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SUMMARY

RIG-I is a key mediator of antiviral immunity, able to
couple detection of infection by RNA viruses to the
induction of interferons. Natural RIG-I stimulatory
RNAs have variously been proposed to correspond
to virus genomes, virus replication intermediates,
viral transcripts, or self-RNA cleaved by RNase L.
However, the relative contribution of each of these
RNA species to RIG-I activation and interferon induc-
tion in virus-infected cells is not known. Here, we use
three approaches to identify physiological RIG-I
agonists in cells infected with influenza A virus or
Sendai virus. We show that RIG-I agonists are exclu-
sively generated by the process of virus replication
and correspond to full-length virus genomes. There-
fore, nongenomic viral transcripts, short replication
intermediates, and cleaved self-RNA do not con-
tribute substantially to interferon induction in cells
infected with these negative strand RNA viruses.
Rather, single-stranded RNA viral genomes bear-
ing 50-triphosphates constitute the natural RIG-I
agonists that trigger cell-intrinsic innate immune
responses during infection.

INTRODUCTION

Vertebrates possess a variety of defense mechanisms to detect,

contain, and clear viral infections. Chief among these is the inter-

feron (IFN) system, which plays a key role in inducing an antiviral

state and contributes to the subsequent antigen specific adap-

tive immune response (Samuel, 2001). Type I IFNs (IFN-a and

-b, hereafter simply referred to as IFN) and type III IFNs are

induced very rapidly in all cell types by receptors that monitor

the cytosol for the presence of nucleic acids indicative of

virus presence. Such receptors include RIG-I-like receptors

(RLRs) that recognize RNA and are themselves IFN inducible

(Yoneyama and Fujita, 2009). The three members of this
family—RIG-I (retinoic acid-inducible gene I), MDA5 (melanoma

differentiation factor-5) and LGP-2 (laboratory of genetics and

physiology-2)—all contain a DExD/H-box RNA helicase domain.

RIG-I and MDA5 additionally posses two N-terminal caspase

activation and recruitment domains that allow for interaction

with the mitochondrial adaptor protein MAVS (Yoneyama and

Fujita, 2009). MAVS triggers the activation of NF-kB, IRF-3,

and IRF-7, which in turn induce transcription of IFNs and other

innate response genes. Notably, mice deficient in RIG-I, MDA5,

or MAVS readily succumb to infection with RNA viruses, high-

lighting the importance of RLRs in antiviral defense (Gitlin

et al., 2006; Kato et al., 2006; Kumar et al., 2006).

Total RNA extracted from virally infected cells can stimulate

specific RLRs (Hornung et al., 2006; Kato et al., 2008; Pichlmair

et al., 2009). For example, RNA from cells infected with influ-

enza A virus (flu) potently induces IFN-b when transfected into

wild-type or MDA5-deficient, but not RIG-I-deficient mouse

embryonic fibroblasts (Kato et al., 2008). However, the actual

stimulatory RNA molecules within these pools remain largely

unidentified. Instead, RLR agonists have been defined with

chemically or enzymatically synthesized nucleic acids (reviewed

in Schlee et al., 2009a). We and others identified RNAs tran-

scribed in vitro by phage polymerases as potent RIG-I ago-

nists (Hornung et al., 2006; Pichlmair et al., 2006). These

RNAs carry a 50-triphosphate (50-PPP) moiety that is absolutely

required for their activity (Hornung et al., 2006; Pichlmair et al.,

2006). Other synthetic RIG-I agonists lack 50-PPPs. These

include poly I:C, which is prepared by annealing inosine and

cytosine polymers that have monophosphate or diphosphate

50 ends (Grunberg-Manago et al., 1955). Although long poly

I:C activates MDA5 (Gitlin et al., 2006; Kato et al., 2006), short

poly I:C (200–1000 nt) is reported to trigger RIG-I (Kato et al.,

2008). Chemically synthesized RNA oligonucleotides 70 or 25 nt

long and lacking 50-PPPs also trigger RIG-I when annealed to

a complementary strand (Kato et al., 2008; Takahasi et al.,

2008). Thus, data obtained with synthetic RNAs suggest the

possibility that there may be distinct types of RIG-I triggers in

virally infected cells, including RNAs bearing 50-PPPs or not

and composed of either a single strand or two short comple-

mentary RNA strands.
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In addition to synthetic RNAs, some natural RNAs also serve

