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Article history: The sodium/iodide symporter (NIS or SLC5A5) is an intrinsic membrane protein implicated in iodide uptake
Recefved §June_ 2013 into thyroid follicular cells. It plays a crucial role in iodine metabolism and thyroid regulation and its func-
Received in revised form 5 August 2013 tion is widely exploited in the diagnosis and treatment of benign and malignant thyroid diseases. A great
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Available online 27 August 2013 effort is currently being made to develop a NIS-based gene therapy also allowing the radiotreatment of

nonthyroidal tumors. NIS is also expressed in other tissues, such as salivary gland, stomach and mammary
gland during lactation, where its physiological role remains unclear. The molecular identity of the thyroid

Is(ciﬁ‘i/:;rr:;isc;dide symporter iodide transporter was elucidated approximately fifteen years ago. It belongs to the superfamily of sodi-
NIS umy/solute symporters, SSS (and to the human transporter family, SLC5), and is composed of 13 transmem-
SLC5A5 brane helices and 643 amino acid residues in humans. Knowledge concerning NIS structure/function
Thyroid relationship has been obtained by taking advantage of the high resolution structure of one member of the
Membrane protein SSS family, the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT), and from studies of gene mu-
Structure/function relationship tations leading to congenital iodine transport defects (ITD). This review will summarize current knowledge

regarding the molecular characterization of NIS.
© 2013 Elsevier B.V. All rights reserved.
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then in the human, mouse and pig [2-4]. The protein has been named
NIS, for Natrium lodide Symporter.

NIS is an intrinsic membrane protein belonging to the superfamily of
sodium/solute symporters (SSS) and to the human transporter family,
SLC5 [5,6]. The protein is found in the basolateral membrane of thyroid
follicular cells (as illustrated in Fig. 1) where it mediates efficient iodide
uptake from the bloodstream into the thyroid using the sodium gradi-
ent generated by Na™K*-ATPase. It makes an essential contribution
to thyroid hormone synthesis and, therefore, to the control of human
metabolism in general. NIS is a key protein in thyroid regulation
and its expression is finely tuned at the transcriptional and post-
transcriptional levels [7,8]. Its function also plays a crucial role in the di-
agnosis and treatment of benign and malignant thyroid diseases [9-12].
Studies are currently underway to better control NIS regulation, which
could be useful in many fields including: i) the radiotherapy of thyroid
in which NIS expression is low and radioiodine uptake needs to be
enhanced [13] and ii) the development of new strategies to decrease
thyroid irradiation after accidental radioiodine exposure [14]. A great
effort is also being made to develop a NIS-based gene therapy allowing
the radiotreatment of nonthyroidal tumors [12,15,16]. For this purpose,
efficient gene transfer and protein expression in the targeted host cells
are required [17-19] and NIS mutants leading to strong expression of
highly active protein with efficient targeting to the plasma membrane
are sought.

NIS expression is also found in other cells/tissues, such as salivary
gland ductal cells [20,21], breast tissue during lactation [3,22,23], lung
airway epithelial cells [24], intestinal enterocytes [25], epithelial and
parietal stomach cells [26], placenta [27] and testicular cells [28]. The
functional role of the protein in these tissues remains speculative.

This review will summarize current knowledge regarding the
molecular characterization of NIS at the functional, biochemical and
structural levels.

2. NIS functional characterization

NIS transports one iodide ion along with two sodium ions following
the inwardly directed sodium gradient. For the rat NIS, the apparent
affinity constants are 30 mM and 30 uM for Na™ and I~ respectively,
with a turnover rate of more than 36 s~ ! [29].

Li* can also be used as a coupling cation but the transport activity is
only about 10% of that obtained with Nat, while H' is barely
transported [29]. The following anions are known to be NIS substrates:
ClO3, SCN—, SeCN—, NOs3, ReOy, TcOz and to a lower extent Br— and
BF; [29,30] (see Table 1). ClOz has long been considered to be a NIS in-
hibitor [29,30], but Dohan and colleagues clearly showed that this anion
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is transported by NIS. Interestingly, the transport is non electrogenic,
with a 1:1 stoichiometry [31].

A Na™-dependent leak (35% of the substrate-induced current) has
been described and a model in which one sodium ion binds first has
been proposed for the translocation mechanism [29]. The uptake by
NIS of either one thiocyanate or one iodide, along with two sodium
ions, is accompanied by the transport of 253 or 162 water molecules,
respectively [32].

