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Global Land Cover (GLC) information is fundamental for environmental change studies, land resource
management, sustainable development, and many other societal benefits. Although GLC data exists at
spatial resolutions of 300 m and 1000 m, a 30 m resolution mapping approach is now a feasible option
for the next generation of GLC products. Since most significant human impacts on the land system can
be captured at this scale, a number of researchers are focusing on such products. This paper reports
the operational approach used in such a project, which aims to deliver reliable data products.

Over 10,000 Landsat-like satellite images are required to cover the entire Earth at 30 m resolution. To
derive a GLC map from such a large volume of data necessitates the development of effective, efficient,
economic and operational approaches. Automated approaches usually provide higher efficiency and thus
more economic solutions, yet existing automated classification has been deemed ineffective because of
the low classification accuracy achievable (typically below 65%) at global scale at 30 m resolution. As a
result, an approach based on the integration of pixel- and object-based methods with knowledge
(POK-based) has been developed. To handle the classification process of 10 land cover types, a split-
and-merge strategy was employed, i.e. firstly each class identified in a prioritized sequence and then
results are merged together. For the identification of each class, a robust integration of pixel-and
object-based classification was developed. To improve the quality of the classification results, a knowl-
edge-based interactive verification procedure was developed with the support of web service technology.
The performance of the POK-based approach was tested using eight selected areas with differing land-
scapes from five different continents. An overall classification accuracy of over 80% was achieved. This
indicates that the developed POK-based approach is effective and feasible for operational GLC mapping
at 30 m resolution.
© 2014 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and
Remote Sensing, Inc. (ISPRS). This is an open access article under the CC BY-NC-ND license (http://crea-

tivecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Information regarding land cover and its change over time is
essential for a variety of societal needs, ranging from natural
resources management, environmental studies, urban planning to
sustainable development (Foley et al.,, 2005; Roger and Pielke,
2005; Running, 2008; Grimm et al., 2008; Zell et al., 2012; Sterling
et al., 2013). Remote sensing has long been recognized as an effec-
tive tool for broad-scale land cover mapping (e.g., Carneggie and
Lauer, 1966; Kushwaha, 1990; Townshend et al.,, 1991; Cihlar,
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2000; Rogana and Chen, 2004; Hansen et al., 2013). As a result, a
number of land cover datasets at a global scale have been developed
with resolution ranging from 300 m to 1 km, using coarse resolution
satellite imagery such as AVHRR, MODIS and MERIS (Hansen et al.,
2000; Loveland et al., 2000; Friedl et al., 2002, 2010; Bartholomé
and Belward, 2005; Bontemps et al., 2010). Although these GLC data
products have been widely used, their quality is far from satisfac-
tory for many applications (Coppin et al., 2004; Croke et al., 2004;
He et al.,, 2006; Herold et al., 2008; Gong, 2009; Goward et al.,
2011; Verburg et al., 2011). Various researchers (e.g., Iwao et al,,
2006; Gong, 2009; Fritz et al., 2010) have highlighted the shortfalls
of these datasets, e.g. the considerably low accuracies and low-level
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agreement amongst themselves. Consequently, the demand for new
GLC products with improved spatial resolution and accuracy has
been increasingly recognized by the remote sensing community
e.g. the Group on Earth Observations (GEO) and the International
Society for Photogrammetry and Remote Sensing (ISPRS) (Zell
et al., 2012; Giri et al., 2013).

With the long-term archive and free availability of Landsat and
similar image data, the development of GLC data products at 30 m
resolution has become feasible. Such product have been considered
a superior option for the next generation of GLC maps, since most
significant human activities on the land system can be captured at
this scale (Wulder et al., 2008; Giri et al., 2013). During the past
two decades, the extraction of land cover information from Land-
sat-like imagery has been intensively studied, and a variety of
automated and semi-automated methods/algorithms have been
developed (e.g., Gong and Howarth, 1992; Ban, 2003; Coppin
et al., 2004; Lu et al., 2004; Lu and Weng, 2007; Aitkenhead and
Aalders, 2011; Chen et al., 2012; Huang and Jia, 2012; Ban and
Jacob, 2013; Chen et al,, 2013a,b). These have been applied to a
number of national and regional land cover mapping projects using
Landsat imagery (Liu et al., 1999; Xian et al., 2009; Johnson and
Mueller, 2010; Hansen and Loveland, 2012). For instance, a set of
30 m land cover data with 13 different classes was produced by
MacDonald Dettwiler and Associates Information Systems LLC
(MDA, 2014), which covers the USA and a large proportion of Africa
and Asia.

Land cover mapping with 30 m resolution at a global scale is
much more complex than national or regional scale due to a num-
ber of factors, including the availability of good-quality imagery
covering the land surface of the entire Earth (about 150 mil-
lion km?) and the complex spectral and textual characterization
of global landscapes. This makes the development of reliable
30 m GLC data products a very difficult task, as it requires a sub-
stantive level of technical innovation, as well as human and finan-
cial resources. This could be the reason why so far only global
datasets with limited classes at this resolution have been reported
(e.g. a global forest dataset at 30 m resolution was produced by
Townshend et al. (2012) and Hansen et al. (2013)). Of course, forest
data is very important for various applications, however a 30 m
GLC product with a more comprehensive set of land cover types
is desirable for wider studies.

In 2010 China launched a GLC mapping project, the aim of
which was to produce a 30 m GLC data product (GlobeLand30)
with 10 classes for years 2000 and 2010 within a four year period
(Chen et al,, 2011a). It was defined as an operational mapping pro-
ject, with the production of reliable datasets as its clear objective.
To achieve such an objective, it was necessary to utilize automated
classification routines as much as possible. Therefore, the first
attempt was to conduct an experimental evaluation on the usabil-
ity of existing automated classification techniques (Gong et al.,
2013). Four classifiers, i.e., Maximum Likelihood Classifier (MLC),
J4.8 Decision Tree Classifier (DT), Random Forest Classifier (RF),
and Support Vector Machine (SVM) were tested with more than
8000 images captured during the year 2000. It was found that
the highest overall classification accuracy (OCA) was produced by
SVM, at 64.9% (Gong et al., 2013). Such low accuracy is possibly
attributable to significant spectral confusion among different land
cover types. This essentially meant that it was not feasible to make
use of fully automated classification techniques for such an opera-
tional project. A variety of mapping strategies and classification
approaches were therefore investigated for deriving reliable 30 m
GLC datasets (Chen et al., 2012, 2014a; Hu et al.,, 2014; Liao
et al., 2014; Tang et al., 2014).

