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a  b  s  t  r  a  c  t

Many  assessments  of crop  yield  gaps  based  on comparisons  to actual  yields  suggest  grain  yields  in  highly
intensified  agricultural  systems  are  at or  near  the maximum  yield  attainable.  However,  these  estimates
can  be  biased  in  situations  where  yields  are  below  full  yield  potential.  Rice  yields  in the  US  continue  to
increase  annually,  suggesting  that  rice  yields  are  not  near  the  potential.  In  the  interest  of directing  future
efforts  towards  areas  where  improvement  is  most  easily  achieved,  we estimated  yield  potential  and
yield  gaps  in  US  rice  production  systems,  which  are  amongst  the  highest  yielding  rice  systems  globally.
Zones  around  fourteen  reference  weather  stations  were  created,  and  represented  87% of  total  US  rice
harvested  area.  Rice  yield  potential  was  estimated  over  a period  of 13–15  years  within  each  zone  using
the  ORYZA(v3)  crop  model.  Yield  potential  ranged  from  11.5 to 14.5 Mg  ha−1, while  actual  yields varied
from  7.4  to 9.6  Mg  ha−1, or 58–76%  of  yield  potential.  Assuming  farmers  could  exploit  up  to  85%  of yield
potential,  yield  gaps  ranged  from  1.1 to 3.5 Mg  ha−1. Yield  gaps  were  smallest  in northern  California  and

the  western  rice  area  of Texas,  and  largest  in  the  southern  rice  area  of California,  southern  Louisiana,
and  northern  Arkansas/southern  Missouri.  Areas with  larger yield  gaps  exhibited  greater  annual  yield
increases  over  the  study  period  (35.7  kg  ha−1 year −1 per  Mg  yield  gap).  Adoption  of optimum  management
and  hybrid  rice  varieties  over  the  study  period  may  explain  annual  yield  increases,  and  may  provide  a
means  to further  increase  production  via  expanded  adoption  of  current  technologies.

©  2016  The  Author(s).  Published  by Elsevier  B.V.  This  is an  open  access  article under  the  CC  BY license
. Introduction

The quantification of crop yield potential (the yield possi-

le without constraints from water, nutrients, pest and disease
ressure), the attainable yield (the proportion of yield poten-
ial attainable by farmers given economic optimization), and the

Abbreviations: CA, California; TX, Texas; AR, Arkansas; MO, Missouri; MS,  Mis-
issippi; LA, Louisiana.
∗ Corresponding author.

E-mail address: mespe@ucdavis.edu (M.B. Espe).
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(http://creativecommons.org/licenses/by/4.0/).

corresponding yield gap (the difference between attainable yield
and actual yields) is crucial to meeting the challenge of increasing
food, fuel, and fiber production to meet the demands of a growing
world population (Lobell et al., 2009; Grassini et al., 2013; Fischer,
2015). Focusing research and policy on areas where improvement
is easiest cannot occur without understanding the current state of
yield gaps. Recent papers (Licker et al., 2010; Foley et al., 2011;
Mueller et al., 2012) suggest several highly intensified agricultural

systems have achieved actual yields equivalent to nearly 100% of
attainable yield for most staple crops. However, many of these
same systems continue to experience yield increases in the last
decade, calling into question both the accuracy and suitability of

 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he methodology used by these earlier estimates. For example, US
ice yields averaged 7.8 Mg  ha−1 in the time period 2009–2011
US Department of Agriculture - National Agricultural Statistics
ervice, 2016), yet these papers estimated US rice attainable yield
t 7.43 Mg  ha−1. Average US rice yields have continued to rise; from
012 to 2015 US average yields were 8.5 Mg  ha−1 (US Department
f Agriculture - National Agricultural Statistics Service, 2016). This
naccuracy could be caused by the method used to estimate attain-
ble yield, namely taking the 95% quantile of actual yields as
ttainable yield. This method has distinct disadvantages; because
ield potential is not estimated, in systems where actual yields are
ell below yield potential, estimated attainable yield may  be lower

