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SUMMARY

Structural determinants underlying signaling speci-
ficity in the tumor necrosis factor receptor super-
family (TNFRSF) are poorly characterized, and it
is unclear whether different signaling outputs can
be genetically dissociated. The p75 neurotrophin
receptor (p75NTR), also known as TNFRSF16, is
a key regulator of trophic and injury responses in
the nervous system. Here, we describe a genetic
approach for dissecting p75NTR signaling and deci-
phering its underlying logic. Structural determinants
important for regulation of cell death, NF-kB, and
RhoA pathways were identified in the p75NTR death
domain (DD). Proapoptotic and prosurvival pathways
mapped onto nonoverlapping epitopes, demon-
strating that different signaling outputs can be genet-
ically separated in p75NTR. Dissociation of c-Jun
kinase (JNK) and caspase-3 activities indicated that
JNK is necessary but not sufficient for p75NTR-medi-
ated cell death. RIP2 recruitment andRhoGDI release
were mechanistically linked, indicating that competi-
tion for DD binding underlies crosstalk between NF-
kB and RhoA pathways in p75NTR signaling. These
results provide insights into the logic of p75NTR sig-
naling and pave the way for a genetic dissection of
p75NTR function and physiology.
INTRODUCTION

Plasma membrane receptors relay extracellular signals by alter-

ing the activities of multiple intracellular effectors and signaling

pathways. Understanding how different receptor signaling out-

puts interact with each other and contribute to changes in cell

and animal physiology has been one of the main challenges in

signal transduction research. In receptor tyrosine kinases, indi-

vidual phosphotyrosine residues govern signaling output and

specificity. Substitutions in specific intracellular tyrosines can

generate receptor mutants that become uncoupled from indi-

vidual signaling effectors, such as PI3 kinase, Grb2, or PLCg,

providing unparalleled understanding of the physiological rele-
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vance of individual receptor signaling outputs. Aside from a

handful of receptor tyrosine kinases, however, such level of

understanding is either very limited or inexistent for other types

of receptors.

Members of the tumor necrosis factor receptor superfamily

(TNFRSF) engage different signaling pathways, including NF-

kB, c-Jun kinase (JNK), and caspase cascades, through pro-

tein-protein interactionsmediated by intracellular death domains

(DDs), a six-helix bundle globular domain that is essential for

TNFRSF signaling (Park et al., 2007a; Haase et al., 2008). How-

ever, structural determinants underlying signaling specificity in

the TNFRSF are poorly characterized, and it is unclear whether

different signaling outputs can be genetically dissociated. p75

neurotrophin receptor (p75NTR), also known as TNFRSF16, is

a transmembrane receptor for neurotrophic factors of the

neurotrophin family, which includes nerve growth factor (NGF),

brain-derived neurotrophic factor (BDNF), neurotrophin-3, and

neurotrophin-4 (Dechant and Barde, 2002; Roux and Barker,

2002; Chao, 2003; Gentry et al., 2004; Underwood and Coulson,

2008). Neurotrophin binding to p75NTR can lead to activation of

NF-kB and cell survival (Carter et al., 1996; Khursigara et al.,

2001), activation of JNK, caspases, and cell death (Yoon et al.,

1998; Friedman, 2000), and inhibition of the small GTPase

RhoA and axonal growth (Yamashita et al., 1999; Yamashita

and Tohyama, 2003). In addition, activation of p75NTR by unpro-

cessed neurotrophins (proneurotrophins) together with the core-

ceptor sortilin is thought to preferentially result in cell death (Lee

et al., 2001; Nykjaer et al., 2004). Like other members of the

TNRSF, p75NTR lacks catalytic activity, and signaling proceeds

via ligand-induced recruitment and release of cytoplasmic effec-

tors to and from its intracellular domain. Numerous intracellular

proteins have been identified by their ability to interact with

p75NTR (Dechant and Barde, 2002; Roux and Barker, 2002;

Gentry et al., 2004), but, with a few exceptions, their identifica-

tion has not clarified our understanding of p75NTR function and

physiology. How p75NTR connects to different signaling path-

ways and how these contribute to p75NTR function remain key

challenges in the field.