This paper presents a pixel-object-knowledge-based (POK-
based) classification approach, the primary methodology used to
produce China’s 30 m GLC data product (GlobeLand30). Section 2

examines the two most critical issues for operational 30 m GLC
mapping. Section 3 introduces the key concepts of the POK
approach proposed for an operational mapping strategy. Section 4
describes how pixel-classifiers and object-based identification
were integrated for per-class classification. Section 5 reports the
use of knowledge for verifying and interactively improving map-
ping results. Section 6 presents the experimental results for
selected areas and the accuracy assessment of the final Globe-
Land30 product, as well as a comparison with regard to other sim-
ilar 30 m data products. Section 7 provides discussion and
conclusions.

2. Critical issues for operational 30 m GLC mapping

Experimental and operational classifications are two different
approaches for large area land cover mapping and monitoring
(Defries and Townshend, 1999; Hansen and Loveland, 2012). The
former concentrates on the development and performance testing
of novel algorithms and models, the latter focuses on the develop-
ment and delivery of reliable data products within a pre-defined
time schedule. From the point of view of operational GLC mapping
at 30 m resolution, the selection and/or development of appropri-
ate classifiers suitable for spectral and textual characterization of
complex landscapes, as well as the quality of the resulting data
products are two critical issues that need to be addressed.

2.1. Appropriate classifiers suitable for characterization of complex
landscapes

Taking into consideration the massive task of operational GLC
mapping and the existing land cover classification systems, China’s
GLC mapping project adopted a classification scheme consisting of
10 first-level classes, namely water bodies, wetland, artificial sur-
faces, cultivated land, permanent snow/ice, forest, shrubland,
grassland, bareland and tundra. Table 1 presents these first-level
classes and examples of their typical appearance on Landsat imag-
ery collected from different sites around the world. On one hand,
30 m remote sensing imagery allows the observation of human
impact on the Earth surface through scrutiny of shapes, sizes and
patterns. Braided rivers and lakes, small villages and airports, irri-
gated round cultivated land, large-scale machinery agricultural
patches can all be observed among others. On the other hand, it
can easily be observed that there is high spectral heterogeneity
within a single land cover class and significant spectral confusion
among different classes. For instance, clear water from a reservoir,
a river with a high sediment content, and a eutrophic lake may
have very diverse spectral reflectance. Conversely, some sub-
classes of artificial surface, bareland and cropland have very similar
spectral responses. The cultivated land class contains irrigated
farmlands, paddy fields, green houses cultivated land, artificial
tame pastures, economic cultivated land (such as grape, coffee,
and palm), and abandoned arable lands. They may not have a
unique spectral signature but have similarities with other land
cover classes. This high spectral variation makes the per-pixel clas-
sification much more difficult than might otherwise be anticipated
(Lu and Weng, 2007). For reliable operational mapping, it is impos-
sible to select an appropriate single per-pixel classifier and a suit-
able set of variables for the entire globe. Therefore, new methods
and approaches need to be adopted or developed to deal with
the complex classification issues.

Image segmentation and object-based classification techniques
have been developed to derive these structural elements by group-
ing pixels that have a relatively uniform spectral response into
objects and identify the real world land cover features (Ban et al.,
2010; Blaschke, 2010; Malinverni et al., 2011). Errors associated
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Table 1
The 10 land cover classes and examples of their appearance on 30 m imagery.
Land cover Contents and typical images on the 30m imagery
type
Water bodies
(7)Nedalen, Sweden
(9)Canada
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(continued on next page)
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Table 1 (continued)
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Table 1 (continued)
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Table 1 (continued)

(1)Dune desert, Saudi Arabia
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(3)Gobi desert, Mongolia

(4)Sandy land, Mexico

(7)Gravel desert, Saudi Arabia (8)Piedmont alluvial fan Chlle

(IDDry salt lake bed, Tunisia ~ (2Volcanic ash land, Reunion
TR = T

e
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(1)Greenland, Denmark

Tundra

(1) Wet tundra, Russia

(2) Grass tundra, USA

(3)Masherbrum,Kashmir

-

' [

(4)Shrub tundra, Norway

(3) Bare tundra, Canada

with individual pixel misidentification may be avoided through
this object-based classification approach (Aplin and Smith, 2011;
Myint et al., 2011). It is natural to combine the spectral and
structural information for solving the problems related to the char-
acterization of complex landscapes (Ryherd and Woodcock, 1996;
Trias-Sanz et al., 2008; Hussain et al., 2013). However, the determi-
nation of suitable segmentation parameters and incorporation of
domain knowledge into the object identification process is extre-
mely difficult, especially when the mapping area has a complex
landscape with multi-scale patterns (Smith, 2013).

2.2. Assurance of data product quality

The reality consistency and logical consistency are used to eval-
uate the quality of geo-spatial data products (Heipke et al., 2008;
Brisaboa et al., 2014; Chen et al., 2014b). For a land cover data prod-
uct, the former refers to the thematic accuracy and up-to-dateness
in comparison to the real world. The latter is related to the congru-
ency of land cover features (or objects) within the same dataset, and
between sequential datasets (Verburg et al., 2011; Robertson and
King, 2011; Hansen and Loveland, 2012). Due to the errors intro-
duced by image data manipulation and classification, it is common

to find inconsistency or imperfections in land cover datasets. There-
fore the verification of preliminary classification results is an
important task to ensure a high level of data quality.

A number of factors impact on the reality and logical consis-
tency, such as the semantic interpretation of the adopted classifi-
cation scheme, handling of the minimum mapping units, as well
as time differences between the imagery used and the mapping
time (Lu and Weng, 2007; Verburg et al., 2011; Costa et al.,
2014). For instance, different understandings of the definition for
wetland may lead to dissimilar results of interpretation from the
same 30 m imagery and with the same mapping methodology
(Comber et al., 2004), because the wetland class consists of several
sub-types (lake swamp, river flooding wetlands, sea marsh, shrub/
forest wetlands, mangrove forest, tidal flats/salt marshes). In addi-
tion, different individual interpretations of multi-epoch imagery
might cause false changes. The reduction of omission and commis-
sion errors in land cover data products requires the formulation of
data quality knowledge rules and the development of standardized
verification procedures (Lu and Weng, 2007; Costa et al., 2014).
However, the logical and temporal consistency of land cover cate-
gory data is not as evident or explicit as the topographic features
(Gerke et al., 2004; Brisaboa et al., 2014; Chen et al., 2007). One
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Reference referenced data verification
Data

Fig. 1. Operational mapping strategy.

possible solution is to develop advanced verification tools and
interactive mapping procedures by integrating land cover knowl-
edge and all available ancillary data.

3. A POK approach for operational mapping

To address the critical issues outlined in Section 2, a POK-based
approach was proposed. Its key elements are the integration of
pixel- and object-based classification approaches, optimal cover-
age of 30 m imagery for two baseline years, web-service oriented
integration of reference data, and knowledge-based verification
for assuring the consistency and accuracy of 30 m GLC data prod-
ucts. An overview of the operational mapping strategy adopted is
presented in Fig. 1.

