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INTRODUCTION 

Numerical values of certain elementary functions (e.g. exp (x), sin (x), 
cos (x), In (x)) are made available to digital computer users by means 
of programmed subroutines. The tendency will be to extend this list of 
"elementary" functions, and considerable interest therefore attaches to 
general and efficient methods for computing numerical values to great 
accuracy of the higher functions of Mathematical Physics. One such 
method is the application of the converging factor. 

The Converging Factor 

The converging factor is an important numerical device for hastening 
the convergence of slowly convergent series and increasing the accuracy 
obtainable by use of an asymptotic series. If the series is 

{l) 

and the partial remainder Rn is 

(2) Rn '"'"' Un + Un+l + Un+2 + ... 
the converging factor On is defined by 

(3) 

The converging factor is most efficiently used, in the case of most 
applications to asymptotic series, with that value of n which corresponds 
to the term of smallest modulus in the series (1). 

MILLER [l] has given a method for developing the converging factor 
On either as series of the form 

(4) 

or as a series of the form 

(5) 

1 ) Communication MR62 of the Computation Department of the Mathematical 
Centre, Amsterdam. 
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for the cases in which either the function S satisfies a linear differential 
equation in z or the terms u,. satisfy a linear difference equation in r. 
He illustrated his method by obtaining converging factors for asymptotic 
series associated with the Weber parabolic cylinder functions. 

In the paper referred to, real values only of the argument are considered. 
Here the computations are extended into the complex domain. Secondly 
a convenient recursive technique for obtaining the coefficients in the 
series for the converging factor is described. 

Weber functions 

The series which is to be studied is 

(6) ) 
{ 1-(a+lf2)(a+3J2) 

Sl(a; z) ,...__ e-z"/4 z-a-'/2 2.z2 + 

+ (a+lf2)(a+3/2}(a+5/2)(a+ 7j2) ... } 
2.4.z4 

(7) "-' Uo - U1 + U2 - •••• 

It formally satisfies the differential equation 

(8) 
d2y 
dz2- (a+z2/4) y = 0. 

Two linearly independent situations of equation (8) are S1(a; z) and 

(9} S2(a; z) = S1( -a; iz). 

The terms u,. of the series (6) satisfy the recursion 

(10} 

We wish to determine that value n of r for which lunl is a minimum. 
From (10) this is seen to occur when 

(ll} 

where 

(12) 

In order to derive an easily usable approximation we ignore the term 

(13) 

independent of n in (ll}, and obtain 

(14} x2 : 2n+..1. 

where 

(15) ..1.=2(a-1} 

or 

(16) 2n = x2-A.-k 
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where k is real and may always be chosen so that 

(17) 

The integer n having been determined, we define the remainder term 
Rn and converging factor Tn by 

n-1 

(18) S1(a; z) = ,L ( -1)rur+Rn 
r=O 

(19) 

We shall obtain a series development of the form 

(20) F. ~ fJr(k) 
n ,....., .-=o 2r+lx2r 

when arg (z)=f.:n:/2, first using the fact that Tn satisfies a differential 
equation in z and secondly the fact that Tn satisfies a recursion in n. 

Differential Equation 

The converging factor satisfies the differential equation 

(21 ) z2 dz2 -z(z2+2a+4n+1) dz +(a+2n+l/2)(a+2n+3 2) n l d2Tn dTn J r. 
+ 2nz2 (Tn-1) = 0. 

This may quite crudely be verified by substituting the series 

(22) ) 

Tn,....., 1 _ (a+2n+ 1/z)(a+2n+ 3/z) 
2(n+ 1)z2 

+ (a+2n+l/z)(a+2n+3J2)(a+2n+5J2)(a+2n+7J2) _ ... 
4(n+ 1)(n+ 2)z4 

in (21). A constructive derivation, based on an idea which is clearly 
capable of general application to the construction of converging factors, 
has been given by Miller. He writes 

(23) Un = a constant x e-'l•z"z-a-2n-'l• 

so 

(24) 

and further 

(25) 

= ! zZ +a+ 2n + ..:...(a_+_2n_+-'1/'-z'-::)(:-a_+_2_n_+_3..:../z....:..) 
4 z2 
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but 

(26) 

whence 

(27) d;~n Un + 2( dJzn )( d~n) + rn( d;~n) - (a+~ z2) Tn Un = 2nun. 