3. NIS topology and biochemical characterization

NIS is composed of 618 amino acids in the rat [1] and mouse [3], and
643 amino acids in the human [2] and pig [4]. Porcine NIS is also present
as various isoforms due to alternative splicing of its mRNA at sites that
are not present in the human or murine species [4].

The NIS protein carries three N-linked glycosylations (at positions
225, 485 and 497 of the rat sequence), resulting in a mature protein
that migrates at an apparent molecular weight of 80-90 kDa. An addi-
tional, partially glycosylated form migrating at an apparent molecular
weight of 60 kDa can also be seen on SDS-PAGE [33,34]. As shown by
Levy et al., NIS glycosylation is not required for the correct targeting of
the protein to the plasma membrane but plays a role in protein stabili-
zation and folding [34]. For some tissues, such as stomach or breast,
western-blot analyses have also revealed occasional protein species
migrating at lower apparent molecular weights. It was concluded that
these findings were most probably due to incomplete glycosylation
[22,26].

NIS protein topology was first predicted by bioinformatics (hydrop-
athy profile) [1] to form twelve transmembrane helices (TM), but this
model has since been modified to a topology with thirteen TM [5].
In the latter model, the N-terminus extremity is extracellular and the
C-terminus intracellular. The extracellular localization of the N-terminus
was established with a Flag epitope NIS fusion protein and an anti-
Flag antibody used on transfected, nonpermeabilized COS cells [34]. A
typical N-terminal signal peptide is missing. The intracellular localiza-
tion of the C-terminus was confirmed by immunocytochemistry [35].
The intracellular C-terminus contains 70 amino acids in the rat and
100 in the human, and represents the longest stretch of amino acid
residues predicted to lie outside the membrane. This portion contains
numerous potential phosphorylation sites (PKA, PKC, CKII), two of
which have been biochemically validated in rat NIS (T575 and S581,
[36]). This domain also bears several potential binding sites for regula-
tory proteins and is predicted by bioinformatics to have few secondary
structures, and thus to be intrinsically unstructured.
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Fig. 1. Schematic representation of iodide metabolism in the thyroid and of the role of NIS. Tg: thyroglobulin. T3 and T4: triiodothyronine and thyroxine hormones, respectively. NIS uses
the sodium gradient generated by the Na™/K*-ATPase to actively transport iodide into thyrocyte cells. The iodide ions cross the cells and are organified (covalently linked) inside the
thyroid follicles by thyroid peroxidase (TPO) onto thyroglobuline tyrosine residues. These iodotyrosines are then coupled to form thyroid hormones. After endocytosis, the iodinated

Tg is proteolysed, and the thyroid hormones are released into the bloodstream.
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Table 1
Properties of the major anions transported by NIS.
Anion transported Stoichiometry Na*/anion K in pM*? K; in pM?
I~ 2/1[29] 33[29];9.7 [31]; 30[116]; 33 [117] 33.9[118] 10.3/51.1 for hNIS in COS cells vs. rNIS in
9/26.4 for hNIS vs. mNIS [43] FRTL5 [30];
132/122 for hNIS vs. rNIS [56]
Clos >2/1[30] 486 [117] 131/1368 for hNIS in COS cells vs. rNIS in FRTL5 [30]
277 at 100 mM Na*,
1671 at 20 mM Na™ [29]
SCN™ >2/1[119] 96 [29]; 20-30[116]; 38 [117] 19.3 [118]; 30 [116] 23.5/33.6 for hNIS in COS cells vs.
rNIS in FRTL5 [30];
SeCN™ 38[29]
NO3 739[29]; 770 [117] 297 [118]
Br— 5944/26,250 for hNIS in COS cells vs. rNIS in FRTLS [30]
Cloy 1/1[31] 1.5[31];39[117] 1.8[29]; 1.27 [118]; 2 [116]
0.43/0.62 for hNIS in COS cells vs. rNIS in FRTL5 [30];
ReOy 1/1[31] 2.3[31];1.9[117] 3.2 [29]; 1.12/1.22 for hNIS in COS cells vs. rNIS
in FRTL5 [30]
TcO; 1/1[31]

3 The values given in this table are illustrative and depend greatly on the experimental conditions (uptake versus electrophysiological measurements, species, cell line, Na* concentra-

tion used...). See references for details.