3.1. Integrating pixel- and object-based classification techniques

As it is difficult to select or invent a classifier that is suitable for
complex land cover mapping over large areas, the combination of
different classification techniques has been investigated (e.g.,
Aitkenhead and Aalders, 2011; Hansen and Loveland, 2012). Spe-
cifically, the integration of pixel-based and the object-based classi-
fiers for large area land cover mapping has been explored by
several authors (e.g. Myint et al., 2011; Malinverni et al., 2011;
Robertson and King, 2011; Smith, 2013; Costa et al., 2014). In this
project, the object-based technique was used to determine the
spatial extent of land features with their structural/contextual
information to form land objects. For any given land object,
pixel-based classifiers were used to derive variables (such as veg-
etation indices) and to identify the attribute value with the help
of available reference data and expert knowledge.

Hierarchical classification strategies have also been tested by
several researchers with a series of per-class classifiers to minimize
the effect of spectral confusion among different land cover classes
(Frazier and Page, 2000; Sulla-Menashe et al., 2011; Smith, 2013).
Here it was proposed to decompose the complex GLC mapping into
a series of simpler per-class classifications. Different pixel-based
variables and segmentation approaches were selected and utilized
for characterizing different land cover classes. The water bodies
was extracted first and the corresponding pixels were masked
out before the next processing stage. Wetland was characterized
next, followed by permanent snow/ice, artificial surfaces, culti-
vated land, forest, shrubland, grassland, bareland and tundra.

3.2. Optimal coverage of 30 m imagery for two baseline years

Landsat TM/ETM+ images were selected as the primary data
source for the two baseline years of 2000 and 2010. Imagery from
the Chinese Environmental and Disaster satellite (HJ-1) were also
used as supplementary data for the year 2010, as they have similar
characteristics to the Landsat TM/ETM+ sensor in terms of spectral
band set and spatial resolution (Hu et al., 2014).

The 30 m remotely sensed images were carefully selected to
ensure optimal global coverage and minimal cloud contamination
and such that they were captured within the local vegetation
growing season. In addition, various image data useful to classifica-
tion and validation were collected, including MODIS-NDVI time
series data for extraction of seasonal information of vegetation
(Verbesselt et al., 2010). Landsat TM/ETM+ provided by USGS were
satisfactorily geo-referenced, meaning no further geometric regis-
tration was necessary. However, the HJ-1 imagery suffers from
nonlinear distortion because of its wide-scene imaging capability
(Zhang et al., 2012; Tang et al., 2014; Hu et al., 2014). Therefore,
a specific geo-registration model that integrates the collinearity
equations and Lagrange interpolation was developed for geometric
processing of HJ-1 imagery. In total, 2640 HJ-1 scenes were ortho-
rectified with a registration accuracy of less than two pixels, cover-
ing approximately 60% of the global land surface.

Radiometric correction was performed for both Landsat and
HJ-1 imagery, including both atmospheric and topographic correc-
tions. The atmospheric correction model of MODerate resolution
atmospheric TRANsmission (MODTRAN) was used for Landsat
imagery (Berk et al., 1999). A relative radiometric correction was
adopted for HJ-1 imagery by selecting corresponding atmospheri-
cally corrected Landsat imagery that covered the same area but
was acquired in different years as reference. For imagery covering
mountainous areas with rough terrain, a new approach was devel-
oped to restore the radiometric information in areas of shadow
cast by mountains by using a “continuum removal” (CR) spectral
processing technique without the aid of a DEM (Zhou et al,,
2014). The CR-based approach makes full use of the spectral infor-
mation derived from both the shaded pixels and their neighboring
non-shaded pixels of the same land cover type.

Thick cloud cover and Landsat ETM+ Scan Line Corrector (SLC)-
off failure occasionally resulted in poor quality or missing data on
Landsat TM/ETM+ images. The neighborhood similar pixel interpo-
lator (NSPI) approach was employed to remove thick clouds (Zhu
et al., 2012) and filled gaps in SLC-off images (Chen et al,
2011b). Based on the assumption that the same-class neighboring
pixels around the missing pixels caused by thick clouds or SLC-off
failure have similar spectral characteristics, and that these neigh-
boring and missing pixels exhibit similar patterns of spectral dif-
ferences at different dates, Neighborhood Similar Pixel based
model (NSPI) interpolates the missing pixels by using information
from an ancillary imagery with good quality but acquired at a dif-
ferent date. The results of case studies indicate that NSPI can
restore the value of missing pixels very accurately, and that it
works well in heterogeneous regions. In addition, it can work well
even if there is a relatively long time interval or significant spectral
changes between the input and target images. The filled images
appear spatially continuous without any obvious striping patterns
(Chen et al., 2011b; Zhu et al,, 2012; Huang, 2012).

3.3. Web-based reference data integration

Ancillary data have proven effective in improving classification
accuracy, such as the identification of land cover with higher spec-
tral variation and distinctions between different land cover classes
with similar spectral responses (Chen, 1984; Ehlers et al., 1989; Lu
and Weng, 2007). At the global scale, there are a variety of reference
data sets that can be used to support 30 m GLC mapping, such as
existing GLC maps at coarser resolution, 30 m or higher resolution
regional land cover data, global DEM data (SRTM and ASTER
DEM), global 1:1 million topographic data (Hayakawa et al., 2008),
and ecological zones (Olson et al., 2001). Online-distributed geospa-
tial data assets and services (such as Google map, Map World, and
OpenStreetMap), as well as land cover related services (such as
Geo-Wiki) also provide valuable external and interoperable
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ancillary sources of information (Fritz et al., 2012; Yu and Gong,
2012).

Ancillary data are less uniform than remotely sensed data, vary-
ing in format, accuracy and spatial resolution. In order to facilitate
the use of such data and their incorporation into classification and
verification processes, a bespoke web-based information service
system was designed, developed and implemented by the Chinese
GLC team. The system was used to integrate all the primary image
data, reference data, ancillary data, and preliminary and final clas-
sification results (Han et al., 2015). Ancillary data were processed
and published as web services according to OGC standards. The
web-based system was connected to the image analysis systems,
with data exchange facilitated by a shared user interface. Online
tools were developed to support data browsing, information retrie-
val, comparison, geo-tagging, and verification. A special tool for
change markup and reporting was developed following a pub-
lish/subscribe model for multi-tier applications.