han the true potential.
These inaccurate estimates of crop yield gaps can confound

fforts to focus research on where improvements are easiest.
espite comparatively low domestic rice production and consump-

ion, the US is the 4th largest exporter of rice onto the global market
Childs, 2016). This is due in part to the fact that US rice production
ystems are highly intensified and are amongst the highest yield-
ng rice systems globally (FAOSTAT, 2015). Changing demographics
nd population growth are expected to increase US domestic con-
umption (Westcott and Hansen, 2016), while land suitable for
roduction is increasingly constrained by urbanization (Godfray
t al., 2010; Foley et al., 2011). Additionally, warming tempera-
ures driven by global climate change are projected to decrease
ields (Peng et al., 2004). To maintain its position in the global mar-
et, the US must increase production per unit area despite these
actors. Failure to do so will threaten food security in areas that
ely on rice imports. If US rice production is currently achieving
00% of attainable yield (i.e., the maximum yield given physical
nd economic limits), research efforts should focus on increasing
ield potential through breeding new rice varieties with greater
nherent yield potential (e.g., Denison, 2015; Dingkuhn et al., 2015;
heehy and Mitchell, 2015). If, however, there are some areas not at
00% of yield potential, the challenge can be partially addressed by
anagement. Under this scenario, increasing genetic yield poten-

ial should be combined with efforts to realize the current yield
otential through optimum management and broader adoption of
urrent yield-increasing technology.

Thus, it is important to revisit yield gaps in US rice production
ystems using alternate methods to estimate yield potential. Here,
ather than estimating yield potential via quantiles of achieved
ields (e.g., Licker et al., 2010; Foley et al., 2011; Mueller et al., 2012),
ield potential was estimated using simulations from a mechanistic
rop model and up-scaled according to the Global Yield Gap Atlas
GYGA) protocol (van Wart et al., 2013; van Bussel et al., 2015).
he strengths and weakness of this approach have been well dis-
ussed by other authors (Fischer, 2015; van Ittersum et al., 2013;
an Wart et al., 2013; van Bussel et al., 2015). This study sought
o (1) quantify rice yield gaps in all major areas of US rice produc-
ion, (2) explore spatial and temporal variation in yields and yield
aps, (3) identify potential environmental constraints to increasing
ields, (4) explore potential ways to increase yields using existing
arieties (i.e., without new genetic improvements).

. Methods

.1. Climate zones

Yield potential and yield gaps were calculated within 14 zones
ollowing previously developed protocols (van Wart et al., 2013;

an Bussel et al., 2015). Agro-climatic zones were identified that
aptured major differences in global agricultural production areas
ased on accumulated heat units, aridity index, and temperature
easonality. From these agro-climatic zones, six were identified
arch 196 (2016) 276–283 277

that each included greater than 5% of total US rice harvested area
per the MapSPAM raster layer of rice area (You et al., 2016). Addi-
tionally, two  zones, each with less than 5% US harvested area
(both in TX), were added to ensure coverage of all relevant US
rice production areas. These eight agro-climatic zones include 92%
of US rice production area. For each agro-climatic zone, one or
more weather stations were selected after consultation with rice
researchers within each state to ensure representation of rice pro-
duction areas (e.g., not located in city centers, airports, etc.). From
this list of weather stations, 14 reference weather stations (RWS)
were chosen. Surrounding each RWS, a 100 km zone was created
and clipped by agro-climatic zone boundaries. This ensured each
RWS was  surrounded by a corresponding buffer zone that consisted
of a single agro-climatic zone. In cases where two buffer zones
overlapped within the same climatic zone, the buffer zones were
separated such that the border between buffer zones was equi-
distant to each RWS. These final 14 zones represent 87% of all US
rice harvested area (Fig. 1).