The orientation of different loops, and of the N-terminus, was con-
firmed by introducing specific glycosylation sites into a nonglycosylated
variant and by introducing a cysteine residue at position 160 (external
loop 2) in an extracellular cysteine-less background and then probing
with a sulfhydryl membrane-impermeable reagent [5]. The established
model strongly resembles those proposed for other members of the SSS
family, including the sodium/galactose symporter for which the three-
dimensional structure has been established by Abramson's group
[37,38] (see below in the NIS family section for details, and Fig. 5 for a
NIS model derived from this structure).

Another feature of membrane proteins, including NIS, is their ap-
pearance in different oligomeric forms modulating their maturation,
targeting, stability and even function [39,40]. Freeze-fracture electron
microscopy with NIS-mRNA-injected Xenopus oocytes has strongly sug-
gested that the protein is present in a multimeric form [29]. SDS-PAGE
analysis of NIS protein in the thyroid [41,42], in a thyroid-derived cell
line [35], and in transfected mammalian cells that transiently [43] or
stably [44] express NIS, revealed high-molecular-weight species corre-
sponding to a protein dimer (or oligomer) that was resistant to the
strong detergent, SDS. Dai and collaborators suggested that a leucine-
zipper motif in TM6 of rat NIS is involved in the dimerization process

[1]. However, this motif is not conserved in human, mouse or pig NIS,
and this helix is not located at the interface in the crystallographic
dimer of vSGLT [37]. A more detailed study of the biochemical charac-
terization of NIS was performed in our laboratory [44]. For the first
time, human NIS (hNIS) protein was purified in milligram amounts
and a highly enriched, solubilized NIS fraction was analysed by light
scattering coupled with size exclusion chromatography. It was shown
that this fraction contained different molecular weight NIS species.
Only a minority of monomer species (less than three percent) was de-
tected. The majority of NIS species had molecular weights correspond-
ing to those of the dimer and higher multimers [44]. Our group also
showed that at least one disulphide bond is formed during dimeric asso-
ciation [44]. The effect of dimerization on NIS function and/or regulation
remains to be established.

ANIS fragment of approximately 15 kDa was detected by Castro and
colleagues [41] using western blot analysis with NIS-expressing COS-7
cells. This fragment was also identified in various tissues of different
species [42,44,45]. Huc-Brandt et al. showed that the fragment from
hNIS consists of the 131 C-terminal amino acid residues and, thus, in-
cludes the last predicted transmembrane helix (TM13)[44]. Disulphide
bonding seems to be involved in its interaction with a higher molecular
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Fig. 2. Inhibitors of NIS. The chemical structures of four potent NIS inhibitors are shown. They are sorted in two groups (reversible and non reversible effects), as detailed by Lindenthal et al. [52].
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Fig. 3. Characterization of NIS orthologs. Panels A and B show the difference in immuno-
localization between human NIS (hNIS) and mouse NIS (mNIS) in transiently transfected
HEK cells, as detailed in [43]. Panels C and D display the difference in iodide uptake
between human and mouse or rat NIS, respectively, as described by Dayem et al. [43]
and Zhang et al. [56].

weight NIS form [44]. Moreover, when the 15 kDa C-terminal fragment
is coexpressed with its N-terminal counterpart, a functional symporter
is reconstituted. When expressed alone, the N-terminal fragment is
found at a very low level, but can be detected in the plasma membrane
[44]. Thus, it was concluded that the C-terminal portion is not necessar-
ily required for correct protein targeting. However, no transport activity
can be detected with the truncated protein, highlighting an important
role of the 15 kDa C-terminal fragment for the transporter function
[44]. The genesis of the 15 kDa fragment, and its physiological role, re-
mains unknown.

