime denotes differentiation with respect to ξ .
By He’s semi-inverse method [14], we can arrive at the following variational formulation

J =

∫
∞

0

[
−

(c + 1)
2

(U ′)2 −
(c + 1)(r − p2)

2
U2

−
1
4
U4
]
dξ . (29)

By a Ritz-like method, we search a solitary wave solution in the form

U(ξ) = A sech(Bξ), (30)

where A and B are unknown constants to be further determined.
Substituting Eq. (30) into Eq. (29), we have

J =

∫
∞

0

[
−

A2B2(c + 1)
2

sech2(Bξ) tanh2(Bξ) −
(c + 1)(r − p2)A2

2
sech2(Bξ) −

A4

4
sech4(Bξ)

]
dξ

= −
A2B(c + 1)

6
−

(c + 1)(r − p2)A2

2B
−

A4

6B
. (31)

Making J stationary with A and B results in

∂ J
∂A

= −
AB(c + 1)

3
−

(c + 1)(r − p2)A
B

−
2A3

3B
= 0, (32)

∂ J
∂B

= −
A2(c + 1)

6
+

(c + 1)(r − p2)A2

2B2
+

A4

6B2
= 0. (33)

From Eqs. (32) and (33), we get

A = i

2(c + 1)(p2 − r) (34)

and

B =


r − p2, p2 − r < 0. (35)

The soliton solutions are, therefore, obtained as follows

U(x, y, t) = i

2(c + 1)(p2 − r) sech


r − p2(x + y + ct)


,

V (x, y, t) = 2(p2 − r) sech2


r − p2(x + y + ct)

,

u(x, y, t) =


i

2(c + 1)(p2 − r) sech


r − p2(x + y + ct)


exp[i(px + qy + rt)], (36)

v(x, y, t) = 2(p2 − r) sech2


r − p2(x + y + ct)

.

The solutions (36) are the same as Eq. (5.11) in [34] respectively. If we take the solution in the form U(ξ) = A csch(Bξ),
U(ξ) = A tanh(Bξ) and U(ξ) = A coth(Bξ), the other solutions in [34] can be derived.
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5. Using the (G ′/G)-expansion method

In this section, we apply the


G′

G


-expansion method to solve the coupled Higgs equation and the Maccari system.

5.1. Coupled Higgs equation

We begin first with the coupled Higgs equation (1). Using the wave variables

u = eiθU(ξ), v = V (ξ), θ = px + rt, ξ = x + ct. (37)

Substituting (37) into (1), we have

(c2 − 1)U ′′
+ (p2 − r2)U − 2UV + U3

= 0,

(c2 + 1)V ′′
− 2(U ′)2 − 2UU ′′

= 0.
(38)

Integrating the second equation in the system and neglecting the constant of integration we find

(c2 + 1)V = U2. (39)

Substituting (39) into the first equation of the system and integrating we find

(c4 − 1)U ′′
+ (c2 + 1)(p2 − r2)U + (c2 − 1)U3

= 0, (40)

where prime denotes differentiation with respect to ξ . By using (11) and balancing U ′′ terms with U3 in (40) gives

m + 2 = 3m, (41)

so that

m = 1. (42)

The (G′/G)-expansion method (11) admits the use of the finite expansion

U(ξ) = a0 + a1


G′

G


, a1 ≠ 0. (43)

Substituting Eq. (43) into (40), collecting all termswith the powers in


G′

G

i
(i = 0, 1, . . . , 3) and setting each of the obtained

coefficients for


G′

G

i
to zero yields the following set of algebraic equations with respect to a0, a1 and r:

G′

G

0

: −a1λµ + c4a1λµ + p2a0 − r2a0 + c2a30 − a30 + c2p2a0 − c2r2a0 = 0,
G′

G

1

: −a1λ2
− 2a1µ − 3a1a20 + p2a1 − r2a1 + c4a1λ2

+ 2c4a1µ + c2p2a1 − c2r2a1 + 3c2a1a20 = 0,
G′

G

2

: −3a1λ − 3a21a0 + 3c4a1λ + 3c2a21a0 = 0,
G′

G

3

: −2a1 − a31 + 2c4a1 + c2a31 = 0.