as RIG-I agonists. For example, RIG-I-dependent IFN produc-

tion can be observed in response to transfection with genomic

RNA from viruses such as flu or rabies virus that bear 50-PPPs

but not genomes of viruses that have no 50-phosphates, such

as encephalomyocarditis virus, or that have a 50-monophos-

phate, such as Hantaan virus, Crimean-Congo hemorrhagic

fever virus, and Borna disease virus (Habjan et al., 2008; Hor-

nung et al., 2006; Pichlmair et al., 2006). This has led to the

hypothesis that, in infected cells, RIG-I may be activated by viral

genomes bearing 50-PPPs. However, transfection of naked viral

RNA does not mimic infection, and viral genomes in infected

cells are in the form of viral ribonucleoprotein particles (vRNPs)

in which viral proteins may prevent access of RIG-I to the RNA.

For example, the flu polymerase binds to the 50 end of the

viral genome and is predicted to obscure the 50-PPP necessary

for RIG-I activation (Fodor et al., 1994; Tiley et al., 1994). Fur-

ther doubt on the notion that RIG-I is primarily activated by

viral genomes has come from reports that measles virus and

Epstein-Barr virus transcripts (Plumet et al., 2007; Samanta

et al., 2006), as well as products of host RNA cleavage by RNase

L bearing 30-monophosphates (Malathi et al., 2007), serve as the

triggers for RIG-I in virally infected cells. Thus, the identification

of natural RNA molecules with the potential to activate RIG-I

has not clarified the identity of the actual RIG-I stimulus respon-

sible for initiating antiviral immunity. As such, there is a pressing

need to study relevant RIG-I agonists isolated from virally in-

fected cells as opposed to characterizing the types of synthetic

or natural RNA that can activate RIG-I in experimental models.

RIG-I is indispensable for IFN responses to negative-strand

RNA viruses, including Sendai virus (SeV) and flu (Kato et al.,

2006). SeV has a nonsegmented genome consisting of a single

RNA molecule and belongs to the paramyxoviridae family. This

virus family includes important human pathogens such as mea-

sles, mumps, and respiratory syncytial virus. Flu is a segmented

RNA virus, and annual flu epidemics result in an estimated

250,000–500,000 deaths worldwide (Kilbourne, 2006). In addi-

tion, the ability of flu to infect different mammalian and avian

species and generate reassortants constantly poses the threat

that a new highly pathogenic virus will emerge, leading to a

pandemic outbreak. Notably, the virulence of some flu strains

is due, at least in part, to a deregulation of the innate immune

response (Maines et al., 2008). Therefore, understanding how

RIG-I becomes activated during infection with flu and other

RNA viruses not only is of basic research interest but may also

allow the development of new ways of containing viral spread

and preventing disease.

Here, we characterize the RNA species responsible for acti-

vating RIG-I in cells infected with flu or SeV. Reconstitution of

flu vRNPs in cell culture showed that only 50-PPP-bearing viral

genomic RNA triggered RIG-I. Furthermore, isolation of RIG-I

complexes from infected cells revealed the presence of full-

length viral genomes that accounted for stimulatory activity.

Taken together, our data show that 50-PPP-bearing viral genomes

rather than short double-stranded RNAs, viral transcripts, or

cleaved self-RNA constitute the physiological source of RIG-I

stimulation and IFN induction during infection with negative-

strand RNA viruses.
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RESULTS

Reconstitution of Influenza A Virus vRNPs Induces
IFN-a/b

To simplify the search for RIG-I agonists in flu-infected cells, we

started with a mock infection system involving reconstitution of

vRNPs (Fodor et al., 2002; Pleschka et al., 1996) (Figure 1A).