4. NIS inhibitors

Several inhibitors of thyroid iodide uptake activity were identified
before the molecular identity of NIS was revealed. These include two so-
dium competitors [46] and several chloride channel blockers [47]. Mol-
ecules such as dysidenin, 5-(N,N-hexamethylene)amiloride (HMA) and
econazole also induce reversible, noncompetitive or mixed inhibition of
iodide transport [48]. More recently, aryltrifluoroborates were shown to
inhibit NIS function [49] and a library of 17,020 chemical compounds
was tested using a high-throughput screening method [50,51] with
transfected, cultured mammalian cells. Amongst the identified mole-
cules [51], ten were studied in more detail using the Xenopus oocyte
expression system. These studies revealed a high diversity in the
mode of action of the different molecules [52]. The chemical structures
of the four most powerful inhibitors (>90% inhibition) tested in this
study are shown in Fig. 2. A structure-activity relationship study
was performed on 115 derivatives of one of these inhibitors (3,4-
dihydropyrimidin-2(1H)-ones) [53] and on the racemates of three
dihydropyrimidin-2-ones, showing that most of the inhibitory activity
is a feature of one enantiomer [54]. These molecules represent putative
tools for further functional (and structural) characterization of NIS at
the molecular level.

5. NIS orthologs

Interestingly, functional differences have been identified be-
tween mouse or rat NIS (mNIS or rNIS, respectively) and human
NIS (hNIS). The rat and the mouse orthologs were shown to accumu-
late radioisotopes more efficiently than the human protein [43,55].
The molecular basis of these functional differences could be helpful
for further characterization of NIS. Zhang and collaborators showed
that rNIS is localized in a higher proportion at the plasma membrane
than hNIS and the N-terminal region up to putative TM7 appears to
be involved in this difference [56]. These authors also reported differ-
ences in the kinetics of the Na* binding, implicating the region span-
ning from TM4 to TM6 and Ser200 of hNIS. They, thus, proposed that
this region could be involved in sodium binding [56]. In our laboratory,
it was shown that the V., of the mouse protein is four times higher
than the V.« of the human protein when expressed in the same cell
line (HEK-293) [43] (Fig. 3, panel C). The K, value determined for
hNIS (9.0 + 0.8 uM) was significantly lower than the K., for the
mouse protein (26.4 + 3.5 uM) whereas the KN, values were not sig-
nificantly different. Similarly to the rat protein, mNIS is predominantly
localized in the plasma membrane whereas the human ortholog is de-
tected intracellularly in 40% of the cells in which it is expressed (Fig. 3,
panels A and B). However, the difference in the Vy,,x values does not
only seem to be related to the higher intracellular localization of hNIS.
Using chimeric proteins between human and mouse NIS, we showed
that the N-terminal region up to TM8 is most probably involved in io-
dide binding, and that the region from TM5 to the C terminus could
play an important role in targeting the protein to the plasma membrane
[43]. One of the long-term goals of these studies is the engineering of a
chimeric NIS protein most suitable for gene therapy, i.e. preserving
regions responsible for the high turnover rate and the efficient plasma
membrane localization of the mouse protein while replacing the immu-
nogenic extracellular regions with those of the human ortholog.

The porcine NIS gene gives rise to splice variants leading to three ac-
tive NIS proteins with differences in their C-terminal extremities [4].
However, it is not known if these differences lead to distinct properties.

6. NIS family

NIS belongs to the sodium/solute symporter family (SSSF) in
the transporter classification system [57] and to the SLC5 family
in the solute carrier nomenclature [58,59]. Most of the members
of these families are symporters and mediate the uptake of a variety
of molecules: sugars, amino acids, monocarboxylates, myo-inositol,
vitamins (pantothenate, biotin), urea and anions (iodide, thiocyanate,
perchlorate) [6,60,61]. Others are substrate-activated channels, such
as human SGLT3 (SLC5A4) [61,62]. Fig. 4 represents a sequence align-
ment of some SLC5 members with vSGLT. The sodium/solute trans-
porters are widely encountered in bacteria, Archaea, plants and
animals. Concerning solute selectivity, it has been reported recently
that SLC5A6 (SMVT, multivitamin transporter) transports iodide [63]
and that several members of the family, including NIS and the sodi-
umy/glucose symporter isoform 1 (SGLT1), are able to transport urea
and water (cotransport or channel) [32,64-67]. In this family, as for
many other symporters, the inward Na* gradient and the negative
membrane potential drive the transport of the substrates into the cells
and several members also behave as uniporters [29,67,68].

The transport stoichiometry varies between different transporters
and can also differ for the same protein depending on the substrate
transported. For example, a sodium-dependent, 2:1 transport stoichi-
ometry has been described for NIS (iodide), SGLT1 (glucose) and
SMVT (vitamin), whereas a 1:1 ratio was detected for PutP (proline)
and vSGLT (galactose) [6,69]. For NIS, the ratio is 2:1 for iodide as men-
tioned above, but 1:1 with perchlorate [31].