3.4. Knowledge-based interactive verification

The verification of geo-spatial data is an important process to
identify inconsistency and to remove, or minimize, errors in the
datasets (Comber et al., 2004; Brisaboa et al., 2014). Knowledge-
based verification has been explored for topographic mapping
(Mills and Newton, 1996; Gerke et al., 2004; Chen et al., 2007)
and land cover mapping (Comber et al., 2004; Verburg et al.,
2011). A knowledge framework was proposed by Gao et al.
(2004) for the generalization of land cover maps with nature-
based, culture-based and application-specific knowledge. How-
ever, a priori knowledge of land cover and its change at a global
scale is not available (Lu and Weng, 2007; Smith, 2013). In order
to facilitate the logical consistency checking, knowledge about
the geographical distribution of land cover was summarized and
used to guide the data product verification. With the support of a
web-based system, classification errors (commissions and omis-
sions) on land cover and its change were checked with a variety
of ancillary data and prior-knowledge. An allowable number of
errors was defined for each land cover class on the basis of the
minimum mapping units for a standardized quality controlling.
This was followed by an interactive improvement to remove iden-
tified errors. A more detailed explanation of the knowledge-based
verification approach adopted is provided in Section 5.

3.5. The proposed POK approach

With the above considerations, a pixel-object-knowledge (POK)
based classification approach was developed, as shown in Fig. 2.
With the POK approach, the classification process of all 10 land cover
types is handled with a split-and-merge strategy, i.e. firstly each
class is determined in a prioritized sequence and then the results
are merged together. The first step is called “per-class classification”.

In per-class classification, pixel-based classifiers and object-
based identification approaches are integrated to determine the
spatial extent and category of land cover features in each class.
Both the spectral and multi-temporal signatures of the 30 m imag-
ery are used for deriving variables. A knowledge-based interactive
verification is then carried out to check and improve the reality and
logical consistency of the data products with the support of web
service technology.

For each class, the classification results of individual scenes
were integrated into a map sheet of dimensions 6° in longitude
and 5° in latitude. In total, 847 map sheets were produced. Incon-
sistency and conflicts within the individual classification results
and at strata boundaries were checked and corrected by operators
All these per-class classifications were aggregated afterwards to
produce comprehensive datasets for the years 2000 and 2010.

30m imagery NDVI time-series Reference data
Per-class Pixel-based classification
extraction Spectral Textural Multi-temporal
Water (= features features information
v T T ]
[ Wetland | [ Supervised classifiers/Decision trees |

1

Object-based labeling
Artificial surface -

Multi-scale Automatic Object-based
segmentation labeling result

Cultivated land l

Knowledge-based verification
Forest
Shrubland Knowledge Manual Quality control
Grassland - integration [ interaction & [ and product
Barren land platform verification integration
[ Tundra | | Global land cover mapping at 30m resolution

Fig. 2. The developed POK classification approach.

4. Hybrid pixel- and object-based classification

Pixel-based classification may generate a large number of mis-
classified pixels (the “salt-and-pepper effect”) due to the spectral
confusion between land cover types and spectral diversity within
the same land cover type. Therefore, object-based identification
was adopted to integrate the pixel-based classification results with
segmented objects generated using eCognition (v8) software. In
this process, scale parameters ranging from 10 to 50 (with interval
of 5) were used to obtain multiple scale segmentation results
because landscapes of different land cover types vary significantly
in multiple scenes. Based on pixel-based per-class extraction
results and multiple segmentation layers, the majority criterion
(Lu and Weng, 2007; Ok and Akyurek, 2012; Costa et al., 2014)
and auxiliary information (such as DEM, slope, and reference GLC
products) were applied as a decision rule to automatically or man-
ually label the objects. Table 2 provides an overview of the pixel-
based classifiers and object-based identification methods for each
land cover type.

4.1. Water bodies

In general, water bodies exhibit a distinct spectral feature in
Landsat TM/ETM+ imagery compared to other land cover types. A
supervised Maximum Likelihood Classification (MLC) was
employed based on the Normalized Differential Water Index
(NDWI) and Wetness component of Tassel Cap transformation
(TC-W). For the majority of mapped areas, the method worked well
to ensure the accuracy and efficiency of water mapping (Liao et al.,
2014). In some areas, water bodies, which included clear water,
green water and turbid water, displayed spectral diversity. Clear
water displayed lower reflectance in all bands, while turbid water
had higher reflectance due to the blend of mud and sand, and green
water caused by eutrophication displayed spectral features similar
to green vegetation to some extent. A prior knowledge based deci-
sion trees classifier was adopted to deal with the complexity of
land surface waters (Sun et al., 2012).

With the results of image segmentation, first the percentage of
water pixels from the pixel-based classification results within each
image object was calculated, and then a percentage threshold was
defined, such as 20%, 15% and 10%, which was then used to com-
pare with the percentage of water pixels within each image object.
In this project, 10% was selected as the percentage threshold to
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Fig. 3. Integration of pixel- and object-based classification of artificial surfaces: (a) Landsat TM image, (b) pixel-based classification result, and (c) object-based identification
result. Red color denotes artificial surfaces, pink color is the other land cover types (background), and white polygons in the enlarged figures are the objects segmented based
on the scale parameter of 20. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Per-class extraction with POK approach.

Land cover type Pixel-based method

Object-based method

Features Classifiers
Water bodies NDWI, TC-W, spectral bands, DEM and slope MLC/SVM/DT Percentage thresholding
Wetland / / Expert interpretation
Permanent snow and ice NDSI, spectral bands Automated thresholding/MLC /
Artificial surfaces Spectral bands, texture, NDBI SVM Percentage thresholding
Cultivated land Spectra bands, NDVI time-series and texture MLC Percentage thresholding
Forest Spectral bands, NDVI time-series and priori probability MLC Expert interpretation
Shrubland
Grassland
Bareland

label the object as “water” class after a comprehensive comparison
(Sun et al., 2012; Liao et al., 2014).

4.2. Wetland

Wetland take multiple forms such as bogs, fens, meadows,
marshes, peat land, swamp, floodplains, and mangroves. The spec-
tral diversity within wetland is therefore significant. Different
supervised classifiers were tested but the results were far from sat-
isfactory (i.e. did not achieve acceptable accuracy). Since the suc-
cessful extraction of wetlands depends on the contextual
information and experts experiences, visual interpretation and
inspection were used to accurately delineate wetland based on
prior knowledge of wetland types, distribution, and temporal
change patterns as well as the spectral characteristics.

4.3. Permanent snow and ice

Permanent snow and ice have unique spectral characteristics
distinguishing it from other land cover types. An automated thres-
holding method was employed to identify snow and ice based on

the Normalized Difference Snow Index (NDSI) calculated from
Landsat TM/ETM+ data (Yin et al., 2013). After careful comparison
of several automated thresholding methods, Otsu’s method (Otsu,
1979) was selected as the operational approach as it selects an
optimal threshold by the discriminant criterion to maximize the
separability of the resultant classes in gray levels. With this
method, a better accuracy was achieved in situations of various
backgrounds and snow/ice fractions (Yin et al., 2013), allowing
accurate and efficient snow and ice extraction.