We confirmed expression of viral RNA (vRNA), complementary

RNA (cRNA), and messenger RNA (mRNA) in vRNP reconstitu-

tion experiments with each of the eight PR8 genome segments

(Figure S1A available online). We then tested the IFN-inducing

activity of total RNA from vRNP reconstitution experiments in

an IFN-b promoter luciferase reporter assay (Figure 1B). RNA

isolated from nontransfected cells (no TF) or from cells express-

ing the viral polymerase but no genome segment (no template)

did not induce reporter activity (Figure 1B). However, RNA

extracted from cells expressing the wild-type viral polymerase

and any of the eight genome segments was stimulatory (Fig-

ure 1B), as reported for RNA isolated from flu-infected cells

(Kato et al., 2008). Cells expressing a polymerase mutated in

its active site (PB1a) did not accumulate stimulatory RNA (Fig-

ure 1C). In addition, the stimulatory activity of total cellular

RNA from vRNP reconstitutions, like that of in vitro-transcribed

(IVT) RNA, was RIG-I dependent (Figure 1D). The accumulation

of stimulatory RNA in transfected cells was accompanied by

RIG-I-dependent secretion of IFN-a/b into the culture medium,

although this was not always detectable unless the cells were

pretreated with IFN to upregulate RIG-I and downstream media-

tors prior to transfection (Figures 1E and 1F; see below for NS

segment). In sum, like live infection, flu vRNP reconstitution

induces RIG-I-dependent production of IFN and promotes the

accumulation of RIG-I-stimulatory RNA in cells.

Transcription of vRNPs Is Dispensable for IFN Induction
Stimulatory RNA accumulated in reconstitutions with a modified

template (Pleschka et al., 1996) in which the bacterial chloram-

phenicol acetyltransferase gene was flanked by a viral poly-

merase promoter composed of the 50 and 30 noncoding regions

of the NS segment (vCAT, Figure 1C). Therefore, apart from this

short promoter, specific viral sequence elements are not

required for the generation of stimulatory RNA. We next asked

whether transcription and/or replication are necessary. We

used point mutations in the PA subunit of the viral polymerase

that selectively impair one or the other process (Hara et al.,

2006). As shown in Figure 2A, the PA-E410A polymerase (repli-

cation mutant) generated normal amounts of viral mRNA from

an NA template but vRNA and cRNA levels were reduced about

3-fold. This was accompanied by a 3-fold reduction in IFN secre-

tion by the transfected cells and by accumulation of lower

amounts of stimulatory RNA (Figures 2B and 2C). In contrast,

when transcription was selectively abrogated with the PA-

D108A transcription mutant, mRNA production was blocked,

yet we did not see a loss but rather observed an increase in stim-

ulatory RNA accumulation, as well as elevated IFN secretion

(Figure 2). Similar results were obtained when the PB2 genome

segment was used as the template (Figure S2). Therefore, in

vRNP reconstitutions, transcription is dispensable for IFN induc-

tion and for the accumulation of stimulatory RNA, which
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Figure 1. vRNP Reconstitution Induces IFN

(A) Scheme of the vRNP reconstitution system.

Individual segments of the flu genome (vRNAs)

are expressed off a promoter for RNA polymerase

I, which generates uncapped RNA transcripts.

These act as templates for the viral polymerase,

which is expressed, together with the NP protein,

from a different set of plasmids. The viral poly-

merase (i) replicates the negative sense genome

segment via a positive sense cRNA intermediate

(antigenome) and (ii) snatches short stretches of

capped RNA (depicted in gray) from cellular

mRNAs to serve as primers for transcription of viral

mRNA, which is then translated into viral protein.

(B) Each genome segment (PB2, PB1, PA, HA, NP,

NA, M, or NS) was used for the vRNP reconstitu-

tion or the genome segment was omitted (no

template). Two days after transfection, total RNA

was extracted and tested in an IFN-b promoter

luciferase reporter assay. Results were normalized

to a Renilla luciferase control and are shown as

fold increase relative to cells treated with transfec-

tion reagent only. RNA extracted from non-trans-

fected cells (no TF) and IVT-RNA (Neo1–99) were

included as controls.

(C) The bacterial CAT gene was flanked by viral

50 and 30 noncoding sequences (vCAT) and

expressed instead of an authentic viral genome

segment. In one group, pcDNA-PB1 was replaced

by pcDNA-PB1a that encodes a mutant abro-

gating polymerase activity (vCAT/PB1a). Ex-

tracted RNA was tested as in (B).