Removing Un and its derivatives from (27) by way of (24) and (25), we 
arrive at (21). 

In this section we shall suppose that a and n are fixed, so that z and k 

vary together. We have from equations (12) and (16) 

(28) dz = ei0dx, 2xdx = dk. 

By means of equations (12), (16) and (28) we may remove n from equation 
(21) and transform the result into a differential equation with k as the 
independent variable. We obtain, after some rearrangement 

) 
x4 {4Tn"-2(f+2) Tn'+(r/>+1) Tn-r/>} 

(29) +x2{2(2k+.A.-2) Tn+(4-.A.-2k-f(.A.+k)) Tn+f(.A.+k)} 
+{k2+(.A.-4) k+,u-2.A.+4} Tn = 0, 

where 

(30) 

and dashes denote differentiation with respect to k. 
From (20) and (28) we have successively 

and 

(32) r " f3o" /31" /32"- 4/31' f3r"- 4(r- 1 )j3;_1 + 4(r- 1 )(r- 2)f3r-2 
n ,...._,2+ 22x2 +- 23x4 + ··· + 2r+1x2r · 

Substituting the series (20) (31) and (32) in (29) and equating to zero 
the coefficients of the successive powers of x we obtain a recursion system 
between the functions f3r(k). ·we have, in succession, 

(33) x4 : 4{30"-2(r/>+2)f3o'+(r/>+1)f3o=2r/> 

(34) 

and 

4/31" -2(r/>+2) /31' +(f+ 1) /31 = -4(2k+.A.-2) f3o' 

-2{4-.A.-2k-f(.A.+k)} f3o-4(.A.+k) f 

4{3r" - 2 ( f + 2) {3r' + ( f + 1) f3r = 4 { 4r ~ A - 2k - 2} {3; _1 

+ 2{k(f + 2) + A(r/> + 1)- 2(r -1)r/>- 4r} f3r-1 
- 4{k2 + k(A- 4r + 4) k + ,u- 2A(r-l) + 4(r-1)2} f3r 2 

(r = 2, 3, ... ). 
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Inspection of equations (33), (34) and (35) reveals that they are formally 
satisfied by polynomials of the form 

r 
(36) fJr(k) = ~ Pr,sk8 (r=O, I, ... ). 

s-o 

Equation (33) indicates that 

(37) {Jo(k) = 2cfo/(cfo+ I), 

equation (34) yields 

(38) 
4cfo 8cfo2 

{J1(k) = (cfo+I)2 k- (cfo+I)3' 

and from equation (35) we may derive 

(39) fJ (k) = 8cfok2 _ 48cfo2k _ {8t-t(cfo+I)3+32cfo2(I-2cfo)} 
2 ( cP + I )3 ( cP + I )4 ( cP + I )5 

and 

(40) ) 
fJ (k) = I6cfo k3 - I92cfo2 k2 { -I6t-tcfo(cfo + 3) 64cfo2(llcfo- 4)} 

3 ( cP + I )4 ( cP + I )5 + ( cP + I )3 + ( cP + I )6 

I6cfot-tA. 32cfo2( cfo + 4 )t-t I28cfo2( 6cfo2 - 8cfo + I) 
- (cfo+ I)2 + (cfo+ I)4 - (cfo+ I)7 . 

We wish, however, to devise some recursive process for determing the 
coefficients Pr,s· In principle this can be done since, knowing fJr-1(k) 
and fJr-2(k), fJr(k) may be derived from equation (35). Let us examine 
how this may be accomplished in detail. Substituting polynomial expres­
sions of the form (36) in (35) we obtain, after some rearrangement 