In order to address these questions, we have undertaken a

genetic approach to dissect p75NTR signaling and decipher its

underlying logic. A comprehensive structure-function analysis

was performed on the p75NTR DD (Liepinsh et al., 1997), thereby

linking specific structural determinants to each of the threemajor

signaling outputs of p75NTR.
ports 2, 1563–1570, December 27, 2012 ª2012 The Authors 1563

https://core.ac.uk/display/82342455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:carlos.ibanez@ki.se
http://dx.doi.org/10.1016/j.celrep.2012.11.009


RESULTS AND DISCUSSION

Alanine-Scanning Mutagenesis of the p75NTR DD
An arbitrary cutoff of 50% relative solvent accessibility identified

30 highly exposed amino acid residues in the p75NTR DD (Figures

S1A and S1B). Exposed residues are less likely to play structural

roles and represent candidate sites for interaction with down-

stream effector proteins. Three Gly residues playing important

structural roles in loops connecting a helices were excluded

from the analysis. The remaining 27 residues, as well as Glu363

(30% relative solvent accessibility), were targeted by alanine

(Ala)-scanning mutagenesis (Cunningham and Wells, 1989).

The four Alas in the native sequence were substituted by Asp.

With the exception of L342, T343, and A390, all other highly

exposed residues are conserved between the DDs of rat and

human p75NTR. A total of 22 p75NTR mutants were generated

carrying either individual substitutions or combinations. A dele-

tion construct lacking the entire DD (DDD), but retaining the jux-

tamembrane region and the C-terminal tail, was also generated

for comparison. All p75NTR mutants were expressed at compa-

rable levels in transfected cells and retained wild-type (WT)

activity in at least one, but often more, signaling pathways (see

below), indicating that the mutations preserved the structural

integrity of the domain.

Functional Epitopes Distributed throughout the p75NTR

DD Mediate Activation of Caspase-3 and Cell Death by
Proneurotrophins
The ability ofWT p75NTR and DDmutants to induce cleavage and

activation of caspase-3 in response to pro-BDNFwas first tested

in transfected HEK293 cells by fluorescence-activated cell-sort-

ing (FACS) analysis. pro-BDNF induced a robust increase in

cleaved caspase-3 in cells expressing WT p75NTR after 12 hr

treatment but had no effect in vector-transfected cells (Fig-

ure 1A). No caspase-3 activation was observed in cells express-

ing theDDD construct. Multiple DDmutants showed an impaired

response to pro-BDNF in HEK293 cells (labeled red in Figure 1A).

Of the 28 residues probed by Ala-scanningmutagenesis, 13 resi-

dues distributed throughout most of the p75NTR DD were found

to be involved in the ability of p75NTR to activate caspase-3 in

response to pro-BDNF. The complete set of p75NTR mutants

was then tested for induction of apoptotic cell death in response

to pro-BDNF by TUNEL/FACS assay. There was a good corre-

spondence between activation of caspase-3 and induction of

apoptotic death in the functional profiles of the mutants (Fig-

ure 1B). The cell death functional map of the p75NTR DDwas veri-

fied in hippocampal neurons isolated from p75NTR knockout (KO)

embryos. Endogenous p75NTR has been shown to mediate cell

death in response to neurotrophins in these neurons (Friedman,

2000). Hippocampal neurons transfected with a green fluores-

cent protein (GFP) reporter along with either empty vector or

a subset of mutant p75NTR constructs were stimulated with

pro-BDNF and assayed for activation of caspase-3 by immuno-

histochemistry 12 hr later (Figure 1C). Treatment with pro-BDNF

induced robust activation of caspase-3 in KO neurons reconsti-

tuted with WT p75NTR but not in neurons receiving empty vector

(Figure 1D), indicating that the effect of pro-BDNF was mediated

by p75NTR. The DDDmutant was unable to activate caspase-3 in
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response to pro-BDNF. There was a good correspondence