(D) Mouse embryonic fibroblasts of the indicated

genotype were transfected with 100 ng RNA

extracted from vRNP reconstitutions with the

PB2, NA, or NS genome segment. RNA from

reconstitutions without a genome segment (no

template), RNA from nontransfected cells (no TF),

IVT-RNA (Neo1–99) and poly I:C were included as

controls. After overnight culture, cell culture super-

natants were tested for mouse IFN content.

(E) Supernatants from vRNP reconstitutions were

harvested 2 days after transfection. A bioassay was used to test for the presence of human IFN. Cells were pretreated or not with IFN-A/D (100 units/ml overnight)

prior to transfection.

(F) siRNA targeting RIG-I or a control siRNA (cont.) were cotransfected with the plasmids for vRNP reconstitution. Supernatants were tested as in (E).

Representative examples of three (A–C and E) or two (D and F) independent experiments are shown. (D)–(F) show average values and standard deviation of

triplicate measurements. See also Figures S1 and S7.
correlate instead with the amount of vRNA and cRNA produced

by viral replication.

Full-Length Viral Genomes Bearing 50-PPPs Trigger IFN
Induction in vRNP Reconstitutions
Resistance to DNase and susceptibility to RNase V1+A treat-

ments confirmed that extracted RNA accounted for stimulatory

activity in vRNP reconstitutions (Figure 3A and Figure S3A).Diges-

tion with Terminator (TER), a 50-to-30 exonuclease that degrades

RNA bearing 50-monophosphate, led to disappearance of ribo-

somal RNAs but did not alter the potency of the preparations (Fig-

ure 3A and Figure S3A). In contrast, treatment with calf intestinal

phosphatase (CIP), which removes 50-phosphates, completely

abolished the stimulatory activity (Figure 3A and Figure S3A).

We then determined the size of the stimulatory RNA. RNA from

vRNP reconstitutions using the PB2, NA, or NS segments was
separated into eight fractions of decreasing size by agarose

gel electrophoresis. Nucleic acid was extracted from each frac-

tion and tested in the IFN-b reporter assay. As a control, we frac-

tionated a 99 nt long IVT-RNA and showed that its stimulatory

activity was recovered exclusively in fraction 7, as expected

(Figure 3B and Figure S3B). Notably, stimulatory RNA from

vRNP reconstitutions with PB2, NA, and NS segments was

recovered in fractions 2, 3, and 5/6, respectively, correlating

with the respective size of these segments (2341, 1413, and

890 nt). This observation excludes a dominant role for short

replication intermediates (or small stimulatory RNAs of self

origin), which would elute in fractions 7 or 8 (Figure 3B and Fig-

ure S3B). In sum, RNAs corresponding in size to the viral genome

or antigenome and bearing more than one 50-phosphate account

for the majority of the stimulatory RNA generated during vRNP

reconstitution.
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Figure 2. vRNP Replication but Not Tran-

scription Induces IFN

(A) Cells were pretreated or not with IFN-A/D as in

Figure 1E and used for vRNP reconstitution with

the NA genome segment in conjunction with an

intact viral polymerase (WT), a polymerase lacking

the PA subunit (w/o PA), or with two point mutants,

PA-D108A and PA-E410A. Extracted RNA

was tested by primer extension for NA-cRNA,

-mRNA, and -vRNA. A primer specific for 5S

rRNA was used as a control. Signals were quanti-

fied by phosphoimager, normalized to the 5S rRNA

control, and are expressed relative to WT poly-

merase. A nonspecific band is marked with an

asterisk.

(B) Supernatants from (A) were tested in the human

IFN bioassay.

(C) Total RNA extracted from (A) was tested in the

IFN-b reporter assay.