2.2. Weather data

Data for each RWS  was collected and quality controlled per the
previously developed protocol (van Wart et al., 2013; van Bussel
et al., 2015) (see Table S1 for locations of RWS  and sources of data).
For each RWS, weather data were collected from 1999 to 2014
(except LA, which had data starting from 2001). Solar radiation data
for all sites was  retrieved from the NASA-POWER Agro-climatic
database (National Aeronautics and Space Administration, 2016),
since few RWS  collected these data. Data were checked for extreme
or missing values (Tmin, Tmax, vapor pressure, wind speed, and pre-
cipitation), which were imputed using linear interpolation. In cases
where greater than 10 consecutive days of data were missing, cor-
responding values from the NASA-POWER Agro-climatic database
(National Aeronautics and Space Administration, 2016) were used
after correction (see Grassini et al., 2015 for more information
on this method). This correction adjusts NASA-POWER data to be
closer to locally observed values by estimating the bias between
the two sources of data over a historical period. In all cases, missing
or questionable data constituted less than 5% of annual measure-
ments.

2.3. Estimation of yield potential

Yield potential was estimated using the ORYZA(v3) crop model
(Bouman et al., 2001). This model was  chosen due to its wide-scale
adoption and existing body of work validating it for various rice
cropping systems (https://sites.google.com/a/irri.org/oryza2000/
publications). Calibration and validation of this model to simulate
US rice yield potential for representative high-yielding varieties
typical of the types planted in the study area (M-206, a pure-line
japonica type for CA, and Clearfield XL745, an herbicide-resistant
hybrid type for the Southern US) is described in Espe et al. (2016).
In order to minimize the influence of variation between simula-
tions, yield potential was  simulated for each zone over a 13 (LA
sites) or 15 year span and then averaged to estimate the long-run
yield potential for each zone.

For each zone, simulations began on the average date when
50% of a region had reached emergence (hereafter emergence date)
(Fig. 2). The average emergence date was estimated from average
planting dates for each zone (as reported by rice researchers in
each state) and the historical relationship between planting dates
and emergence dates for each state (US Department of Agriculture

- National Agricultural Statistics Service, 2016). For CA, emergence
was assumed to be the day after planting since CA growers pre-
germinate rice seed prior to aerial planting into a field with standing
water. Sensitivity analyses were conducted to assess the impact of

https://sites.google.com/a/irri.org/oryza2000/publications
https://sites.google.com/a/irri.org/oryza2000/publications
https://sites.google.com/a/irri.org/oryza2000/publications
https://sites.google.com/a/irri.org/oryza2000/publications
https://sites.google.com/a/irri.org/oryza2000/publications
https://sites.google.com/a/irri.org/oryza2000/publications
https://sites.google.com/a/irri.org/oryza2000/publications
https://sites.google.com/a/irri.org/oryza2000/publications
https://sites.google.com/a/irri.org/oryza2000/publications
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Fig. 1. Map  of reference weather stations and associated zones. Agro-climatic zones are 

contained within 8 agro-climatic zones and 87% was contained within the 14 zones. Six U
(MS),  Louisiana (LA), and Texas (TX). Inset: Distribution of rice harvested area in the Cont

Fig. 2. Average and year-to-year variation of reported dates when 50% of planted
rice area in each US state reaches emergence as reported by the USDA-National Agri-
cultural Statistics Service, along with the average dates as estimated from reports by
rice  researchers in each state for the purposes of estimating rice yield potential. For
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alifornia (*), the date of planting is presented since growers pre-germinate seed
rior to planting.