4.4. Artificial surfaces

Artificial surfaces mainly consists of urban areas, roads, rural
cottages and mines, which are primarily based on asphalts, con-
crete, sand and stone, bricks, glasses, and other materials. They
can be divided into three sub-classes including high reflectance,
low reflectance and vegetated type. Different from other land cover
types, artificial surfaces usually holds specific textual patterns,
which are helpful for further classification. Accordingly, a super-
vised pixel-based classifier (SVM) was first used to extract artificial
surface using both spectral band information and a variance tex-
ture recommended by Lu and Weng (2007).
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Table 3
Examples of Land cover and change knowledge used for data verification.
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Type of
knowledge

Examples

Implication for data verification

Nature-based
knowledge

Land surface water and wetland reside in a relatively flat
or low relief areas

Arid/semi-arid zones have less rivers and lakes than an
area with dense water networks

Vegetation classes (forest, grass, tundra) might have
different geographical distribution in distinct eco regions

Culture-based Woods are cut in forest areas and replanted later for

knowledge commercial purpose
Artificial surfaces areas may have a congruency with place
names
Land cover related socio-economic census data or
inventory statistics serve as prior knowledge for the
verification

Temporal Artificial surfaces will continue to exist once built up in
constraints most cases
knowledge Land surface water has a great fluctuation

Cultivated land with crops or after harvest have different
spectra and may cause pseudo change

Calculate slope from DEM for filtering those area greater than a pre-defined
threshold;

Identify areas covered by mountain shadows

Define different minimal allowable threshold about water omission or commission
errors for these areas

Subdivide the whole globe using eco regions defined World Wildlife Fund (WWF)
for minimizing confusion of discrete vegetation classes with similar spectral
response

Identify those traces of cut wood which might be interpreted as farm lands (espe-
cially in in Amazon area)

Use geographic names to locate those places in arid and semi-arid area where
smaller towns are not easily identified from 30 m imagery

Compare the statistics resulted from 30-m GLC data with the available census or
inventory statistics data for identifying gross and systematic error

Compute 2000-2010 artificial surfaces difference and check those areas with sig-
nificant decrease

Correct the water area of different years with MODIS time-series data

Using MODIS time-series data and 30 m texture information to inspect fallow and
harvested cultivated land

After the pixel-based classification, segmentation was per-
formed at multiple scales, and areas of artificial surfaces were
identified if the proportion of artificial surfaces pixels within an
object was larger than a predefined threshold (i.e. 50%). Finally,
the classification results of artificial surfaces at different scales
were combined and verified by manual editing based on visual
comparison with high resolution images (e.g. Google Earth) and
other reference data. Fig. 3 gives an example of extraction of arti-
ficial surfaces by integrating pixel- and object-based classification
methods.

4.5. Cultivated land

Cultivated land displays complicated spectral characteristics at
the global scale. The spectra of cultivated land covered by plants
are identical with those of natural vegetation, while the spectra of
cultivated land without plants (fallow) are almost the same as
those of soil. The most common spectra of cultivated land in
growing season are the mixture of vegetation and soil. Moreover,
cultivated land generally has regular distribution patterns such as
circles or rectangles as well as texture which is different from
natural vegetation due to human management. However, the uti-
lization of texture and spectral characteristics is very difficult
because they are determined not only by the type and size of

(@)

cultivated land, but also by the phenology of the crops, which
contains planting, growing, maturity and harvest. In this study,
a new cultivated land extraction method was developed based
on both crop phenology and regular distribution pattern of the
cultivated land. In order to obtain the phenological information
of the crops, a new method, known as NDVI Linear Mixing
Growth Model (NDVI-LMGM), was proposed for generating high
spatial-resolution NDVI time series. By using multi-temporal
250 m MODIS NDVI data and Landsat imagery (Rao et al., 2014),
this method was able to cope with the limitation of coarse spatial
resolution MODIS-NDVI products for 30 m resolution land cover
mapping. After that, the 30 m NDVI time series data were used
by a pixel-level supervised classifier (MLC) to identify potential
cultivated land pixels.

The objects obtained by segmentation were overlaid onto
potential cultivated land images. Only objects displaying regular
man-made patterns such as circles or rectangles and for which
the proportion of potential cultivated land pixels within the object
was larger than a predefined threshold (i.e. 70%) were identified as
cultivated land via visual interpretation. Fig. 4 gives an example of
cultivated land extraction in Amazon area. Some cultivated land
were mis-classified as traces of cutting woods. With the object seg-
mentation results and the help of higher resolution images, they
were identified and modified as cultivated land patches.

"
(c)

(d)

Fig. 4. Object-based cultivated land extraction: (a) TM image in Amazon Forest area where some cultivated land were miss-classified as traces of cutting woods; (b)
segmentation results for cultivated land identification; (c) higher resolution image used for identifying the missed cultivated land patches; and (d) modified cultivated land

patches.
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(c) (d)

Fig. 5. Object-based grassland extraction (a) original image; (b) enlarged image; (c) example grassland (yellow) that was misclassified as cultivated land; and (d) correct
classification results of grassland. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(a) (b)

Fig. 6. Verifying missing artificial surface with geographic names and Google imagery (a) locating the missing artificial surface in an arid area by matching geographic names
and (b) adding artificial surface with the help of Google imagery.

4.6. Forest, shrubland, grassland and bareland bareland because a large number of pixels with spectral similarity
to these land cover types were masked out by the previous proce-

After completing the classification of water, wetlands, snow and dures. Fig. 5 illustrates the object-based extraction of grassland
ice, artificial surfaces and cultivated land, it become relatively (yellow). Considering that the natural vegetation types and bare-
straightforward to classify forest, shrubland, grassland and land are characterized by their own specific phenological patterns,
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SRS AR XTIV

(b)

Fig. 7. Interactiveverification with the support of the web-based system (a). Verifying the increase of farm land in the Western Sahara using higher resolution imagery
(b). Artificial surfaces with high vegetation density was omitted and re-collected after verification.

six spectral bands of Landsat TM/ETM+ imagery, together with 23
NDVI bands per year (generated by the NDVI-LMGM method using
multi-temporal 250 m MODIS NDVI data and Landsat imagery),
were used as input features in the MLC classifier to classify forest,
shrubland, grassland and bareland synchronously. Here, the MLC
classifier was selected because it made better use of the existing
land cover information through a priori probability. Consequently,
before the classification, the a priori probability of each pixel in a
Landsat TM/ETM+ image belonging to forest, shrubland, grassland
and bareland was calculated according to the existing GLC datasets
such as 300 m GlobCover 2009 (Bontemps et al., 2010) and 500 m
BU-MODIS land-cover map (Friedl et al., 2010). Both land cover
datasets were recorded according to the land cover types used in
this research, and resampled to a corresponding 30 m pixel size.
The priori probability of a pixel for each class was calculated by
dividing the number of pixels of the class by the total number of
pixels within a predefined window centered by the target pixel,
and the averaged value of the a priori probability from the two glo-
bal datasets was used as the input a priori probability for MLC clas-
sification. The a priori probability data made use of the latest land
cover mapping experiences, and also helped to verify the training
and validation samples.