Solving this system by Maple gives

a0 = ±i


1 +

p2 − r2

λ2 − 4µ
λ, a1 = ±2i


1 +

p2 − r2

λ2 − 4µ
, c = ±


1 + 2

p2 − r2

λ2 − 4µ
, (44)

where λ, µ, p and r are arbitrary constants. Substituting Eq. (44) into Eq. (43) yields

U(ξ) = ±i


1 +

p2 − r2

λ2 − 4µ
λ ± 2i


1 +

p2 − r2

λ2 − 4µ


G′

G


. (45)

Substituting general solutions of Eq. (12) into (45) we have three types of traveling wave solutions of the coupled Higgs
equation as follows:
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When λ2
− 4µ > 0, we obtain the hyperbolic function traveling wave solutions

U1(ξ) = ±i


(λ2 − 4µ)

[
1 +

p2 − r2

λ2 − 4µ

]
C1 sinh 1

2


λ2 − 4µξ + C2 cosh 1

2


λ2 − 4µξ

C1 cosh 1
2


λ2 − 4µξ + C2 sinh 1

2


λ2 − 4µξ


,

V1(ξ) = −
λ2

− 4µ
2


C1 sinh 1

2


λ2 − 4µξ + C2 cosh 1

2


λ2 − 4µξ

C1 cosh 1
2


λ2 − 4µξ + C2 sinh 1

2


λ2 − 4µξ

2

,

u1(ξ) = ±i


(λ2 − 4µ)

[
1 +

p2 − r2

λ2 − 4µ

]
C1 sinh 1

2


λ2 − 4µξ + C2 cosh 1

2


λ2 − 4µξ

C1 cosh 1
2


λ2 − 4µξ + C2 sinh 1

2


λ2 − 4µξ


exp[i(px + rt)],

v1(ξ) = −
λ2

− 4µ
2


C1 sinh 1

2


λ2 − 4µξ + C2 cosh 1

2


λ2 − 4µξ

C1 cosh 1
2


λ2 − 4µξ + C2 sinh 1

2


λ2 − 4µξ

2

.

(46)

When λ2
− 4µ < 0, we obtain the trigonometric function traveling wave solutions

U2(ξ) = ±i


(4µ − λ2)

[
1 +

p2 − r2

λ2 − 4µ

]
−C1 sin 1

2


4µ − λ2ξ + C2 cos 1

2


4µ − λ2ξ

C1 cos 1
2


4µ − λ2ξ + C2 sin 1

2


4µ − λ2ξ


,

V2(ξ) = −
4µ − λ2

2


−C1 sin 1

2


4µ − λ2ξ + C2 cos 1

2


4µ − λ2ξ

C1 cos 1
2


4µ − λ2ξ + C2 sin 1

2


4µ − λ2ξ

2

,

u2(ξ) = ±i


(4µ − λ2)

[
1 +

p2 − r2

λ2 − 4µ

]
−C1 sin 1

2


4µ − λ2ξ + C2 cos 1

2


4µ − λ2ξ

C1 cos 1
2


4µ − λ2ξ + C2 sin 1

2


4µ − λ2ξ


exp[i(px + rt)],

v2(ξ) = −
4µ − λ2

2


−C1 sin 1

2


4µ − λ2ξ + C2 cos 1

2


4µ − λ2ξ

C1 cos 1
2


4µ − λ2ξ + C2 sin 1

2


4µ − λ2ξ

2

,

(47)

where ξ = x +


±


1 + 2 p2−r2

λ2−4µ


t , for (46) and (47). In solutions (46) and (47), C1 and C2 are left as free parameters. In

particular, if in (46), we take C1 ≠ 0, C2 = µ = 0 and λ = 2, then we obtain

U1(x, y, t) = ±i

2(c2 + 1) tanh


x +


p2 − r2

2
+ 1t


,

V1(x, y, t) = −2 tanh2


x +


p2 − r2

2
+ 1t


,

u1(x, y, t) = ±i

2(c2 + 1) tanh


x +


p2 − r2

2
+ 1t


exp[i(px + rt)],

v1(x, y, t) = −2 tanh2


x +


p2 − r2

2
+ 1t


.