sing the average (single date) rather than a symmetric distribu-
ion of emergence dates (multiple dates) centered at the average,
ut there were only slight differences observed (absolute difference
f less than 0.25 Mg  ha−1; results not presented). To further investi-
ate sensitivity of estimated yield potential to variation in planting
ate, yield potential was simulated for 7 d earlier and later than the
eported average. In all cases, yield potential was simulated for a

ingle (main) crop per year. In areas of the Southern US, harvesting
rom second crops (i.e., ratoon crops) is possible, but simulation of
his system is not supported by the ORYZA model and as such not
shown as background, shaded by similarity. Of all US rice harvested area, 92% was
S states are represented; California (CA), Missouri (MO), Arkansas (AR), Mississippi
inental US.

included in these analyses. Annual simulated yield potentials were
averaged by zone to estimate yield potentials. Individual simulation
results were quality controlled by visual inspection for unrealistic
results or failed simulations prior to averaging.

2.4. Actual yields

Data from the USDA-NASS database (US Department of
Agriculture - National Agricultural Statistics Service, 2016) were
used to determine actual yields within each zone. Since zones were
constructed without regard for state or county boundaries, county-
level data were retrieved and aggregated to obtain estimates for
each zone. In order to do this, the zone average yield was calculated
as a weighted average of county estimates, where weights were
determined by the proportion of a zone’s harvested area within
each county.

Yk =
n∑

j=1

(
�j ∗ aj

ak

)
(1)

where Yk is the average yield for zone k, �j is the average reported
yield for county j, n is the number of counties with harvested acres
in zone k, aj is the harvested area of county j in zone k, and ak is
the total harvested area in zone k. Yield data were retrieved from
1999 to 2014. To minimize potential confounding effects of yield
trends over time, only the most recent reported data (2010–2014)
were used in the calculation of yield gaps, while the full 15 years
of data were used for all other analyses. Zone estimates of actual
yields were calculated by year and then averaged across years to
get the average zone yield.

2.5. Yield gaps
There is considerable uncertainty regarding what portion of
yield potential is attainable by farmers, though most sources agree
it is between 70 and 85% of yield potential (Lobell et al., 2009;
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ischer, 2015). Studies have shown that in highly intensified crop-
ing systems, farmers are able to attain 85% of yield potential
Grassini et al., 2011). Therefore, this 85% limit can be taken as rep-
esenting the average upper limit of the exploitable yield gap (i.e.,
he highest average yield increase that can be expected given cur-
ent varieties and technology), though the true limit may  be lower.
his is in contrast to other methods (e.g., Mueller et al., 2012) where
00% is assumed to be attainable by farmers.

.6. Data manipulation, analysis, and visualization

Data were processed using the R statistics program (R Core
eam, 2015). Spatial aggregation and visualization were accom-
lished using the following packages for R: ‘raster’ (Hijmans,
015), ‘sp’ (Bivand et al., 2013; Pebesma and Bivand, 2005),

rgeos’ (Bivand and Rundel, 2016), ‘rgdal’ (Bivand et al., 2015),
RColorBrewer’(Neuwirth, 2014), ‘maps’ (Becker et al., 2016), ‘map-
roj’ (McIlroy et al., 2015), and ‘maptools’ (Bivand and Lewin-Koh,
016). Data analyses and regressions utilized the stan glm() func-
ion in the ‘rstanarm’ package (Gabry and Goodrich, 2016), an
nterface to the Stan probabilistic programming language (Stan
evelopment Team, 2016). All regressions followed standard rec-
mmendations and used weakly informative normal priors to
egulate estimates (Gelman et al., 2013). In cases where effects were
stimated at the state or zone level, multi-level models were uti-
ized (Gelman and Hill, 2007), with states and zones representing
wo levels of hierarchy in the effects. Model assumptions and fit
ere assessed using diagnostic statistics and posterior predictive

hecks. Credible intervals were calculated as the 95% quantile of
he posterior distributions. All data, model files, and R code are
ublicly available through the Open Science Framework (https://
sf.io/gkwjx/; Espe, 2016).