Members of the SSS family vary greatly in size, being composed of be-
tween 500 and 700 amino acid residues [6,60,61]. They contain between
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thirteen and fifteen predicted transmembrane helices. In 2008, Faham
and collaborators reported the 3D structure (about 3.0 A resolution) of
the Vibrio parahaemolyticus sodium/galactose symporter (VSGLT) [37].
The structure clearly showed fourteen transmembrane helices with ex-
tracellular amino and carboxy termini. A structural feature of this trans-
porter is an inverted repeat of five transmembrane helices (i.e. TM2 to
TM6 and TM7 to TM11), which is probably also encountered in other so-
dium symporters [70] such as NIS. The structure was obtained in the
presence of sodium and galactose in an inward-facing, occluded confor-
mation with one galactose molecule bound in the centre of the protein
[37]. It was, therefore, possible to determine all the residues contributing
to the galactose binding site in this conformation and the residues
forming the gates. These residues are not well conserved in NIS. In con-
trast, the amino acid residues involved in Na* binding are found in
equivalent positions in vSGLT and in NIS. In 2010, Watanabe et al. pub-
lished another structure of vSGLT in the inward-open conformation.
They performed a comprehensive study, including molecular dynamic
simulations, to better understand the mechanisms of cotransport and
sodium and substrate binding and release [38].

Several biophysical and biochemical experiments (including AFM,
mass spectrometry, spin labeling and cysteine accessibility), coupled
with mutagenesis, have been performed to study the sodium/proline
or sodium/glucose symporters and their conformational changes upon
substrate binding [38,71-73]. Amongst the data obtained, we can note
that, in the sodium/proline symporter, TM2 contributes to the cation
and proline binding sites [74,75]. TM9 is also essential in PutP and stud-
ies suggest that it contributes to the formation of a hydrophilic cavity
and probably to the sodium and/or proline translocation pathway
[76]. Regarding the high-affinity sodium/glucose cotransporter, it has
been shown that TM4 participates in sugar binding [77] and that the
C-terminal loop 13 is implicated in substrate recognition [78]. Taken
together, these results are probably transposable to other members of
the family, including NIS.

7. NIS structure/function relationship

To date, knowledge of the NIS structure/function relationship has
been mainly obtained from studies of NIS gene mutations leading to
congenital iodine transport defects (ITD). These mutations are shown
on an amino acid sequence alignment of NIS with vSGLT (Fig. 4) and
on a 3D structure model using vSGLT as a template [37,38] (Fig. 5).
Their effects are also summarized in a table in the supplementary data
(Table S1). Fourteen NIS mutations have been identified in ITD to date
and twelve of these are described in the review of Spitzweg and Morris
[79]. They lead to either the synthesis of truncated proteins [80,81], pro-
teins with partial deletions [82-85] or amino acid substitutions
[81,86-90]. Some have been further characterized at the molecular
level. The V59E mutation is located close to the cytosolic side of putative
TM2 (corresponding toTM2I in the vSGLT structure, see Fig. 4) and
causes a complete loss of NIS function [91]. Charged amino acid resi-
dues, or a proline residue at position 59, directly affect the protein func-
tion, while replacements with neutral, helix-promoting residues are
well tolerated. No effects on 1~ or Nat K, values were observed.
These results, together with the particular localization of the mutation,
suggest a role of V59 in helix-helix interactions during the transport
cycle. Based on the ITD associated with the G93R mutation, Paroder-
Belenitsky and collaborators [92] studied this particular position in