r-2 r-1 r 
4 ~ (s+2)(s+I)pr,s+2k8 -2(cfo+2) ~ (s+I)pr,s+lk8 +(cfo+I) ~ Pr,sk8 

s-o s-o s-o 
r-2 r-1 

= 4{4r-A.-2} ~ (s+I)Pr-1,s+lk8 -8 ~ 8Pr-l,sk8 

s-o s-1 
r r-1 

(4I) +2(cfo+2) ~ Pr-1,s-1k8 +2{A.(cfo+I)-2(r-I)cfo-4r} ~ Pr-1,sk8 

s-1 s-o 
r r-1 

-4 ~ Pr-2,s-2k8 - 4(A.-4r+4) ~ Pr-2,s-1k1 

s-2 •-1 
r-2 

- 4{t-t-2A.(r-I)+4(r-I)2} ~ Pr-2,sk8 • 

s-o 

Equating to zero the coefficients of k in the order s=r, r-I, ... , 0, 
we obtain 

(42) Pr,r={2(cfo+2)Pr-1,r-1- 4pr-2,r-2}/(</>+I), 

l Pr,r-1 = {2(cfo + 2)r Pr,r- 8(r-l)Pr-1,r-1 

( 43) + 2(cfo + 2)Pr-l,r-2 + 2{A.(cfo +I)- 2(r -I )cfo- 4r }Pr-1,r-l 

- 4pr-2,r-3- 4(A.- 4r + 4)Pr-2,r-2}/(cfo +I) 
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Pr,s = [ 2(s + 1 )(<f> + 2)pr,s+l- 4(s + 1 )(s + 2)pr,s+2 

+ 4{4r -A- 2} (s + 1)Pr-1,s+l- 8s Pr-1,s 

+ 2(<f> + 2)pr-1,s-1 + 2{A(f + 1)- 2(r -1)<f>- 4r} Pr-1,s 

- 4pr-2,s-2- 4(A- 4r + 4)Pr-2 ,s-1 

- 4{,u- 2A(r -1) + 4(r -1)2} Pr-2, s]/(f + 1) 
(s = r-2, r-3, ... , 2) 

(45) - 8Pr-1,1 + 2(<f> + 2)Pr-1, o + 2{A(<f> + 1)- 2(r- 1 )<f>- 4r} Pr-1,1 ) 
Pr, 1 = [ 4(<f> + 2)Pr, 2- 24pr, + 8( 4r -A- 2)Pr-1, 2 

- 4(A- 4r + 4)Pr-2, o- 4{,u- 2A(r- 1) + 4(r- 1 )2} Pr-2, 2]/(<f> + 1) 

(46) +2{A(<f>+ 1)-2(r-1)<f>-4r} Pr-1,0 ) 
Pr,O = [2(<f> + 2)pr,1- 8pr, 2 + 4( 4r -A- 2)Pr-1,1 

- 4{,u- 2A(r- 1) + 4(r- 1 )2}Pr-2,o]/(<f> + 1 ). 

Thus, if equations (37), (38) and ( 42)-( 46) are used in that order the 
coefficients Pr,s (r=O, 1, ... ; s=O, 1, ... , r) may always be expressed in 
terms of quantities which have previously been derived. 

It will be observed, however, that equations (42)-(46) differ from one 
another according as to whether certain powers of k do or do not exist 
in the various sums in (41). This fact may also be expressed by the use 
of conditional statements, and thus an expression for Pr,s which is 
generally true for r;;;. 2 may be constructed. The special forms for po,o 
and Pl,b P1,o may also be incorporated in this expression, and thus we 
have 

(4 7) 

Pr,s=[ if s<r then 2(f+2)(s+l)pr,s+l 

-if s<r-1 then 4(s+2)(s+1)pr,s+2 

+if s <r -1 then 4(4r-A + 2)(s + 1)Pr-l,s+l 

-if O<s<r then 8spr-l,s 

+if s > 0 then 2(f + 2)Pr-l,s-l 

+if s <r then 2{A(<f> + 1)- 2(r-1)<f>- 4r} Pr-1, 8 

-if s> 1 then 4Pr-2,s-2 

-if O<s<r then 4(A-4r+4)Pr-2,s-1 
-if s<r-1 then 4{,u+ 2(r-1){2(r-1)-A}} Pr-2,s 

+if r= 0 then 24> 
-if r = 1 then if s = 0 then 4A<f> and if s = 1 then- 4<f> ]/(1> + 1). 