. Results

.1. Yield potential

Simulated yield potential ranged from 11.5 to 14.5 Mg  ha−1. The
owest simulated yield potential was in the southern US (eastern
X and LA) while the highest yield potential was  in CA, followed by
he western rice production area of TX (Fig. 3a and e). In general,
ield potential increased going South to North (Southern US) and
orth to South (CA).

.2. Actual yields

Actual yields ranged from 7.4 to 9.6 Mg  ha−1, with lowest yields
ccurring in eastern TX and LA, and highest yields occurring in
orthern CA and the western area of TX (Fig. 3b and f). Actual
ields generally showed similar trends as yield potential. However,
ones with the lowest actual yields and thereby largest estimated
ield gaps (Fig. 3d and h) tended to have the highest rates of yield
rowth over time, with the exception of the southern rice area of
A (Figs. 4 and 5; Table 1).

Expressed as a percentage of estimated yield potential, cur-
ent yields for all zones are below 76% of estimated yield potential
Fig. 3c and g). The lowest actual yields are in LA, Upper and Lower
R (61–64% of yield potential), while the highest are in northern CA

73–76% of yield potential) and the western TX rice area (70–73%
f yield potential). In the middle region of AR, southern rice area of
A, and eastern TX actual yields are between 64 and 70% of yield
otential.
Annual yield increases over the period of 1999–2014 ranged
rom 48 to 135 kg ha−1 increase per year (Figs. 4 and S1). The great-
st rates of increase were seen in areas where actual yields were
urthest from the yield potential (LA and AR) and smallest in areas
arch 196 (2016) 276–283 279

where actual yields were closer to yield potential (Fig. 4). Emer-
gence dates have shifted to earlier in the season in some, though
not all, of these same areas (Fig. S2). The ORYZA model estimated a
yield advantage to earlier emergence dates for all locations (Fig. S3).

3.3. Yield gaps

The estimated exploitable yield gap was the greatest in the
southern rice area of CA, southern LA, and the eastern TX rice area,
followed by the Mississippi River Valley (AR, MS,  and MO)  (Fig. 3d
and h). The lowest exploitable yield gap occurred in northern CA
and the western rice area of TX. Annual yield increases were corre-
lated with the estimated yield gap, as areas with larger yield gaps
also experienced the greatest rate of yield increase from 1999 to
2014 (Fig. 5, Table 1). For every Mg  ha−1 increase in exploitable
yield gap, there was  an estimated 35.7 kg ha−1 year−1 increase in
the rate of yield improvement, though there was high uncertainty
in this estimate, as reflected in a relatively wide credible interval
(Table 1).

4. Discussion

4.1. Yields and yield gaps in the US

Contrary to previous reports (Licker et al., 2010; Foley et al.,
2011; Mueller et al., 2012), estimates from this analysis suggest that
current rice yields in the US have not achieved 100% of attainable
yield and there is opportunity for increased yields. This discrepancy
is caused by the above studies not estimating yield potential and by
an implicit assumption in the quantile method that 100% of attain-
able yield has been realized in some locations and therefore the
top recorded yields can be assumed to represent attainable yield.
van Ittersum et al. (2013) assert that this assumption is unreason-
able in situations where best management practices are not in use.
Based on this present study, this assumption is questionable even in
highly intensified cropping systems because even in these systems
current yields might not reflect the physiological limits. Here, yield
potential was  estimated between 11.5 and 14.5 Mg  ha−1, greater
than those previous estimates but still lower than the theoreti-
cal maximum possible with an idealized plant type (Sheehy and
Mitchell, 2015). For reference, yield potential estimated for CA is
similar to the winning yields from rice yield contests (14.2 Mg  ha−1;
University of California Cooperative Extension, 2015). That is not to
say that there are not areas in the US that have possibly reached the
attainable yield ceiling. There is evidence that production systems
in northern CA and the western rice area of TX are closer to yield
potential than other areas (Fig. 3). Corresponding decreases in the
rates of yield increase further support these conclusions (Fig. 4;
Table 1), as intuitively it follows that the rate of yield increase will
decrease as average yields approach the exploitable yield. How-
ever, identifying yield plateaus is fraught with difficulty (Grassini
et al., 2013), hence the utility of this measure is unclear.