(A) is representative of two independent experi-

ments, and (B) and (C) of four experiments. (B)

shows average values and standard deviation

of triplicate measurements. See Figure S2 for

equivalent experiments using the PB2 genome

segment.
NS1 Inhibits IFN Induction in vRNP Reconstitutions
and Associates with RIG-I and Stimulatory RNA
The NS segment encodes the viral NS1 and NS2 proteins, the

former of which binds RNA and, in the PR8 strain, acts as an

inhibitor of IFN induction (Gack et al., 2009; Guo et al., 2007;

Mibayashi et al., 2007; Opitz et al., 2007; Pichlmair et al.,

2006). Accordingly, we did not detect secretion of IFN in vRNP

reconstitutions using the NS genome segment (Figure 1E) even

though stimulatory RNA accumulated in these cells (Figure 1B

and Figure S3A). However, when we modified the PR8 NS

genome segment by introducing two point mutations (R38A

and K41A) in the sequence encoding the RNA binding domain

(Donelan et al., 2003), vRNP reconstitution resulted in secretion
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of significant amounts of IFN (Figures S1B–S1E). These results

show that, as expected, NS1 inhibits IFN induction during

vRNP reconstitution.

To explore the possibility that IFN inhibition involves simulta-

neous binding of NS1 to stimulatory RNAs and to RIG-I, we

used a two-step immunoprecipitation approach (Figure S4A).

Lysates from cells expressing NS1 and FLAG-tagged RIG-I

were combined with IVT-RNA, and RIG-I complexes were pre-

cipitated with a-FLAG antibodies. As described (Pichlmair

et al., 2006), wild-type NS1 but not the NS1 R38A/K41A mutant

associated with RIG-I (Figure S4B). Next, native complexes were

eluted using FLAG peptide and were reprecipitated with a-NS1

antibody (Figure S4C). The majority of the stimulatory RNA was
A

3 nt)

NS

(890 nt)

porter assay

6 7 8

bottom

Figure 3. Full-Length Viral Genomes Trigger IFN

Induction in vRNP Reconstitutions

(A) RNA extracted from reconstitutions using the PB2 genome

segment was subjected to CIP, TER, DNase, or RNase A+V1

digestion. Parallel reactions with (+) and without (�) enzyme

were performed and RNAs were analyzed by gel electropho-

resis and ethidium bromide staining (bottom) and in the

IFN-b reporter assay (top). Extracted RNA without any further

treatment was also included (untreated).

(B) RNA extracted from reconstitutions using the PB2, NA, or

NS genome segments was size fractionated on agarose gels

(fractions 1 to 8 from the pockets to the bottom). RNA was

reisolated and tested as in (A). IVT-RNA (Neo1–99) was included

in the fractionation. The length of this RNA and that of the viral

genome segments is given in brackets.

Data are representative of three independent experiments.

See also Figure S3.
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Figure 4. NS1 Associates with the Actual RIG-I Agonist during Flu

Infection

(A) NS1 was immunoprecipitated from total lysate of MDCK cells infected with

PR8 WT flu for 48 hr at a multiplicity of infection (MOI) of 0.01. Nucleic acids

associated with control IgG or NS1 immunoprecipitates (IP) were extracted

and tested in the IFN-b reporter assay. Western blot (WB) shows the presence

of NS1.

(B) Total lysate of MDCK cells infected with flu was subjected to three rounds

of mock or NS1 immunoprecipitation. Nucleic acids were extracted from the

lysate and the depleted fractions and tested as in (A). The depletion of NS1

was monitored by WB.

(C) Mouse NIH 3T3 or human HEK293T cells were cotransfected with the IFN-b

promoter reporter plasmid and siRNAs specific for human or mouse RIG-I. After

48 hr, cells were transfected with the indicated amount of IVT-RNA or NS1-

associated RNA (NS1-IP), and luciferase activity was measured 12 hr later.

(A), (B), and (C) are representative of five, three, and two independent experi-

ments, respectively. See also Figure S4.
retained in the second immunoprecipitation with wild-type

NS1 (Figure S4D), indicating that the viral protein traps stimula-

tory RNA and RIG-I in a trimolecular complex. However, RIG-I

was not necessary for NS1-dependent sequestration of stimula-

tory RNA as the latter still occurred in RIG-I-deficient cells

(Figure S4E).

Association with NS1 Marks the Natural RIG-I Agonist
during Flu Infection
The above experiments suggested that NS1 immunoprecipita-

tion might allow the isolation of RIG-I agonists from flu-infected

cells. Indeed, nucleic acids extracted from NS1 pulldowns from

flu-infected cells potently induced the IFN-b reporter (Figure 4A).