between the functional profiles of p75NTR mutants in hippo-

campal neurons and HEK293 cells. Mutants 341, 341/342/343,

350/353, 378, 392/393, and 404/405 were significantly impaired

in their ability to mediate caspase-3 activation in hippocampal

neurons in response to pro-BDNF (Figure 1D). Together, these

data indicated that functional epitopes distributed throughout

the DD are required for induction of neuronal death by p75NTR

in response to proneurotrophin stimulation (Figure 1E). Because

it is unlikely that a single downstream effector is capable of inter-

actingwith all those residues simultaneously, these data suggest

that cell death induced by p75NTR requires the interaction of its

DD with multiple intracellular proteins. Whether such proteins

bind simultaneously to the p75NTR DD or assemble sequentially

onto receptor complexes that mature during ligand-mediated

activation is unclear at present. p75NTR forms disulphide-linked

dimers at the plasmamembrane through Cys257 in its transmem-

brane domain (Vilar et al., 2009). It is therefore possible that the

two DDs in the activated p75NTR dimer associate with different

interactors in the complex that leads to activation of caspase-3

and cell death.

Activation of JNK Is Required, but Not Sufficient, for
p75NTR-Mediated Cell Death
Although the requirement of JNK activation for p75NTR-mediated

cell death is well established (Casaccia-Bonnefil et al., 1996;

Yoon et al., 1998; Friedman, 2000; Bhakar et al., 2003), its suffi-

ciency has not yet been determined. To investigate the activation

of JNK downstream of mutant p75NTR molecules, we assessed

JNK phosphorylation in response to pro-NGF treatment in

HEK293 cells and hippocampal astrocytes transfected with

a subset of p75NTR DD mutants. pro-NGF increased JNK phos-

phorylation via WT p75NTR and triple-mutant D355A/H359A/

E363A (abbreviated 355/359/363) (Figures 1F and 1G). In

contrast, double-mutant D372A/S373A (abbreviated 372/373)

and single-mutant A378D were unable to mediate JNK phos-

phorylation (Figures 1F and 1G). These data correlated with the

profile of these mutants in caspase-3 and cell death assays

and support the requirement of JNK activation in p75NTR-medi-

ated cell death. Interestingly, although the P341A mutant was

also unable to activate caspase-3 and induce cell death, it re-

tained the ability to induce JNK phosphorylation in response to

pro-NGF (Figures 1F and 1G), indicating that JNK activation is

not sufficient for p75NTR-mediated cell death and can be genet-

ically dissociated from it. There may be a JNK activation

threshold that needs to be exceeded in order to trigger cell death

by p75NTR, and the P341A mutant may signal below that

threshold. Alternatively, neurotrophin binding to p75NTR may

result in the activation of different cellular pools of JNK, not all

of which lead to cell death. The P341A mutant may thus be

defective in the activation of only the subpool of JNK that

couples to caspase-3 activation and cell death. Interestingly, it

has been shown that death of cerebellar granule neurons after

withdrawal of trophic support requires nuclear, but not cytosolic,

JNK activity (Björkblom et al., 2008). Using a pharmacological

approach, an earlier study demonstrated that the JNK pathway

is essential for p75-mediated death of hippocampal neurons

(Friedman, 2000). We used compartment-specific JNK inhibitors
hors



Figure 1. Functional Epitopes in the p75NTR

DD that Mediate Activation of Caspase-3,

Cell Death, and JNK

(A) Caspase-3 activation by p75NTR DD mutants in

HEKs93 cells treated with pro-BDNF as analyzed

by FACS. Mutants deficient in pro-BDNF-medi-

ated caspase-3 activation are highlighted in red.

Results show the percentage of cells displaying

cleaved caspase-3 (from 10,000 cells) as average

± SD of triplicate measurements.

(B) Induction of cell death by p75NTR DDmutants in

HEK293 cells treated with pro-BDNF as analyzed

by TUNEL/FACS. Mutants deficient in pro-BDNF-

mediated cell death are highlighted in red. Results

show the percentage of cells displaying TUNEL

signal (from 10,000 cells) as average ± SD of three

independent experiments.