This definition is uniformly valid for r = 0, 1, . . . and s = r, r- 1, ... , 0. 
Its derivation does not, of course, represent an attempt at elegance for 
its own sake. It will be realised that there is considerable duplication 
in formulae ( 42)-( 46), so that if we were to write down the formulae 
for Pr,s in some algorithmic language for a digital computer based on 
formulae (42)-(46), we would in effect be wasting a large number of 
instructions in needless repetition. Use of formula {47) avoids this at 
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the cost of a few conditional statements, which (in comparison with the 
complexity of the formulae used) is negligible 

Difference Equations 

In the notation of equation (18) we have 

(48) Rn-1-Rn = ( -1)n-1un-1 

and since 

(49) 

we have 

(50) 

or, using (10) 

(51) 2nz2(Fn-1-1) +(a+ 2n-3/2)(a+ 2n-1j2)Fn = 0. 

In this section we shall suppose that a and x are fixed, so that when n 
decreases to n-1, k becomes k+2; thus if 

(52) 

then 

(53) 

In equation (51) we write x2rfo for z2, substitute for 2n in terms of x 
and k, and insert the series (52) and (53), finally obtaining 

By equating to zero the coefficients of the successive powers of x in (54) 
we shall again obtain a system of recursions between the functions 
f3r(k)r=0, 1, .... We have: 

(55) 

(56) ~x2: 

x4 : rfof3o(k+2) + {Jo(k) = 2rfo, 

rpf31(k + 2) + {h(k) = 2{rp(A + k) f3o(k + 2) +(.A+ 2k) {Jo(k) 

-2rfo(.A+k)}. 

(57) ~ x-2r+4 : rpfJr(k+2)+fJr(k) = 2{rp(.A+k) f3r-1(k+2)+(.A+2k) f3r-1(k) 

( -2(k2+.Ak+,u) f3r-2(k)}. 

Before proceeding further we introduce factorial functions of the form 

(58) k<sJ = k(k-2) ... (k-2s+2). 
2 
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These quite clearly satisfy a recursion of the form 

(59) k<s+l) = (k-2s) k<s) 
2 2 

and thus 

(60) k k<s) = k<s+l) + 2s k<sl. 
2 2 2 

Furthermore 

(61) l k2 lc<s) = lc lc<s+l) + 2slc lc<s) 
2 2 2 

= k<s+2) + ( 4s + 2) k<s+l) + 4s2 k<s). 
2 2 2 

If the difference and displacement operators Ll and E are defined by 
2 2 

(62) Llg(k) g(k+2)-g(k), E=1+LI 
2 2 2 

then 

(63) Ll k(s) = 2s k<s-l) 
2 2 2 

and 

(64) (k+2)(s) = k<sl+2s k<s-l). 
2 2 2 

Equipped with these formulae, we see that equations (55)-(57) are 
formally satisfied by expressions of the form 

r 
(65) fJr(k) = 2 qr,s lc<sl. 

s-o 2 

From (55) and (56) we have successively 

(66) fJo(k) = 2cf>J(c/>+ 1), 

(67) fJ (lc) - 4c/> lc(l) - 8cf>2 
1 -(c/>+1)22 (c/>+1)3' 

and (57) may be rearranged to give 

r r-1 

(c/>+1) 2 qr,sk<sl+2c/> 2 (s+1)qr,s+llc(s) 
s~o 2 s-o 2 

r r-1 

= 2{(c/>+2) 2 qr-l,s-llc(s) + (c/>+ 1) 2 (4s+A.) qr-l,slc(s) 
s-1 2 s-o 2 

r-2 r 
(68) 

+ 2cf> 2 (s + 1) (A.+ 2s) qr-l, s+l lc<s) - 2 2 qr-2,s-2 lc<s) 
s-O 2 s-2 2 

r-1 r-2 

- 2 2 ( 4s +A- 2) qr-2,s-1 lc<s) - 2 2 ( 4s2 + 2A.s + ,u) qr-2,s lc<s). 
s-1 2 s-o 2 
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Again a definition of qr,s which is uniformly valid for r=O, 1, ... ; 
s=r, 1·-1, ... , 0; may be given: 