5. Knowledge-based interactive verification
5.1. Land cover and change knowledge
Nature-based and culture-based knowledge of the geographical

distribution of land cover are indispensable for land cover data ver-
ification. As two successive data products for years 2000 and 2010

were subject to verification, temporal consistency was added as
another important knowledge.

5.1.1. Nature-based land cover knowledge

Nature-based knowledge refers to the interaction and relations
among different elements of the natural environment (Gao et al.,
2004). For instance, water and wetland reside in relatively flat or
low relief areas. In areas of high latitude, surface water might be
confused with mountain shadows due to solar altitude. With such
knowledge, slope could be calculated from a global DEM and used
to identify errors of omission or commission in surface water (Liao
et al., 2014). Another typical example is that an arid or semi-arid
zone has generally fewer rivers and lakes than a humid or semi-
humid region with dense water networks. Different criteria on data
quality control can be adopted for these two different types of area.
The minimal allowable threshold for omission or commission
errors of water objects (features) could be larger than that in a
dense water network region. A few examples of nature-based
knowledge and implications on the verification of land cover char-
acterization are given in Table 3.

5.1.2. Culture-based land cover knowledge

Culture traditions, political policies and socio-economic events
all have an impact on land cover distribution and changes. Such
knowledge can also help in the verification of land cover datasets.
For instance, people cut down trees and replant them in forest
areas for commercial purposes. Without this knowledge, some
clearings in Amazonian areas might be interpreted as farmlands.
Artificial surfaces are considered as a proxy measure of human
impact on the environment and is associated with centered
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Minimum mapping unit (MMU) and allowable minimum errors for each land cover type per scene.
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Land cover MMU Allowable minimum error of omission or commission per-image scene (pixels or percentage)
type (pixels)
Water bodies  Lake, 3x3 Area Dense water region Arid and dense farmland region General
reservoir case
A>4x4 0 0 0
3x3<A<4x4 4 1 2
River 3x1 Width >3 Must be continuous
2<A<3 Discontinuous is allowed
Wetland 9x9 Sub-type Grass Wood
Lake 2 3
River 1 3
Sea/estuary 1 2
Permanent 3x3 Area Mid-low latitude mountain regions with large terrain variation General
snow and case
ice A>4x4 0 0
3x3<A<4x4 4 2
Artificial 4 x4 Area General case Difficult areas
surfaces A<8x8 2 4
A>8x8 0 0
Cultivated 6x6 Area Large cultivated land in plain region Arid/semi-arid, hilly mountain regions  General
land case
A>10x10 3% 3% 3%
6x6<A<10x10 1 4 2
A<6x6 No restrict
Forest 8x8 Area Continuous forest region Arid/semi-arid, hilly or mountain/ General
pastoral/farmland/urban regions case
A=>12x12 3% 3% 3%
8x8<A<12x12 1 4 2
A<8x8 No restrict
Shrubland 10 x 10 Area Hilly valley/forest-shrub transition region Arid/semi-arid region/mountain General
regions above forest line case
A>15x%x15 5% 5% 5%
10x10<A<15%x15 6 2 4
A<10x 10 No restrict
Grassland 10 x 10 Area Hilly/pastoral transition region/arid/semi-arid Typical grassland/tropical savannah/ General
grassland/urban broken surface regions mountain meadow regions case
A=>15x%x15 5% 5% 5%
10x10<A<15%x15 6 2 4
A<10x 10 No restrict
Bareland 6x6 Area Hilly/plain/broken barren land region Arid/semi-arid, hilly mountain regions  General
case
A>10x10 3% 3% 3%
6 x6<A<10x10 1 4 2
A<6x6 No restrict
population (Elvidge et al.,, 2007; Sutton et al., 2009). For some
N smaller towns in arid and semi-arid areas, the spectral response
Legend A (b) is much closer to that of the background landscape and may not
(b) Ecoregions be easily identified from 30 m imagery. They could be located
S — using geographic names from digital topographic maps at 1:1 mil-

Central China loess plateau mixed forests
[ Yellow River Plain mixed forests

Daba Mountains evergreen forests
I Qinling Mountains deciduous forests

Kilometers

Fig. 8. Location, ecological regions of Shaanxi Province, China. (a) Location of
Shaanxi Province (black) in mainland of China and (b) ecological regions of Shaanxi
Province.

lion or large scale and then mapped with the help of online higher
resolution imagery or other maps. Fig. 6 gives one example.

In addition, land cover related socio-economic census data or
inventory statistics may also serve as prior knowledge for verifica-
tion. For example, macro-inconsistency was conducted by compar-
ing statistics from 30 m GLC mapping with thematic studies, such
as global agricultural lands statistics (Ramankutty et al., 2008),
inland water surface areas (Raymond et al., 2013), urban land cover
areas in larger and smaller cities (Potere et al., 2009; Angel et al.,
2011), and wetland statistics from the Wetland Handbook
(Whigham, 2009).

5.1.3. Temporal-constraint knowledge

Differences between land cover datasets at regular time
intervals can be spatially-explicit GLC change and are critical assets
for global environmental change studies (Goldewijk and
Ramankutty, 2004; Verburg et al., 2011; Sterling et al., 2013).
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Fig. 9. (a) Land cover map of Shaanxi province in 2000 produced by POK, (b) detail comparison between Landsat imagery and (c) classification result.

Table 5
Error matrix of POK classification results of Shaanxi Province in base-year 2000.

Number of pixels Reference data

Water Artificial surface Cultivated-land Forest Shrub-land Grass-land Barren land Total UA (%)
Classification
Water bodies 3224 16 16 0 0 0 0 3256 99.0
Artificial surfaces 38 6103 419 0 2 6 0 6568 92.9
Cultivated land 285 1400 11530 98 0 184 51 13548 85.1
Forest 127 1 183 2181 2 98 0 2592 84.1
Shrubland 223 46 563 48 416 339 98 1733 24.0
Grassland 121 68 1409 33 149 1100 1113 3993 27.5
Bareland 30 18 141 0 13 31 2539 2772 91.6
Total 4048 7652 14261 2360 582 1758 3801 34462
PA (%) 79.6 79.8 80.8 92.4 71.5 62.6 66.8

Overall accuracy = 78.6%, Kappa coefficient = 0.720

Table 6 artificial surfaces will continue to exist once created. A significant

Comparison of the classification accuracies with various classification methods in
Shaanxi province, China.