The southern rice area of CA stood out as an area where a
high yield gap did not coincide with a greater rate of annual yield
increase (Fig. 5). This area was estimated to have the highest yield
potential in the US, primarily driven by low night-time tempera-
tures caused by cool winds originating from the San Francisco Bay.
Reports of yields up to 14 Mg  ha−1 under experimental conditions in
this area corroborate estimates of high yield potential (Espe et al.,
2015). However, these weather patterns can also induce spikelet
sterility, drastically reducing yields (Board et al., 1980). Previous

work has shown the ORYZA model does not simulate cold-induced
sterility well and that structural changes to the model are required
to correct this (Espe et al., 2016). Estimates here may be accurate
if the rice crop does not experience cold-induced spikelet sterility,

https://osf.io/gkwjx/
https://osf.io/gkwjx/
https://osf.io/gkwjx/
https://osf.io/gkwjx/
https://osf.io/gkwjx/
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Fig. 3. Simulated rice yield potential (a and e), actual yields (b and f), actual yields expressed as a percentage of yield potential (c and g), and the estimated exploitable yield gap (d and g) for US rice production in California (top
row)  and the Southern US (bottom row). Each was estimated for 14 zones which together represent 87% of US rice production area. Here, the exploitable yield gap is calculated as the difference between 85% of yield potential and
the  actual yield.
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Fig. 4. Annual yield increases from 1999 to 2014. California (a.) experienced lower
rates of annual yield increase compared to most of the Southern US (b.). Yield
increases were estimated by linear regression of yearly estimated actual yields
within each zones. Actual yields were estimated as the area-weighted average of
county-level reported data from the USDA National Agricultural Statistics Service
from  1999 to 2014.

Fig. 5. Relationship between growth in rice yields over the period 1999–2014 and
the  estimated exploitable yield gap in 14 zones that constitute 87% of US rice area.
Areas with larger exploitable yield gaps also experienced greater rates of yield
g
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rowth. The southern rice area of California (marked with *) is an exception and
as  excluded from the regression a priori due to known issues with the simulation

f  cold-induced sterility. The gray shaded area is the 95% credible interval.

ut the low rate of yield gains in this area despite large estimated
xploitable yield gap suggests this is not often the case (Fig. 5). Cur-
ently, rice production in this area is limited to less than 4000 ha
You et al., 2016), therefore the impacts of this error are low from a
ational perspective. Breeding efforts aimed at reducing the impact

f cool temperatures on floret fertility (McKenzie et al., 1994) could
ncrease yields and thereby increase the viability of rice cultivation
n this region.

able 1
stimated relationship between annual yield increases and the yield gap. Areas with

 larger estimated yield gap have experienced faster rates of yield increase. Annual
ield increases were estimated from linear regression of rice yields from 1999 to
014, while yield gaps were estimated using simulations. One zone in the southern
ice  production area of California was not included in the regression.

Parameter Estimate 95% credible interval

Intercept 14.8 −20.7 to 54.8
kg ha−1 year −1 Mg−1 yield gap 35.7 19.3 to 55.1
arch 196 (2016) 276–283 281

Many climate models predict increased temperatures and vari-
ability in the future (Stocker et al., 2013). Increased respiratory
losses under warmer temperatures are predicted to decrease yields
(Peng et al., 2004; Lyman et al., 2013; Lobell, 2007; Rehmani et al.,
2014). Simultaneously, previous work suggests areas where yields
are more variable from year to year due to pest and climatic phe-
nomenon may  have a lower exploitable yield gap (Lobell et al.,
2009). This is the result of farmers balancing potential yields against
exposure to risk (i.e., the economic yield potential) (Fischer, 2015).
Under scenarios where both temperatures and climate uncertainty
increase, increasing rice production could be challenging (Challinor
et al., 2014). Although researchers are exploring how to decrease
the impact of high temperatures (Bita and Gerats, 2013), increasing
the resilience of rice cropping systems to climate variability should
also contribute to increasing rice production in US rice production
systems.