(48)

Also, if we take C1 = 0 and C2 ≠ 0, the solutions in terms of coth can be derived. which are the solitary wave solutions of
the coupled Higgs equation. The solutions (48) are the same as Eq. (4.21) in [34] respectively. Therefore the solutions in [34]
are only a special case of the our solutions.

5.2. Maccari system

We next consider the Maccari system (2). Let us assume the traveling wave solution of (2) has the form

u = eiθU(ξ), v = V (ξ), θ = px + qy + rt, ξ = x + y + ct. (49)

Substituting (49) into (2), we have

U ′′
− (r + p2)U + UV = 0,

(c + 1)V ′
+ 2UU ′′

= 0.
(50)
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Integrating the second equation in the system and neglecting the constant of integration we find

− (c + 1)V = U2. (51)

Substituting (51) into the first equation of the system and integrating we find

(c + 1)U ′′
− (c + 1)(r − p2)U − U3

= 0, (52)

where prime denotes differentiation with respect to ξ . By using (11) and balancing U ′′ terms with U3 in (52) gives

m + 2 = 3m, (53)

so that

m = 1. (54)

The (G′/G)-expansion method (11) admits the use of the finite expansion

U(ξ) = a0 + a1


G′

G


, a1 ≠ 0. (55)

Substituting Eq. (55) into (52), collecting all termswith the powers in


G′

G

i
(i = 0, 1, . . . , 3) and setting each of the obtained

coefficients for


G′

G

i
to zero yields the following set of algebraic equations with respect to a0, a1 and r:

G′

G

0

: ca1λµ + a1λµ − cra0 + cp2a0 − ra0 + p2a0 − a03 = 0,
G′

G

1

: ca1λ2
+ 2ca1µ + a1λ2

+ 2a1µ − cra1 + cp2a1 − ra1 + p2a1 − 3a1a20 = 0,
G′

G

2

: 3ca1λ + 3a1λ − 3a21a0 = 0,
G′

G

3

: 2ca1 + 2a1 − a31 = 0.

Solving this system by Maple gives

a0 = ±
λ

2


2(c + 1), a1 = ±


2(c + 1), r = −

λ2

2
+ 2µ + p2, (56)

where λ, µ, p and r are arbitrary constants. Substituting Eq. (56) into Eq. (55) yields

U(ξ) = ±
λ

2


2(c + 1) ±


2(c + 1)


G′

G


. (57)

Substituting general solutions of Eq. (12) into (57) we have three types of traveling wave solutions of the Maccari system as
follows:

When λ2
− 4µ > 0, we obtain the hyperbolic function traveling wave solutions

U1(ξ) = ±
1
2


2(c + 1)(λ2 − 4µ)


C1 sinh 1

2


λ2 − 4µξ + C2 cosh 1

2


λ2 − 4µξ

C1 cosh 1
2


λ2 − 4µξ + C2 sinh 1

2


λ2 − 4µξ


,

V1(ξ) = −(λ2
− 4µ)


C1 sinh 1

2


λ2 − 4µξ + C2 cosh 1

2


λ2 − 4µξ

C1 cosh 1
2


λ2 − 4µξ + C2 sinh 1

2


λ2 − 4µξ

2

,

u1(ξ) = ±
1
2


2(c + 1)(λ2 − 4µ)


C1 sinh 1

2


λ2 − 4µξ + C2 cosh 1

2


λ2 − 4µξ

C1 cosh 1
2


λ2 − 4µξ + C2 sinh 1

2


λ2 − 4µξ



× exp
[
i(px + qy +


−

λ2

2
+ 2µ + p2


t)
]

,

v1(ξ) = −(λ2
− 4µ)


C1 sinh 1

2


λ2 − 4µξ + C2 cosh 1

2


λ2 − 4µξ

C1 cosh 1
2


λ2 − 4µξ + C2 sinh 1

2


λ2 − 4µξ

2

.