Method Overall accuracy (%) Kappa coefficient
Pixel-object-knowledge-classifier ~ 78.6 0.720
Support vector machine 734 0.608
Decision tree (J4.8) 70.4 0.562
Random forest 71.6 0.584
Maximum likelihood classification  63.1 0.462

However, some differences might not come from an actual change
in the real world, but from random, gross or systematic errors in
land cover characterization. There are a number of temporal
constraints between successive land cover datasets which can be
used for improving their consistency. For example, in most cases,

disappearance in the dataset of 2010 with respect to 2000 would
be considered as suspicious and be subject to an interactive verifi-
cation with higher resolution imagery or other source of data.
Some exceptions can be found, however, such as the conversion
of some buildings into green parks in Beijing in preparation for
the 2008 Summer Olympic Games. National statistics from differ-
ent countries were also used to aid discovery of unreasonable
changes inartificial surface.

As land surface water has great fluctuation, differences derived
from imagery of 2000 and 2010 may reflect real change (such as
the dramatic areal decrease of the Aral Sea), or be subject to sea-
sonal difference and annual rainfall. Such knowledge of temporal
constraints was utilized for better understanding and verification
of water changes between two 30 m datasets (Liao et al., 2014).
The temporal inconsistency caused by the original remotely sensed
data was also corrected using MODIS time-series data for the
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Fig. 10. GlobeLand30 map for the year 2010.
Table 7 ) ) land cover and change could be formalized and used for automated
Distribution of map sheet samples in continents. data verification. The success of the project depended greatly on
Continent Asia Europe Africa  America Oceania the interactive verification and modification by skillful operators
Land area ratio 33.01% 7.32% 2217% 31.19% 6.31% with rich experience. With the support of the web-based system
Size of map sheet samples 26 6 18 25 5 mentioned in Section 3.3, interactive verification was accom-
Sum of map sheet samples 80 plished by a group of expert operators with different land cover

calculation and comparison of water areas, water ration and coef-
ficient of spatial variation (Cao et al., 2014).

5.2. Interactive verification and improvement with the support of the
web system

During the preparation and implementation of the Chinese GLC
project, as much knowledge as possible on land cover and change
was analyzed and collected. However, not all the knowledge about

knowledge (such as water resources, wetlands, and urban plan-
ning) to check possible gross errors or misclassifications by com-
parison with reference data. The verified results were then sent
back to the production stage for removal and reduction of uncer-
tainties from the object-based classification results. Fig. 7 gives
two examples of interactive verification conducted with the sup-
port of the web-based system.

Table 4 lists the Minimum Mapping Unit (MMU) and allowable
minimum error of omission or commission per scene for each land
cover type. Levels were defined according to the spatial character-
istics of each land cover class and used for guiding the verification
process.
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Fig. 11. Spatial distribution of map sheet samples of GlobeLand30.
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(d)

Fig. 12. An example of feature sampling in one map sheet sample in North America. (a) The selected map sheet sample in North America. (b) Pixel samples of all land cover
types. (c) Pixel samples in the map sheet. (d) Pixel samples in the corresponding TM image.

Table 8
Distribution of map sheet samples and pixel samples in different regions.

Region Map sheet Pixel samples
samples (2010 year)
Northeast Asia and Central 13 28,924
Asia
Southeast Asia and West Asia 13 30,938
Europe 6 12,765
Africa 18 26,229
America 25 45,817
Oceania 5 9913
Total 80 154,586

6. Experimental evaluation
6.1. Comparison of POK with other classifiers

To evaluate the performance of the POK-based classification
approach, Landsat TM images of Shaanxi province, China, were
used for experiments. The area is located in the centre of China
(Fig. 8(a)) with various land cover types, latitudinal ecological
regions (Fig. 8(b)) and complex terrain.

Besides POK, four other widely used classifiers (SVM, decision
tree, random forest and MLC) were selected for comparison. Inten-
sive field investigations were conducted in 2010 by the National
Geomatics Center of China (NGCC), and 792 acres (34462 pixels)
of ground truth data were collected for accuracy assessment.

Table 9
Preliminary result of accuracy validation of GlobeLand30-2010.
Class 2010
User’s Area Overall Area-weighted
accuracy (%) ratio accuracy overall accuracy

Cultivated land 82.76 0.150478 80.33% +0.2% 79.26% + 0.2%

Forest 83.58 0.299418

Grassland 72.16 0.244509

Shrubland 72.64 0.073392

Wetland 74.87 0.026222

Water bodies  84.70 0.024507

Artificial 86.70 0.009458
surfaces

Bareland 81.76 0.153051

Permanent 75.79 0.018964
snow and ice

Kappa 0.75

In the classification procedure, the training samples required for
the supervised classifiers were selected by visual interpretation of
TM imagery, which was independent of the collection of the
ground truth data.

The land cover map of Shaanxi province produced by POK in
2000 is shown in Fig. 9. By using the collected ground truth data,
an error matrix of the POK classification result was obtained
(Table 5). There are seven classes in total, as snow/ice, wetland,
tundra and bareland do not exist in this area. In general, classifica-
tion accuracies of water, artificial surface, cultivated land and
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Fig. 13. Comparison between the results from POK and other 30 m land cover products. (a)-(d): Landsat TM images; (e)-(h): classification results by POK; (i) and (j): CORINE

1: 100,000 product; (k) and (1): FROM 30 m product.

forest were found to be relatively higher. However, there was
much confusion among grassland, shrub land and bareland
because these land cover types are usually mixed. The overall accu-
racies of POK and other four methods are shown in Table 6. It is
noticeable that the POK achieves the highest overall accuracy
and Kappa coefficient (0.7017), followed by SVM.

6.2. Preliminary accuracy assessment of GlobeLand30

The proposed POK approach was used as the primary approach
by China’s GLC mapping team to produce GlobeLand30, comprising

two 30 m resolution GLC maps for 2000 and 2010. Fig. 10 illus-
trates the GlobeLand30 map for the year 2010.

A preliminary accuracy assessment was conducted by third-
party experts with a two-rank sampling strategy. The first-rank
sampling (also called map sheet sampling) involved selecting
map sheet samples from global map sheets, and the second-rank
sampling (also called feature sampling) selected feature samples
of each land cover type within each elected map sheet (Tong
et al., 2011; Tong and Wang, 2012). 80 map sheet samples were
selected from a total of 847 map sheets in the first-rank sampling,
and these samples were spatially distributed into five continents
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Fig. 14. Eight test areas across the five continents.

based on the land area ratio. Table 7 shows the distribution of map
sheet samples, and Fig. 11 shows the spatial location of the 80 map
sheet samples.