(69} 

qr,s = 2{ if s<r then -4>(8+ 1} qr,s+l 

+if 8>0 then (4>+2) qr-1,s-1 

+if 8<r then (4>+ 1) (48-t-}.} qr-1, 8 

+if 8 < r-1 then 24>(s + 1} (}. + 28) qr-1,s+1 

-if 8 > 1 then 2qr-2,s-2 
-if 0<8<r then 2(48-t-ll-2) qr-2,s-1 

-if 8<r-1 then 2{28(2s+ll)+,u}qr-2,s 
+ if r = 0 then 4> 
- if r = 1 then if 8 = 0 then 21.4> 

and if 8 = 1 then 24> }/(4> + 1). 

Comparison with the work of Miller and Airey 

As mentioned at the beginning of this paper, Miller has derived relation­
ships similar to equations (33)-(35) and (55)-(57) for the case in which z 
is real. Allowing for the difference in notation (Miller uses an auxilary 
variable b defined by b=a-2 as opposed to ll=2(a-1}, and derives sets 
of equations in which the unknown function is fJr+I(k) and not flr(k}), 
equations (33}-(35) and (55)-( 57) reduce to Miller's equations when 4>= l. 
Miller derives explicit formulae for the initial flr(k) rather than a recursive 
definition of the coefficients Pr.s and qr,s; nevertheless, since we have 
derived expressions for {J8(k)(8 = 0, 1, 2, 3) for the purpose of checking, 
we remark in passing that these expression reduce to those of Miller 
when 4>= l. 

We now recall the work of AIREY [2]. He is concerned with the 
asymptotic series 

(70) 
0! 1! 2! 00 

-;- 12+1a- ... = L Un 
Z Z Z n~1 

where 

(71} Un = ( -1)n-1 (n-1}! z'-n, 

and writes (70) as 
oo n-1 

(72) L Ur""' L Ur+UnCn 
r~1 r-1 

where 

(73) 

He makes an auxiliary substitution 

(74} z' = xei0', fJ = e-iO', x' = n+h; 



(76) 
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which is similar to our (16), and obtains 

(75) C ,__, 1 _ (x'-h)f3 (x'-h)(x'+1-h)f32_(x'-h)(x'+1-h)(x'+2-h)f33, 
n ' + '2 '3 . ' .... 

X X X 

By formal expansion of each term of (75) in inverse powers of x', and 
regroupment, he obtains the expansion 

l 1 1 { (32 f3 } 1 { - 2(33 + f34 (32- 2(33 f32h2 } 
Cn,__,1+f3+x' (1+f3)3+(1+f3)2h +x'2 (1+(3)5 -(1+f3)4h+(1+f3)3 

__!__ { 6{34- 8(35 + (36 2(33- 1 0{34 + 3(35 - 3(33 + 3(32 2 __!!!___ 3} 
+ x'3 ( 1 + {3) + ( 1 + (3)6 h + ( 1 + (3)5 h + ( 1 + {3)4 h + · · · · 

Airey tabulated values of the coefficients of x'-8(s=0, 1, ... )in this 
expression when {3= 1 and h= 1. Miller noted that when a=l/2 or 3/2 
the constant terms of the polynomial coefficients which he derived 
for the expansion of Tn, were the same as Airey's numbers. We shall 
later see that, allowing for the difference in notation, the coefficients of 
x'-s (s=O, 1, ... )in (76) are in agreement with those given by (37)-(40). 

At first sight this should seem to be more a cause for bewilderment 
than reassurance, for the asymptotic series 

(77) 

with which the Weber function may in some sense be associated, manifestly 
does not reduce to (70) when a=l/2 or 3f2. When a=l/2 it becomes 

(78) 

(79) 

l:ri order to explain this curious agreement we must first establish the 
true significance of Airey's converging factor. We consider the asymptotic 
series development 

(80) 

which may be associated with the incomplete T-function. 
We write this as 

oo n-l 

(81) ! Ur =! Ur+UnCn 
r=O r=O 

where 

(82) = (- 1)r a(a+ 1) ... (a+r-1) 
Ur z'r 
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and the converging factor On may be expanded as 

(83) 0 ,...._, 1 _ (a+n) (a+n)(a+n+ 1) _ 
n 1 + 12 ••• z z 

where n is so chosen that if 

(84) Z1 = X 1ei6 

and 

(85) a+n = X 1 +h 

then O.;;;;h.;;;; 1. 
Now On satisfies the differential equation 

(86) Z1d0n ( 1) O 1 ----a;z-- a+n+z n =- z. 