(58)
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When λ2
− 4µ < 0, we obtain the trigonometric function traveling wave solutions

U2(ξ) = ±
1
2


2(c + 1)(4µ − λ2)


−C1 sin 1

2


4µ − λ2ξ + C2 cos 1

2


4µ − λ2ξ

C1 cos 1
2


4µ − λ2ξ + C2 sin 1

2


4µ − λ2ξ


,

V2(ξ) = −(λ2
− 4µ)


−C1 sin 1

2


4µ − λ2ξ + C2 cos 1

2


4µ − λ2ξ

C1 cos 1
2


4µ − λ2ξ + C2 sin 1

2


4µ − λ2ξ

2

,

u2(ξ) = ±
1
2


2(c + 1)(4µ − λ2)


−C1 sin 1

2


4µ − λ2ξ + C2 cos 1

2


4µ − λ2ξ

C1 cos 1
2


4µ − λ2ξ + C2 sin 1

2


4µ − λ2ξ



× exp
[
i

px + qy +


−

λ2

2
+ 2µ + p2


t
]

,

v2(ξ) = −(λ2
− 4µ)


−C1 sin 1

2


4µ − λ2ξ + C2 cos 1

2


4µ − λ2ξ

C1 cos 1
2


4µ − λ2ξ + C2 sin 1

2


4µ − λ2ξ

2

.

(59)

When λ2
− 4µ = 0, we obtain the rational function traveling wave solutions

U3(ξ) =

√
2(c + 1)C2

C1 + C2ξ
,

V3(ξ) =
2C2

2

(C1 + C2ξ)2
,

u3(ξ) =

√
2(c + 1)C2

C1 + C2ξ
exp

[
i(px + qy +


−

λ2

2
+ 2µ + p2


t)
]

,

v3(ξ) =
2C2

2

(C1 + C2ξ)2
,

(60)

where ξ = x + y + ct , for (58)–(60).
In solutions (58)–(60), C1 and C2 are left as free parameters. It is obvious that hyperbolic, trigonometric and rational

solutions were obtained by using the


G′

G


-expansion method, whereas only hyperbolic and trigonometric solutions were

obtained in [34] by using the sine–cosine method and the tanh–coth method. In particular, if in (58), we take C1 ≠ 0, C2 =

µ = 0 and λ = 2, then we obtain

U1(x, y, t) = ±


2(c + 1) tanh(x + y + ct),

V1(x, y, t) = −2 tanh2(x + y + ct),

u1(x, y, t) =


±


2(c + 1) tanh(x + y + ct)


exp[i(px + qy + (p2 − 2)t)],

v1(x, y, t) = −2 tanh2(x + y + ct).

(61)

Also, if we take C1 = 0 and C2 ≠ 0, the solutions in terms of coth can be derived, which are the solitary wave solutions of the
Maccari system. The solutions (61) are the same as Eq. (5.21) in [34] respectively. Therefore the solutions in [34] are only a
special case of the our solutions.

6. Conclusions

We established variational formulations for the coupled Higgs equation and the Maccari system by He’s semi-inverse
method. It is obvious that the employed approach is useful and manageable and remarkably simple to find various kinds of
solitary solutions. Also the (G′/G)-expansion method was used to conduct an analytic study on the coupled Higgs equation
andMaccari system. The exact travelingwave solutions being determined in this study aremore general, and it is not difficult
to arrive at some known analytic solutions for certain choices of the parameters C1 and C2. Comparedwith themethods used
in [27,34], one can see that the (G′/G)-expansion method is not only simple and straightforward, but also avoids tedious
calculations. Moreover, the methods are capable of greatly minimizing the size of computational work compared to other
existing techniques.
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