(C) Hippocampal neurons from p75NTR KO mouse

embryos were transfected with the indicated

constructs along with a GFP reporter (green),

stimulated for 12 hr with pro-BDNF, and stained

for activated caspase-3 (red) and MAP-2 (purple).

(D) The proportion of caspase-3 activation among

transfected hippocampal neurons was assessed

in the presence and absence of pro-BDNF.

Mutants deficient in pro-BDNF-mediated cas-

pase-3 activation are highlighted in red. Results

are presented as average ± SD of at least three

independent experiments each performed in

duplicate.

(E) Surface representation of the p75NTR DD with

residues involved in caspase-3 activation and cell

death highlighted in red. Views on the center and

right were rotated 90� and 180�, respectively,

compared to that on the left.

(F) Induction of JNK phosphorylation by p75NTR

DD mutants in HEK293 cells. Mutants deficient

in neurotrophin-dependent caspase-3 activation

and cell death are highlighted in red. Fold change

was calculated by densitometric scanning of

phospho-JNK signals normalized to total JNK

levels. Results are representative of three experi-

ments.

(G) Induction of JNK phosphorylation by p75NTR

DD mutants in hippocampal astrocytes. Fold

change in response to pro-NGF is indicated.

Results are representative of three experiments.

(H) Activation of caspase-3 in p75NTR by pro-

BDNF in KO hippocampal neurons reconstituted

withWT p75NTR or empty vector in the presence of

cytoplasmic (NES-JBD) or nuclear (NLS-JBD) JNK inhibitors. Only the nuclear inhibitor was capable of inhibiting activation of caspase-3. Results show the

percentage of cells displaying cleaved caspase-3 (average ± SD of triplicate measurements).

(I) Nuclear c-Jun phosphorylation in response to pro-BDNF treatment in KO hippocampal neurons reconstituted withWT p75NTR, P341Amutant, or empty vector.

Only WT p75NTR, but not the P341A mutant, was able to induce nuclear c-Jun phosphorylation in response to pro-BDNF. Results show the percentage of cells

displaying nuclear phospho-c-Jun staining (average ± SD of triplicate measurements).
(Björkblom et al., 2005) to investigate whether p75NTR-mediated

cell death of hippocampal neurons in response to neurotrophins

requires cytoplasmic or nuclear JNK activity. Cytoplasmic (NES-

JBD) or nuclear (NLS-JBD) constructs capable of inhibiting

JNK activity were transfected in hippocampal neurons derived

from p75NTR KO mice along with WT p75NTR or empty vector

plasmids. Treatment with pro-BDNF resulted in robust increase

of activated caspase-3 in p75NTR-transfected neurons that

received NES-JBD, but neurons that received NLS-JBD were
Cell Re
protected from pro-BDNF-induced apoptosis (Figure 1H), indi-

cating that, similar to cerebellar granule neurons, neurotrophin-

induced death of hippocampal neurons through p75NTR also

requires nuclear JNK activity. We hypothesized that the P341A

mutant may thus be deficient in the activation of the nuclear sub-

pool of JNK. We used phosphorylation of c-Jun (a nuclear target

of JNK) as a reporter of nuclear JNK activity and tested the ability

of WT p75NTR and P341A mutant to induce nuclear c-Jun phos-

phorylation in hippocampal neurons derived from p75NTR KO
ports 2, 1563–1570, December 27, 2012 ª2012 The Authors 1565



Figure 2. Residues Required for Recruitment of RIP2 and Activation of NF-kB by the p75NTR DD

(A) Coimmunoprecipitation of p75NTR DD mutants and RIP2 in HEK293 cells induced by NGF stimulation. Following immunoprecipitation (IP) with RIP2 anti-

bodies, membranes were probed with p75NTR antibodies (immunoblotting [IB]). Mutants deficient in RIP2 binding are highlighted in green. Similar results were

obtained in three independent experiments.