A total of 159,874 pixel samples were selected for the assess-
ment of GlobeLand30 in the baseline year of 2010, in which
154,586 pixel samples can be definitely validated as correct or
incorrect ones. Feature samples were selected using spatial strati-
fication sampling within each selected map sheet, in which the fea-
tures were stratified by land cover types. The total sample size of
feature samples in each map sheet was first calculated based on
the optimization sampling model, and the number of feature sam-
ples (pixels) in each layer was allocated according to landscape
index and layer area ratio to the total sample size. The locations
of feature samples were then spatially determined layer by layer
based on spatial correlation analysis. Fig. 12 shows an example
of feature sampling in one map sheet sample in North America,
whilst Table 8 shows the distribution of map sheet samples and
pixel samples in different regions.

Table 9 lists the result of the preliminary accuracy assessments
for each land cover type in the baseline year 2010. In the table, the
user’s accuracy and its area ratio for each land cover type are pre-
sented, and the area-weighted overall accuracy is calculated by
summing the multiplication of user’s accuracy and its area ratio
of each land cover type (without tundra type). It can observed that
the overall accuracy presented in GlobeLand30 in the year of 2010
is better than 80%, and the kappa coefficient is 0.75.

6.3. Comparison of GlobeLand30 with other 30 m land cover products

The POK classification results (Fig. 13(e-h)) were also compared
with other land cover products at 30 m resolution, e.g. CORINE
(Fig. 13(i and j) and FROM (Fig. 13(k and 1)). It was found that
the quality of GlobeLand30 was at the similar level to CORINE data,
which covers only Europe in the base-year of 2000. Although FROM
is also at 30 m resolution, it was found to be of much lower quality
compared to the POK classification results as it resulted from fully
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Table 10
Comparison of the overall accuracy and Kappa of POK and other land cover products.

Global testing areas Ground truth samples (pixels)

Overall accuracy (kappa coefficient)

POK 30 m CORINE FROM
Southeast of Baikal Lake, Russia 9012 78.9% (0.737) / 72.9% (0.615)
Northeastern area, Tunisia 300 93.0% (0.890) / 72.0% (0.603)
Westcentral area, South Africa 1445 79.72% (0.676) / 28.46% (0.15)
Northern area, Sweden 2345 81.99% (0.766) 63.68% (0.529) /
Northwestern area, Spanish 1742 84.73% (0.78) 76.63% (0.666) /
Southeastern area, Canada 67,983 97.2% (0.950) / 90.6% (0.802)
Amazon river basin, Brazil 144 79.2% (0.677) / 65.7% (0.262)
Southeastern area, Australia 2194 96.67% (0.950) / 42.4% (0.315)

automated classification (Gong et al., 2013). There was also much
classification error identified between shadow and water in these
examples (Fig. 13(k and I)).

Further quantitative accuracy assessments were conducted in
eight test areas across all continents in the world for the year 2000
(Fig. 14). The corresponding ground truth data were collected by
third-party researchers through interpretation of high-resolution
images (including aerial photos and Google Earth imagery) and field
observations. Detailed information of the experimental sites and the
ground truth data are shown in Table 10. To achieve consistent
accuracy assessment, land cover types were firstly transformed to
the classification system used in this paper based on Herold et al.
(2008), because the other GLC products used different classification
systems. Table 10 lists the overall accuracy and kappa coefficient of
the POK product and other two land cover products. From the assess-
ment results, it is clear that the POK product achieves the highest
accuracy among these three land cover products. It is noticed that
the accuracy of FROM data varies greatly with overall accuracy (as
low as 28.46%), implying that the automated classification tech-
nique is not robust enough for global mapping at 30 m resolution.
These experimental results indicate that the POK-based classifica-
tion approach is reliable for global land cover mapping. The other
land cover maps at coarser resolution were not compared here
because they were found to be too different in resolution to obtain
meaningful comparison.

7. Conclusions

This paper has reported the primary methodology used in the
operational GLC mapping project of China. With the realization
that, at global scale with 30 m resolution, fully automated classifi-
cation techniques are not currently able to meet the requirement
of operational mapping, a compromise between effectiveness
(accuracy) and efficiency (level of automation) was adopted. As
such, in additional to automated classifiers, interactive processes
were employed in cases of classification in complex areas and for
quality control, resulting in the pixel-object-knowledge based
(POK-based) operational approach.

In the developed POK-based approach, the determination of
land feature classes takes two steps. The first is to decompose
the classification of the 10 land cover classes (types) into simpler
per-class classifications in a prioritized sequence. The second step
is to merge per-class classification results together. In the determi-
nation of each class, an optimal integration of pixel-and object-
based classification was developed. To improve the quality of the
data products, a knowledge-based interactive verification proce-
dure was developed with the support of web service technology.

The performance of the POK-based approach was tested with
eight selected areas with various landscapes and from five differ-
ent continents. An overall classification accuracy of over 80% was
achieved. Based on this limited test, it may be concluded that this
POK-based approach is a feasible method for operational mapping
at 30 m resolution on a global scale.

With the POK approach as the primary methodology, two 30 m
GLC data sets for the years 2000 and 2010 have been produced,
entitled GlobeLand30 (http://www.globallandcover.com). Globe-
Land30 provides more detailed land cover patterns and reflects
land cover changes induced by human activities from 2000 and
2010. To assess the quality of GlobeLand30, researchers from
China, Greece, Italy, Mexico and Sweden have carried out prelimin-
ary evaluations. Large samples have been taken from all over the
world and an overall accuracy in excess of 80% has been obtained.
From such results, it might be concluded that GlobeLand30 is a
reliable product for a number of various applications.

GlobeLand30 has been released for open access and non-
commercial utilization at the end of September, 2014. It will be
applied to support a variety of international and national scientific
programs and development activities. These include the United
Nations’ post-2015 Sustainable Development Agenda, GEO’s
GEOSS, ICSU (International Council of Science Union) Future Earth
initiative, and the Biodiversity Indicators Partnership program
from UNEP-WCMC. This will greatly promote data sharing in the
field of geosciences and Earth observation.

Moreover, the sharing of GlobeLand30 will also stimulate GLC
mapping and collaborative information services worldwide. More
efforts will be mobilized and devoted to the development of
increasingly automated approaches for continual updating and
data refinement, especially to develop long-time series GLC data-
sets. An international validation of GlobeLand30 will be organized
with the support of UNGGIM and GEO over the next two years.
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