putative TM3 in more detail. They found that lengthening the neutral
side chain increases the K, for the transported anions. More strikingly,
changing the glycine residue to threonine, asparagine, glutamine, or an
acidic residue, alters the stoichiometry of perchlorate transport, which
is no longer electro neutral. The selectivity for the different anions is
also modified in G93E and G93Q variants. To interpret these findings,
the authors performed a basic homology modeling of NIS using the
VSGLT structure as a template. They concluded that G93 and Trp255,
an amino acid residue in close contact, form a “ball-and-socket joint”
implicated in the control of the inward/outward conformational
changes as well as in the stoichiometry [92]. The R124H mutation was
described by Szinnai and collaborators [90]. This residue is located in in-
tracellular helix 3 (IL3). The mutation abolishes NIS iodide uptake activ-
ity in cells, but, according to these authors, does not impair targeting.
More recently, Paroder and collaborators [93] showed that, to the con-
trary, R124H NIS protein localizes in the ER and is incompletely
glycosylated, but is functional in membrane vesicles. They also studied
other mutations at this position and concluded that a & amino group is
critical for proper maturation and membrane trafficking of the protein
[93]. They propose an interaction of R124 with C440, which could be im-
portant for local folding of NIS. One can note that an arginine residue at
an equivalent position is conserved in vSGLT. F177L (published as
F176L) and A180T mutations also caused a moderate decrease in iodide
accumulation even though the protein was expressed at a normal level
and properly targeted [56]. Zhang and collaborators [56] analysed the
causes of the differences in transport activity observed between rat
and human NIS. They found a difference in the kinetics of Na* binding
between the two orthologs and proposed that S200 of hNIS plays a
role in Na™ binding. It should be mentioned that no equivalent position
has been identified as an Na™ site on the crystal structure of vSGLT and,
thus, the effect may be indirect (due to a conformational change). de la
Vieja and collaborators [5,94] demonstrated that Q267E NIS is properly
addressed to the plasma membrane but has a very low catalytic turn-
over rate. A glutamine residue at an equivalent position is conserved
in VSGLT. This residue is located in TM71, which is part of the inverted
repeat [37]. Substitution of Q267 by other charged residues always
leads to an inactive transporter, while neutral amino acids (such as
Asn or Ala) lead to a protein with partial transport activity (30% and
20% of WT NIS activity, respectively). The deletion of two amino acid
residues (287 and 288) described by Montanelli and collaborators [85]
leads to a complete absence of iodide uptake and is, according to the se-
quence alignment (see Fig. 4), located in TM8 next to an amino acid res-
idue implicated in glucose binding in the vSGLT structure. This region is
thus probably also important in NIS for substrate binding/translocation.
Analysis of the T354P mutation [95] revealed the importance at this po-
sition of the hydroxyl group on the threonine beta-carbon for NIS func-
tion and led to the finding that other hydroxyl-containing residues
surrounding T354 in TM9 are also required for NIS function [96]. For
mutant NIS at these positions, higher K., values were found for Na™
than WT NIS, suggesting that TM9 may be involved in Na™ binding
and/or translocation. Interestingly, the equivalent position of T354 in
the crystal structure of vSGLT [37], i.e. S365 (see Fig. 4), has been iden-
tified as part of the Na™ binding site. Similarly to the Q267E mutation,
the G395R mutation in putative TM10 disrupts NIS function but not its
expression and targeting [97]. The presence of an uncharged amino
acid with a small side chain at this position is essential for NIS function.
The finding that active constructs show a lower turnover (Vp,ax) but

Fig. 4. NIS family. This figure represents a multiple sequence alignment of sodium/solute family members performed with ClustalW2 [120] and refined manually. The sequences of vSGLT,
SGLT1 (SLC5A1), SGLT3 (SLC5A4), NIS (SLC5A5), SMVT (SLC5A6) and PutP from Escherichia coli are shown up to the twelfth transmembrane helix, as this represents the most conserved
region. Residue letters are colored according to their nature (red, small+hydrophobic including aromatic residues except Y: AVFPMILW; blue, acidic D, E; magenta, basic, R, K; green,
hydroxyl+sulfhydryl+amide+G, STYCHNQG). Strictly, highly and weakly conserved residues (as defined in ClustalW) are highlighted in black, gray or light-gray boxes, respectively.
The transmembrane helices of vSGLT are shown above as well as residues involved in transport function, as defined by Faham et al. [37]: gray — hydrophobic plug residues; blue —
substrate binding residues; yellow — sodium-binding residue. NIS mutations important for transport function, and described in the NIS structure/function relationship section, are
shown below the sequences. They are designated as squares, leading to: green — transport defect (V59 [89,91], G93 [87,92], R124 [90,93], Q267 [81,94,121], Delta287-288 [85], G395
[88,97], N441 [98] and all the charged residues E79, R82, K86, D163, H226, R228, D233, D237, R239, R241, D311, D322, D331 [100,101]); and yellow — sodium-binding defect (S200