(B) Ligand stimulated coimmunoprecipitation of p75NTR DD mutants and endogenous RIP2 in hippocampal astrocytes. Mutants deficient in RIP2 binding are

highlighted in green.

(C) Surface representation of the p75NTR DD with residues involved in RIP2 binding highlighted in green.

(D) NF-kB activity in M23 fibroblasts. Mutants deficient in NGF-dependent activation of NF-kB are highlighted in green. Results are expressed as average of

triplicate measurements ± SD normalized to unstimulated WT p75NTR. Similar results were obtained in two independent experiments.

(E) NF-kB activity in hippocampal astrocytes. Mutants deficient in NGF-dependent activation of NF-kB are highlighted in green. Results are expressed as average

of triplicate measurements ± SD normalized to unstimulated WT p75NTR.
mice. pro-BDNF treatment induced amarked increase in nuclear

c-Jun phosphorylation in KO neurons reconstituted with WT

p75NTR, but it had no effect in neurons that received the

P341A mutant (Figure 1I), indicating that the mutant is unable

to induce nuclear JNK activity. Together, these results sug-

gest that p75NTR signaling leads to the activation of a nuclear

subpool of JNK that is required for neuronal cell death and that

different JNK-mediated activities can be genetically dissociated

in p75NTR signaling.
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Residues Required for Recruitment of RIP2 and
Activation of NF-kB Concentrate on One Face of the
p75NTR DD
Receptor-interacting protein-2 (RIP2) has been shown to in-

teract with the p75NTR DD and mediate the ability of p75NTR to

activate NF-kB-dependent transcription and Schwann cell

survival (Khursigara et al., 2001). NGF treatment greatly stimu-

lated the interaction betweenWT p75NTR and RIP2 in transfected

HEK293 cells (Figure 2A). Although the majority of p75NTR
hors



mutants behaved as WT, four mutants (labeled green in Fig-

ure 2A) showed a dramatic impairment in NGF-dependent

recruitment of RIP2. Similar results were obtained for a subset

of the mutants in hippocampal astrocytes by assessing the

recovery of endogenously expressed RIP2 after immunoprecip-

itation of transfected p75NTR constructs (Figure 2B). A subset of

p75NTR DD mutants was also tested for their ability to enhance

NF-kB-mediated transcription after NGF stimulation in M23

fibroblasts and hippocampal astrocytes. There was total corre-

spondence between RIP2 binding and NF-kB activity profiles

in both cell types (Figures 2D and 2E), indicating that RIP2

is the main effector linking p75NTR to the NF-kB pathway. In

contrast to the caspase-3/cell death pathway, DD residues

that mediated RIP2 recruitment and NF-kB activation showed

a more restricted distribution, mapping onto one face of the

domain (Figure 2C). The caspase-recruitment domain (CARD)

at the C terminus of RIP2 has previously been shown to mediate

RIP2 binding to the p75NTR DD (Khursigara et al., 2001). DDs,

CARDs, and death-effector domains constitute a superfamily

of structurally related domains that mediate the formation of

large protein complexes between TNFRSF receptors, caspases

and a host of adaptor proteins (Park et al., 2007a). These

domains interact with each other through six different types of

topologically homologous interfaces related to those observed

in the crystal structures of the complexes between Tube and

Pelle DDs (Xiao et al., 1999), Apaf1 and caspase-9 CARDs (Qin

et al., 1999), and PIDD and RAIDD DDs (Park et al., 2007b),

respectively. Themutations that disrupted RIP2 binding mapped

on the type Ib ‘‘Tube-like’’ (residues 410 and 413) and type IIb

‘‘Apaf1-like’’ (residues 355, 359, 363, 367, and 369) interfaces

of the p75NTR DD (Weber and Vincenz, 2001; Park et al.,

2007b), suggesting that complex formation with RIP2 and

perhaps a third CARD- or DD-containing protein is required for

activation of the NF-kB pathway by p75NTR.