We may change the independent variable to h, and eliminate n form 
this equation by means of (85), and obtain 

(87) 

00 

We may substitute a series development of the form On,...._, z {J8(h)x 1 - 8 

•-O 
in (87) and obtain a recursion system among the {J8(h) (s=O, 1, ... ) as 
done earlier in this paper. The point to notice about this system of recur­
sions is that the functions {J8 (h) produced via equation (87), are independent 
of the parameter a, so that Airey's converging factor (75) is not only the 
converging factor for the exponential integral, but also for the incomplete 
F-function. 

But the series (78) and (79) are special cases of (80). The only outstanding 
point is that the relationship between Z 1 and h given by {85) is exact, 
but that that between z2 and k, given by (16), was derived under the 
assumption that p, (given by (13)) was negligible compared with n2. But 
when a= 1/2 or a/2 p, is not only negligible but zero, and so the correspondence 
is complete, and the agreement referred to occurs. 

It only remains to show how (37)-( 40) reduces to (76) when p, = 0. 
Replacing h by the complementary argument h1 =h-1 in (76) we obtain 

If, in (88), we put cp={J-1, k=2h 1 , and x2=2X1 we arrive at the coefficients 
(37)-(40), and thus again Airey's work serves, to a certain extent, to 
check our own. 
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Singular Case 

When z2 is real and negative, cp = - 1: the formalism of the preceding 
two sections breaks down completely; we examine the problem afresh. 

In the case being considered, equations (33)-(35), (55)-(57) become 

(89) 2(3o" - (3o' = - 1 

(90) 2(31"- (31' = - 2(2k +A- 2) (3o'- (4- k) (3o + 2(}, + k) 

~ 2(3r"- (3r' = 2{4r- A- 2k- 2} f3'r-1 +{ k- 2(r + 1)} /3r-1 
(91) 

- 2{k2 + k(A- 4r + 4) k + ,u- 2},(r -1) + 4(r -1)2} f3r-2 

(92) JJ(3o(k) = 2 
2 

(93) Llf31(k) = - 2{(A + 2k) f3o(k)- (A+ k) f3o(lc + 2) + 2(A +!c)} 
2 

(94) JJ(3r(lc) = - 2{(A + 2Jc) f3r-1(k)- (A+ lc) f3r-1(Jc + 2)- 2(lc2 + Ak + ,u) f3r-2(k) }. 
2 

Inspection of equations (89)-(94) reveals that at least the possibility 
exists that they are satisfied by polynomials of the form 

2r+l 2r-f-1 

(95) f3r(lc) = L Pr,s Jcs = L qr,s Jc(s). 
s~o s~o 2 

But it is quite certain, at least, that equations (91) and (94) do not serve 
to determine Pr,o and qr,o respectively, and since, for example Pr+1,2, 
Pr+l,l are determined from Pr.o, it would appear that matters become 
progressively worse. 

Let us, however, proceed upon the assumption that everything is 
known on the right hand sides of equations (91) and (94) except Pr-1,0 
and qr-1,0 respectively. Equations (89) and (92) give to begin with 

(96) po,1 = qo,1 = l. 