4.2. Potential drivers of annual increases in yields

Annual increases in actual yields in many areas of US rice pro-
duction may  be due to expanded adoption of current technologies.
Two technologies have seen increased use during the study period,
precision land-leveling and hybrid rice varieties. Precision land-
leveling increases yield by decreasing the land area in levees and
increasing the uniformity of flood water depth, which supports
uniform stand establishment, weed control, and pest manage-
ment (Rickman, 2002). In CA, where rice is continuously cropped,
adoption of precision land-leveling began as early as the 1970s
(Dickey, 2015), and currently most fields are precision leveled
(greater than 95%; University of California Cooperative Extension
– personal communication). In the Southern US, precision land-
leveling is not as widely adopted as in CA (50–60% as of 2006;
(Yang et al., 2006; Smith et al., 2007)), though adoption is increas-
ing as water resources become increasing constrained (Yang et al.,
2006; Smith et al., 2007). Unlike precision land-leveling, adoption
of high-yielding hybrid and herbicide resistant varieties has been
increasing rapidly in the Southern US (Nalley et al., 2016) but not
in CA (Dickey, 2015). Nalley et al. (2016) estimate hybrids and her-
bicide resistant varieties have a yield advantage over conventional
varieties of 1.66 and 1.82 Mg  ha−1, respectively. They also report
the percent of land planted with these varieties rose from 0 to
roughly 50% (hybrid and herbicide-resistant combined) over the
last ten years. Increased adoption of these varieties could explain
a substantial amount of the annual yield increases observed in the
Southern US. The lack of these types in CA may also help explain
why the difference in yield potentials is not greater between the
two regions (Fig. 3a and e), despite CA experiencing environmental
conditions favorable for higher yield potential (e.g., low night-time
temperatures, high solar radiation, low disease and pest pressure).
The adoption of high-yielding, temperate hybrid japonica varieties,
such as those currently being developed in China (Li et al., 2012),
may  allow for even greater yield potential in CA. Further research
on the impact of technology adaption is needed that spans broad
spatial and temporal scales to clarify these matters.

While the long-term average date when 50% of planted area
has reached emergence was used in these analyses, this event can
take place across a range of dates (Fig. 2). Additionally, there is evi-
dence that emergence dates may  be shifting earlier in the spring
in some states (Fig. S2) (US Department of Agriculture - National
Agricultural Statistics Service, 2016). Although the present study
lacks the data to definitively test the effect of earlier emergence
dates, previous reports from rice researchers in each state show

yield advantages to earlier planting and emergence (Hardke et al.,
2013; Wilson, 2011, 2010; Golden et al., 2014; Linquist and Espe,
2015; Fontenot, 2016). The ORYZA model also predicts increased
yield potential as emergence dates move earlier for these regions
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Fig. S3). Earlier emergence may  allow increased capture of solar
adiance, crop avoidance of high temperatures typical of late August
nd September, and increased length of grain filling period. These
ffects might be partially responsible for yield increases in areas
here planting dates may  be changing, though more study is
eeded.

There may  be a limit to how early in the season emergence dates
an be moved using current technologies and varieties. The earliest
ate of planting and emergence is restricted by the ability of soils
o dry sufficiently for seedbed preparation, by soil/water tempera-
ures, and by the availability of water for either flood establishment
CA) or flushing. Increasing the ability of rice seed to germinate at
ow temperatures and increasing seedling vigor in cool temper-
tures or water-limited environments could help alleviate some
f these restrictions (McKenzie et al., 1994). While the emergence
ates used for this study are reflective of the long-term average for
mergence dates in each state (Fig. 2), these results may  need to be
evised if earlier plantings become more common (Fig. S2). Lastly, it
hould be noted that the effect of earlier planting will not decrease
ield gaps but rather will increase production, as increased yield
otential is expected to be accompanied by increased actual yields.