Different Structural Determinants in the p75NTR DD
Mediate RhoGDI Binding and Release
The third major signaling pathway regulated by p75NTR involves

activation of the small GTPase RhoA by constitutive binding of

the p75NTR DD to Rho GDP dissociation inhibitor (RhoGDI),

thereby preventing RhoGDI from inhibiting RhoA (Yamashita

et al., 1999; Yamashita and Tohyama, 2003). NGF binding to

p75NTR releases RhoGDI resulting in RhoA inhibition (Yamashita

and Tohyama, 2003). As expected, WT p75NTR interacted with

RhoGDI and activated RhoA in HEK293 cells, whereas NGF

treatment decreased RhoGDI binding and RhoA activity (Figures

3A and 3B). Two types of phenotypes were identified in our

collection of p75NTR DD mutants. Double mutants K350A/

N353A (abbreviated 350/353) and D410A/E413A (abbreviated

410/413) were unable to bind RhoGDI and elevate RhoA activity

(Figures 3A and 3B, yellow). Neither these mutants nor DDD was

affected by NGF treatment. Residues 350/353 and 410/413

cluster close to each other forming a tight functional epitope

near the N and C termini of the domain (Figure 3C), suggesting

that they represent a RhoGDI binding site in the p75NTR DD.

This RhoGDI epitope showed good correspondence with one

of the two regions targeted by Pep5, a small peptide isolated

in a phage display screen for its ability to bind to the p75NTR
Cell Re
DD (Ilag et al., 1999). Pep5 has been shown to inhibit RhoGDI

binding to p75NTR (Yamashita and Tohyama, 2003) and to block

the ability of p75NTR to activate RhoA (Park et al., 2010). These

observations are consistent with the idea that RhoGDI and

Pep5 bind to the same epitope on the p75NTR DD.

RIP2 Is Required for the Release of RhoGDI from p75NTR

in Response to NGF
A second set of mutants bound RhoGDI and enhanced RhoA

activity similar to WT p75NTR but failed to release RhoGDI and

decrease RhoA activity in response to NGF (Figures 3A and 3B,

green). Thiswasunexpectedbecause loss-of-functionmutations

normally result in weaker, not tighter, binding. Remarkably, this

was the same set of mutants that showed deficient RIP2 binding

(Figures 2A–2C). The fact that both RhoGDI and RIP2 required

residues 410/413 for binding to the p75NTR DD suggested

a competitive interaction between the two effectors, such that

recruitment of RIP2 mediates the release of RhoGDI. This notion

was investigated in mouse embryo fibroblasts (MEF) derived

from RIP2 KO mice (Kobayashi et al., 2002). MEF cells express

RIP2 and RhoGDI endogenously but lack p75NTR. As expected,

endogenous RhoGDI was found associatedwith p75NTR in trans-

fectedWTMEF cells, and this interaction was decreased by NGF

treatment (Figure 3D, left). RhoGDI was also coimmunoprecipi-

tated with p75NTR in RIP2 KO MEF cells, but in contrast to WT

cells, NGF treatment had no effect on RhoGDI binding to

p75NTR (Figure 3D, right). Importantly, theability ofNGF treatment

to release RhoGDI from the receptor was restored after transfec-

tion of RIP2 in KO MEF cells (Figure 3E). These data support the

idea that RIP2 and RhoGDI compete for binding to the p75NTR

DD. They also bring a note of caution on the use of Pep5 to

displace RhoGDI from p75NTR because this peptide could also

be interferingwith the regulation of theNF-kBpathway. Together,

our results reveal an unexpected mechanistic link between the

NF-kB and RhoA pathways in p75NTR signaling.