[56], T351, S353, T354, S356, T357 and N360 [86,87,96]).
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similar affinities for I~ and Na™ (Ky,) than wild type NIS, led the authors
to speculate that only a small amino acid at position 395 allows for the
rotation of TM10 during the transport process. In vSGLT, TM10 is not
part of the central helices responsible for binding galactose. Based on
the data that the deletion variant Delta439-443 leads to ITD [83], Li
and collaborators [98] studied this region. Their main finding is that
N441 is critical for proper folding and function of the symporter, by cap-
ping the a-helix of TM12. This highlights the structural importance of
the interhelical interaction in this region. An asparagine residue at an
equivalent position is conserved in almost all SLC5 family members. In
VSGLT, a threonine residue performs the capping function. In contrast
with the other mutants (except R124H), de la Vieja and collaborators
showed that the G543E mutation (cytosolic end of TM13) is responsible
for a maturation defect and improper targeting of the protein to the
plasma membrane [99]. Small, neutral amino acids rescued some iodide
uptake, suggesting that a tightly packed area is required in this domain.

Wu and collaborators [100] identified amongst several NIS homo-
logues a conserved histidine residue (H226) in extracellular loop 4
(EL4). Replacement of H226 by an Ala, Asp, Glu or Lys residue leads to
a complete loss of transport activity. Therefore, Li and collaborators
studied the substitution by alanine of fourteen conserved charged
amino acids in the extracellular NIS segments [101]. Apart from Arg 9,
all of the thirteen remaining mutations severely impaired NIS function.
Mutations at positively charged residues decreased V.« while most of
the mutations at negatively charged residues increased the K, for I~
with respect to WT NIS.

Despite these numerous studies using NIS variants, mainly in the
context of thyroid pathology, the understanding of the roles of residues
is still limited and will benefit greatly from molecular modeling.

8. Post-translational regulation of NIS

NIS is a protein that is finely regulated at the transcriptional level,
including epigenetic regulation [8,102], and at the post-translational

Fig. 5. NIS 3D homology model. A preliminary NIS model was built using the protein
template of vSGLT (PDB ID: 2XQ2, [38]) with an in-house, semi-automated protocol
[122]. Several missing residues in vSGLT template (PDB ID: 2XQ2) were replaced by the
corresponding ones present in the WT structure of vSGLT (PDB ID: 3DH4 [37]). The initial
sequence alignment between vSGLT and NIS was performed using ClustalWw2 [120] and
fully refined using INTERALIGN [123]. The current model includes residues 1 to 562, ex-
cept the very long extracellular loop (468-520). Cartesian coordinates of all atoms were
energy-minimized as previously described [124] and the dimeric structure was built by
superimposing the NIS model on the dimer crystal structure of vSGLT template (PDB ID:
2XQ2 using Sup3d [122]. The image was created and rendered using VMD [125]. The
structure of one monomer is shown in purple (alpha helices), blue (3-10 helices), cyan
(turns), and white (coils). TM helices are labeled with white dots. The other monomer is
shown in transparency and the different NIS mutations defined in Fig. 4 are highlighted
in spacefill representation (green — transport defect; yellow — sodium-binding defect).

level, especially in relation to its subcellular localization. In the thyroid,
the protein is located at the basolateral membrane of the follicular cells,
whereas for some tissues an apical localization has been described
[25,26] suggesting that the NIS membrane targeting in polarized cells
is cell-type dependent. Under physiological conditions, TSH and iodide
control the protein expression level and its localization to the thyroid
plasma membrane (promoted by TSH [33,103,104] and inhibited by
an excess of iodide [105,106]). In a majority of tumors from the thyroid,
breast and other tissues, intracellular NIS expression has been observed
by immunocytochemistry [22,107,108]. More recently, Peyrottes et al.
demonstrated, using a set of monoclonal antibodies and western blot
analyses, that NIS expression is in fact low in various human thyroid
and breast cancers [42] and that the intracellular staining corresponds
to nonspecific signal. This inappropriate staining may therefore lead re-
searchers to focus on NIS translocation (post-translational regulation)
in order to increase iodide uptake for radiotherapy, whereas they
should in fact first study its transcriptional and epigenetic regulation.
It can also be noted that increasing NIS mRNA does not necessarily in-
crease iodide uptake activity, as exemplified by the PI3KCA-selective in-
hibitor, PI-103 [109]. Knostman and collaborators showed that PI3K
activation in a human mammary carcinoma cell line (MCF-7) increases
expression of under-glycosylated NIS and impairs trafficking to the plas-
ma membrane [110]. In 2007, Vadysirisack et al. [111] revealed that
MEK signaling affects NIS regulation in thyroid cells. More recently,
Zhang et al. showed that MEK inhibition leads to NIS lysosomal degrada-
tion in human breast cancer cells [112]. The MEK signaling pathway is
important in oncogenic transformation and appears to be a key element
in NIS protein stability, at least in breast cancers. Very few data are,
however, yet available regarding these processes at the molecular level.