Equation (91) may be rearranged as 

~-1 ~ 

2 2; (s+1)(s+2)pr,s+2k8 - 2: (s+l)pr,s+lk8 

s-o s~o 

2r-2 2r-1 

= 2(4r -A- 2) 2: (s + 1) Pr-1,s+l Jcs - 4 2: 8Pr-1,s Jcs 

(97) 
s~o s~l 

2r 2r-1 2r-1 

+ L Pr-1,s-1Jcs- 2(r+ 1) L Pr-1,s Jcs- 2 L Pr-2,s-2Jcs 
s~l s~o s~2 

2r-2 2r-3 

- 2(A-4r+4) 2: Pr-2,s-1k8 -2{,u-2A(r-1)+4(r-1)2} 2: Pr-2,sk8 • 

\ s~l s~o 
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This leads to 

Pr,8 =- [Pr-1,8-2 
-if s.;;;;2r then 2{s(s+1)pr,8+l+(r+2s-1)Pr-1,s-1+Pr-2,s-3} 

(98) +if s.;;;;2r-1 then 2{s(4r-A.-2)Pr-1,s- (A.-4r+4)Pr-2,s-2} 
-if s.;;;;2r-2 then 2{,u-2A.(r-1)+4(r-1)2}Pr-2,s-dfs, 

(s = 2r+ 1( -1)3), 

a relationship which may be used without difficulty. 
Equation (94) may be rearranged to give 

2r-1 2r 2r-2 

L (s+1)qr,s+lk<s) = L qr-1,s-1k<s>- 2 L (s+1)(A.+2s)qr-1,s+lk<•> 
s~o 2 s~l 2 a~o 2 

2r-1 2r-2 

(99) - 2 L qr-2,8-2 k<s)- 2 L (4s+A.-2) qr-2,8-1 k<s) 
s~2 2 a~l 2 

2r-S 

- 2 L (4s2+2A.s+,u) qr-2,s k<•>. 
s~o 2 

This leads to 

qr,s = - [qr-1,s-2 
-if s < 2r then 2qr-2,s-3 

(100) -if s.;;;;2r-1 then 2{s(A.+2s-2) qr-1,s+(4s+A.-6) qr-2,s-2} 
-if s.;;;;2r-2 then 2{4(s-1)2+2A.(s-1)+,u}qr-2,s-d/s 

(s = 2r+ 1( -1)3). 

The coefficients of k1 and kO in (97) and k<1l and k<O> in (99) respectively 
. 2 2 giVe 

~ Pr,2 = {12pr,3- 4(4r-A.- 2) Pr-1,2 -Pr-1,0+ 2(r+ 3) Pr-1,1 
(101) 

+ 2{,u- 2A.(r-1) + 4(r-1)2} Pr-2,1 + 2(A.- 4r+ 4) Pr-2,o}/2, 

~ Pr,1 = 4pr,2-2(4r-A.-2) Pr-1,1 +2(r+ 1) Pr-1,0 
(102) 

+ 2{,u- 2A.(r- 1) + 4(r- 1 )2} Pr-2, o, 

(103) qr,2 =- [qr-1,0- 4(A.+ 2) qr-1,2- 2(A. + 2) qr-2,0- 2(,u + 2A.+ 4) qr-2,1]/2, 

(104) qr,1 = 2(A.qr-1,1 +,uqr-2,0)· 

Now so far we have used the facts that Fn satisfies a differential 
equation and a difference equation quite seperately and developed f3r(k) 
as a polynomial and as a series of factorial functions quite independently. 
Now we must use these facts in conjunction. 

Firstly 

(105) Pr-1,0 = qr-1,0 

and secondly, as may easily be verified (c.f. equation (112) below) 

(106) qr,1 = Pr,1 + 2pr,2 + 4pr,3 + ... + 22rpr,2r+l· 
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Equations (101), (102), (104), (105) and (106) may thus be used to derive 
Pr-1.o=qr-1,o, and these may be substituted in (101), (102) and (103) to 
give Pr,2, Pr,1 and qr,2· qr,1 can of course be determined without computing 
qr-1,0· 

Writing 

~ Pr2 = l2pr, 3- 4( 4r- A- 2) Pr-1, 2 + 2{,u- 2A.(r -l) + 4(r -l )2} Pr-2,1 
(107) 

+ 2(r+ 3) Pr+l,1 + 2(A.- 4r+ 4) Pr-2,0 

and 

(108) Prl = 2{,u-2A.(r-l)+4(r-l)2} Pr-2,o-2(4r-A.-2) Pr-1,1 

and using (106) we have 

(109) Pr-1,0 = qr-1, o = {qr,1- 3Pr2 -Prl- 4pr,3- ... - 22rpr,2r+l}/(2r -1). 