Conclusions
The three major pathways activated by neurotrophin binding to

p75NTR have so far been studied in isolation, and it has been

unclear whether—or how—they are mechanistically linked at

the level of the receptor. The mechanisms by which p75NTR

couples to these pathways and how they contribute to p75NTR

function have been outstanding questions in the field. We have

elucidated a structure-function map of the p75NTR DD linking

individual residues to distinct interactors and downstream sig-

naling pathways (Figures 4A and 4B). This study demonstrates

that the major signaling outputs of p75NTR are genetically sepa-

rable at the level of the receptor and that, in a way analogous to

receptor tyrosine kinases, it is possible to generate p75NTR

mutants that are selectively deficient in one pathway but not

others. We present examples of how this knowledge can be

used to reveal the underlying logic of p75NTR signaling. This

structure-function map can now serve as a conceptual and

technical framework for clarifying the physiological relevance

of each of the major signaling pathways regulated by p75NTR

and other TNFRSF receptors and for aiding in the discovery of

new strategies for inhibiting p75NTR signaling in nervous system

injury and degeneration.
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Figure 3. Different Structural Determinants

in the p75NTR DD Mediate RhoGDI Binding

and Release

(A) Coimmunoprecipitation of p75NTR DD mutants

and RhoGDI in HEK293 cells. NGF induces the

release of RhoGDI from WT p75NTR. Mutants

deficient in RhoGDI binding are highlighted in

yellow. Mutants deficient in NGF-dependent

RhoGDI release are highlighted in green. Similar

results were obtained in three independent

experiments.

(B) Regulation of RhoA activity by p75NTR DD

mutants in HEK293 cells. Expression of WT

p75NTR increases RhoA activity, and this is

decreased by NGF. Mutants that fail to increase

RhoA activity are highlighted in yellow. Mutants

that fail to respond to NGF are highlighted in green.

Constitutively active RhoA protein (provided by

the kit manufacturer) was used as positive control.

Results are expressed as average of triplicate

measurements ± SD normalized to unstimulated

WT p75NTR. Similar results were obtained in two

independent experiments.

(C) Surface representation of the p75NTR DD with

residues involved in RhoGDI binding highlighted in

yellow.

(D) Coimmunoprecipitation of RhoGDI with

WT p75NTR in MEFs isolated from WT or RIP2

KO mice before and after NGF stimulation.

Endogenous RhoGDI coimmunoprecipitates with

p75NTR in both cells, but NGF treatment can only

release RhoGDI from the receptor in WT

MEF cells.

(E) Transfection of RIP2 in RIP2 KO MEF cells

rescues the ability of NGF to displace RhoGDI

from p75NTR.
EXPERIMENTAL PROCEDURES

Plasmids, Antibodies, and Proteins

Full-length rat p75NTR was expressed from a pCDNA3 vector backbone

(Invitrogen). Mutations were introduced using QuikChange Site-Directed

Mutagenesis Kit (Stratagene) and verified by DNA sequencing. Normal

expression of all p75NTR constructs was verified by immunoblotting and

FACS. Plasmids to express RIP2 and RhoGDI were previously described

by Vilar et al. (2009). EGFP plasmid was from Clontech. Luciferase re-

porter plasmid for NF-kB was from Promega. NES-JBD and NLS-JBD

constructs were previously described by Björkblom et al. (2005, 2008).

The origin of antibodies was as follows: MC192 anti-p75NTR (for immuno-

precipitation) from Millipore; 9992 anti-p75NTR (for immunoblotting) from

Promega; anti-phospho-JNK, anti-JNK, cleavage-specific anti-caspase-3

from Cell Signaling; anti-RIP2 from Enzo Life Sciences; anti-RhoGDI, anti-

tubulin, and anti-MAP2 from Sigma-Aldrich; and anti-myc from Santa

Cruz Biotechnology. NGF, pro-NGF, and pro-BDNF were purchased from

Alomone Labs. Both proneurotrophins were mouse mutant-uncleavable
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forms. NGF was used at 100 ng/ml; pro-NGF

and pro-BDNF were used at 20 ng/ml.