Many potential regulation sites that are subject to post-translational
modification (phosphorylation, sumoylation, ubiquitinylation), or sites
of protein/protein interaction (SH3 or SH2 binding muotifs, tyrosine-
based motifs, PDZ domain protein binding sites...), are predicted by
bioinformatics to be present on this protein, mainly at the C-terminal
domain.

A first study by Vadysirisack et al. focused on NIS phosphorylation
[36]. These authors identified five in vivo phosphorylation sites in rat
NIS: the phosphorylation status of S227, which is predicted to be extra-
cellular, is functionally silent, whereas that of S43 and S581 modulates
iodide transport velocity, and that of T577 modulates NIS stability. The
T49 residue seems to be important for protein stability. Marsee et al.,
in 2004, proposed that hsp90 may function as a chaperone for NIS fold-
ing, as it does for a limited number of other integral membrane proteins
[113]. In 2009, Smith et al. showed that PTTG binding factor (a proto-
oncogene implicated in thyroid cancers) binds to NIS and promotes its
intracellular retention [114]. More recently, a study based on a yeast
two-hybrid system unveiled the interaction of NIS with the Rho-
guanine nucleotide-exchange factor, LARG, and its role in the regulation
of cancer cell motility and invasiveness [115]. This interaction is mediat-
ed by the PDZ binding site at the C-terminal extremity of NIS and the
PDZ domain of LARG, however in this case it seems that NIS acts, rather,
as a regulator by preventing the interaction of LARG with the small
GTPase, RhoA. Other studies based on PDZ arrays (manuscript in prepa-
ration) indicate that several proteins containing PDZ domains modulate
NIS targeting. However, more work is clearly needed to obtain a full
picture of all of these interactions.

9. NIS molecular characterization in the future

Little is currently known about the structure of NIS. A first attempt to
investigate this included homology modeling of NIS with the glycerol-3-
phosphate transporter [100] and, more recently, vSGLT structures PDB
ID: 3DH4 [92] or PDB ID: 2XQ2 (our laboratory, Fig. 5) as templates.
However, careful molecular modeling will be essential to fully exploit
the crystallographic data. In particular, molecular dynamic simulations
will be required with the protein inserted in a lipid bilayer, and taking
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into account a probable dimeric assembly of the transporter. The discov-
ery that the structural core of inverted repeats is common with other so-
dium symporters (LeuT, Mhp1 and betP) of different families, and the
fact that they are crystallized in different conformations during the
transport cycle, will add invaluable mechanistic information [70]. The
different proteins are not well conserved outside of their core and it is
known that some of these regions are nonetheless essential for protein
function. For example, loop 13 of SGLT is involved in substrate recogni-
tion [78] but no homologous part can be found in NIS. This region of NIS
corresponding to its C-terminal domain will therefore necessitate ab
initio modeling. In all cases, these homology models will allow a more
targeted mutagenesis of the protein and contribute to a full understand-
ing of the NIS structure/function relationship and transport mechanism.
Another major challenge concerning the molecular characterization
of NIS is to understand the underlying mechanisms of the post-
translational regulation of the protein. Thorough analyses are required
to elucidate the implication of the different amino acid residues and pre-
dicted sites in protein/protein interactions, targeting and transporter
stability. It will also be necessary to explore the role of dimerization
and the potential implication of the C-terminal fragment in NIS function
and regulation [44]. Finally, although a small number of interacting
partners have already been pinpointed ([114,115] and manuscript in
preparation), many still need to be identified in order to understand
the regulation of this essential protein at the molecular level.
Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbamem.2013.08.013.
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