.3. Potential improvement in yield gap estimates

Although the yield gap estimates here align better with both
verage and top yields in high yielding environments compared to
stimates based on quantile methods (e.g., estimated yield poten-
ial is not less than average yields and are similar to yields from
ield contests), there are areas of uncertainty inherent in all model-
ased estimates. Broadly, these fall into four categories: (1) data
vailability, (2) data quality, (3) model performance, and (4) spa-
ial scaling. The first two, data availability and quality, are often

ajor concerns for yield gap analyses in developing areas, where
ata can be sparse, poorly maintained, and not freely available (van

ttersum et al., 2013; Grassini et al., 2015; van Wart et al., 2013).
or the current study, these concerns are minor due to the density
nd general quality of weather station networks and agricultural
atabases (e.g., USDA-National Agricultural Statistics Service) in the
S with publicly accessible data. Likewise, since the ORYZA model
as first calibrated and validated using large, multi-year, multi-site
ata sets (Espe et al., 2016), model performance is adequate for the
urposes of this study. However, like most model-based studies,
stimates could be further improved by increasing model accuracy
ia more sophisticated parameterization, expanding the number
f calibrated varieties, or even substituting the ORYZA(v3) model
or one that better captures the effects of cold and heat on grain
ield (e.g., Van Oort et al., 2014; van Oort et al., 2015). Likewise, as
arieties are introduced with improved yield potential and replace
urrent ones, new calibrations could be used to update estimates
ere. This highlights one strength of these methods; the relative
ase of updating yield potential estimates given improved models.

The fourth concern, spatial scaling, can be difficult to assess
s it is intimately tied to the intended use of the yield gap
ssessment. For the purposes of motivating future research and
olicy, the methods here attempt to capture major differences in
nvironments and important production areas in the creation of
gro-ecological and buffer zones. This results in analyses at finer
cale than many other yield gap assessments (van Wart et al.,
013). However, some purposes, such as investigating yield gaps in
esponse to local policy or input availability, will necessitate finer
cale analyses. Moving to a finer spatial scale will create additional
omplexities and will require revisiting the above concerns. Esti-

ates of yield potential and yield gaps at a finer scale will require

t minimum (1) more climatic and crop data, which could create
ssues with data coverage, quality, and availability, (2) validation
f methods to representatively aggregate simulated yields to the
arch 196 (2016) 276–283

appropriate scale, and possibly (3) calibration and validation of
models to represent unique conditions of each locality. Further
research is needed to develop protocol for robust and scientifically
rigorous analyses of yield gaps at fine scale.

5. Conclusions

Estimated yield gaps in US rice production ranged from 1.1 to
3.5 Mg  ha−1, suggesting that, contrary to previous estimates, there
is room to improve yields. Most of these gains are possible in
the Southern US, despite this area having a lower yield potential.
However, constraints on yield such as increased respiration due to
warmer temperatures and increased yield variability due to large
scale weather events will continue to be factors in these areas.
In other areas where actual yields are closer to yield potential,
adoption of earlier planting dates and varieties adapted to vari-
able conditions may  be able to increase yield potential and allow
further gains. Decreasing yield gaps in a highly intensified rice pro-
duction system will require a combination of crop improvement
and classic agronomy, along with detailed studies to further quan-
tify the contributions of new and existing technologies to increase
yield potential in highly intensified rice systems. New protocol are
needed for studying yield gaps at finer scales and in response to
changes in technology or input availability. This study suggests
the potential impact of broader adoption of current technologies
should not be overlooked in efforts to increase yields in rice sys-
tems, including those already highly intensified.
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