Tissue Culture and Cell Transfection

HEK293 and M23 cells were cultured under

standard conditions in DMEM supplemented

with 10% fetal calf serum. The HEK293 cells

used in this study were found to express endoge-

nous sortilin. M23 is a clonal derivative of
MG87 cells, originally derived from mouse NIH 3T3 fibroblasts. WT and

RIP2 KO MEFs were obtained from Koichi Kobayashi and Richard Flavell

(Kobayashi et al., 2002) and cultured under standard conditions. Cell

lines were transfected with Lipofectamine 2000 (GIBCO). Primary hippo-

campal neurons were prepared from E16–E17 p75 KO mice obtained from

Jackson Labs and originally described by Lee et al. (1992). Neurons were

maintained in Neurobasal supplemented with 2% B27 (Invitrogen), 1 mM

glutamine, and pen/strep mix (GIBCO). Transfection was performed after

3 days in vitro with Lipofectamine LTX (Invitrogen). Neurons were treated

with vehicle or 20 ng/ml pro-BDNF for 12 hr before fixation. Hippocampal

astrocytes were isolated from newborn (P0–P1) rat pups and cultured in

DMEM (GIBCO) supplemented with 10% fetal bovine serum (FBS) and

pen/strep. After 7–10 days in culture, cells were dissociated and replated.

Astrocytes showed no detectable p75NTR expression after two passages.

Second-passage astrocytes were transfected with Lipofectamine 2000.

Animal protocols were approved by Stockholms Norra djurförsöksetiska

nämnd and are in accordance with the ethical guidelines of the Karolinska

Institute.



Figure 4. A Structure-Function Map of the p75NTR DD

(A) Surface representation of the p75NTR DDwith residues involved in caspase-

3 activation/cell death, RIP2 binding/NF-kB activity, and RhoGDI binding/

RhoA activity highlighted as indicated. Views on the center and right were

rotated 90� and 180�, respectively, compared to that on the left. Views are

similar to those shown in Figures S1B, 1E, and 2C.

(B) Summary of DD residues involved in p75NTR signaling and their func-

tion. Arrowheads denote a positive effect on the corresponding effector or

pathway. Residues in the yellow rectangle are required for RhoGDI bind-

ing, thereby preventing it from inhibiting RhoA. Residues in the green rect-

angle are required for RhoGDI release, thereby allowing it to inhibit RhoA.

Neurotrophin-dependent binding of RIP2 and activation of NF-kB are thus

mechanistically linked to release of RhoGDI and downregulation of RhoA

activity.
Immunoprecipitation and Immunoblotting

After 48 hr transfection, cells were starved from serum for a few hours and

stimulated with neurotrophins for 15–30 min as indicated. Lysates were immu-

noprecipitated with the appropriate antibody overnight at 4�C with gentle

shaking. Immunoblots were developed using the ECL Western Blotting Kit

(Thermo Scientific) and exposed to Kodak X-Omat AR films. Image analysis

and quantification of band intensities were done with ImageQuant (GE

Healthcare).
Cell Re
Immunocytochemistry

For immunostaining, fixed cells were incubated at 4�C overnight with anti-

cleaved caspase-3 (1:500) and monoclonal anti-MAP2 (1:400) antibodies,

followed by incubation with anti-rabbit-555 and anti-mouse-647 Alexa-conju-

gated secondary antibodies (Molecular Probes; 1:2,000). GFP/MAP2-positive

cells were analyzed with a LSM Imager Z2 confocal microscope (Zeiss) to

detect cleaved caspase-3, and normalized to the total number of GFP/

MAP2-positive neurons to estimate the extent of cell death among transfected

neurons.

Flow Cytometry

HEK293 cells were stained using the FITC Active Caspase-3 Apoptosis Kit (BD

Biosciences) or assessed by TUNEL using kit from Roche. Flow cytometry

analysis was performed on a Becton-Dickinson FACSArray apparatus using

CELLQuest software (BD Biosciences).

Assays of NF-kB and RhoA Activity

NF-kB activity was assayed in M23 cells using the Dual-Luciferase Reporter

Assay System kit (Promega). NGF was added 24 hr after transfection and

left overnight prior to cell lysis. RhoA activity was evaluated after 30 min neuro-

trophin stimulation using the RhoA G-Lisa kit from Cytoskeleton.
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