Subsequently 

(llO) 

(Ill) 

Pr,2 = {Pr2-Pr-1,o}/2 

Pr,1 = 4pr,2+Prl+2(r+l)Pr-1,o; 

qr,2 is given by (103), and we may proceed to the next value of r. Use of 
conditional statements enables the anomalous equations (89), (90), (92) 
and (93) to be brought into this general scheme. 

Checking 

Since the expressions f3r(k), whether derived as a polynomial or as a 
series of factorials, represent the same function, there exists the possibility 
of expressing one set of coefficients in terms of the other, and this may 
be used as a check. 

In the non-singular case we have the matrix equations 

(ll2) (qr,a) = (Pr,s)L, (pr,s) = (qr,s)L-1 

where 
po,o qo,o 

P1,0 P1.1 q1,0 q1,1 
(ll3) (Pr,s) = P2,o P2.1 P2.2 ' (qr,B) = q2,o q2,1 q2,2 

and 

l l 

0 l 0 l 

0 2 l 0 -2 l 
(ll4) L= 0 4 6 l ' 

L-1 = 0 8 -6 l 

0 8 28 12 l 0 -48 +44 -12 l 

I 
\..· ·../ ·../ 



735 

If the elements in L are referred to as lr,s (r,8 = 0, l, ... ) and those in 
L-1 as l;} (r,8=0,l, ... ) then 

l,, 0 = 0, l,,, = l,_1, 8 _ 1 +28l,_ 1_,, (r= l, 2, ... ; 8= l, 2, ... , r) 

l;:J = 0, l;:,1 = l;.-\,,_1 - 2(r-l) l;!1,, (r= l, 2, ... ; 8= l, 2, ... , r). 

Use of these formulae (as we shall see in the ALGOL programme to 
be given) enables the matrix multiplications (112) to be replaced by a 
system of algebraic relationships. 

Application of the 8-algorithm 

We have now shown how the converging factor Fn may be expressed 
formally as the sum of a series. But it is a matter of numerical experience 
that in many cases a continued fraction which may in a certain sense 
be associated with a given power series converges far more rapidly than 
the series. We wish, therefore, to transform the series for Fn into such 
a continued fraction. This may conveniently be done by application of 
the 8-algorithm [3] the theory of which has been described elsewhere [4]; 
it will suffice have to state that if from the initial values 

m-1 

(115) 8o<0> = 0, 8o<m> = ! flr(k)n-T (m= l, 2, ... ) 
r=O 

{116) 81(m) = nm{fJm(k)}-1 (m=O, l, ... ) 

further quantities e8 <m> (m=O, l, ... ; 8=2, 3, ... ) are constructed by means 
of the relationship 

(117) (m) _ (m+U + l 
8s - 8a-2 <m+1> <m> 

8s-1 - 8,_1 

then the quantities 8~':> are convergents of certain continued functions, 
and as such provide better estimates of the formal sum of the series whose 
partial sums are given by (115) than the partial sums. The quantities 
88 <m> may be displayed in the array 

8o<0> 81(0) 
8o<1> 

81(1) 
8z<0> 

8a<0> 
8o<2> 

81(2) 
82(1) 

8o<3> 

and it can be seen that the quantities in (117) occur at the vertices of a 
lozenge in this array. The various numbers of this array are most econom­
ically (with regard to storage space) computed by retaining a vector l 
which at a given stage contains the following quantities: lo _ 8o<m>, 
l1 = 81(m-1), l2 = 82(m-2>, ... , lm= 8m<O>. (This corresponds to what, in a table 

49 Series A 
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of a function and its differmces, would be a line of backward differences). 
We arrive with a new partial sum s0<m+l) and replace in succession 

The formation of these quantities is carried out by means of (117) and 
uses one working space and two auxiliary storage locations. In certain 
singular cases, as occur for example when a term is equal to zero, the 
latter procedure breaks down. This difficulty may be overcome by certain 
singular rules [7]. 

(To be continued) 