This approach did not require artificial overexpression of any

protein and allowed quantitative recovery of all relevant RIG-I

agonists as evidenced by the fact that it depleted cell lysates

from stimulatory activity (Figure 4B). The stimulatory activity of

NS1-associated RNAs was sensitive to RNase A treatment but

not DNase digestion and was RIG-I dependent as it was greatly

diminished by siRNA depletion of mouse but not human RIG-I in

NIH 3T3 cells and vice versa in HEK293T cells (Figure S4F and

Figure 4C). We conclude that RIG-I agonistic RNAs generated

during flu infection are associated with NS1 and can be purified

from infected cells by NS1 immunoprecipitation.

Flu Genomes Constitute the Physiological RIG-I Agonist
NS1-associated stimulatory activity was sensitive to CIP but not

to TER treatment and encompassed RNA species ranging from

0.5 to 6 kb (Figures 5A and 5B). The phosphatase sensitivity

and size characteristics suggested that stimulatory activity might

be attributable to 50-PPP-containing genomic or antigenomic

RNA segments. Indeed, primer extension analysis revealed

that all eight negative sense genome segments were highly

enriched in the NS1 but not a control immunoprecipitate (Figures

5C and 5D). For example, PB2 vRNA was 21-fold enriched

among NS1 associated RNAs compared to RNA extracted

from the lysate (Figures 5C and 5D). We also detected some viral

cRNA and mRNA in the NS1 precipitate, albeit not for all

segments (Figures 5C and 5D). In northern blots with a full-length

probe for M segment vRNA, the NS1-associated RNA migrated

at around 1000 nt, corresponding to the size of the genome

segment (1027 nt, Figure 5E). Thus, full-length flu genomes are

highly enriched in the NS1-associated RIG-I stimulatory fraction.

To validate these findings by an independent approach, we

generated a cell line expressing FLAG-tagged RIG-I and infected

these cells with PR8 flu or a mutant that does not express the

NS1 protein (DNS1). RIG-I was precipitated with a-FLAG anti-

body, and associated nucleic acids were tested in the IFN-b

promoter reporter assay (Figure 6A). We recovered stimulatory

RNA from the FLAG immunoprecipitation but not from a control

reaction (Figure 6A and Figure S5A). Consistent with the obser-

vations from vRNP reconstitution and NS1 precipitation experi-

ments, RIG-I-associated RNA lost its stimulatory activity after

CIP but not TER treatment (Figure 6B). We characterized RNA

from RIG-I precipitates by three approaches. First, we used

oligonucleotides complementary to the PB2 and NA segments

in primer extension experiments. We found that both vRNAs

and cRNAs were retained specifically in the RIG-I purification,
while contaminating 5S rRNA was detectable in both RIG-I and

control precipitates (Figure 6C). Second, in northern blots for

vRNA of the M segment, the RIG-I-associated RNA migrated

at the size expected for the full-length genome segment

(1027 nt), and we did not detect faster-migrating RNA species

(Figure 6D). Third, the size profile of RIG-I-associated stimulatory
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Figure 5. NS1 Binds 50-PPP Influenza A Virus Genomes and Antigenomes

(A) NS1 associated stimulatory nucleic acid (see Figure 4A) was subjected to CIP or TER treatment and tested in the IFN-b reporter assay.

(B) Size profile of the NS1-associated stimulatory RNA. NS1-associated nucleic acid (see Figure 4A) was resolved by agarose gel electrophoresis. The gel was

cut into seven fractions, and RNA was re-extracted and analyzed as in (A). The relative molecular weight of each fraction in nucleotides (31000) is based on

comparison with an RNA marker.

(C) NS1-associated RNA was immunoprecipitated from infected cells and PB2 mRNA, cRNA, and vRNA as well as 5S rRNA were detected by primer extension.

For all fractions, the same amount of RNA (400 ng) was used.

(D) The primer extension shown in (C) was repeated with oligonucleotides complementary to all other segments and quantified by phosphoimager analysis.

Results are expressed as fold enrichment in the NS1 precipitate compared to input RNA. HA and NS vRNAs and some mRNAs and cRNAs were present in

the NS1 precipitate (denoted by the ‘‘plus’’ sign), but not detectable in the input material, hence fold enrichments could not be calculated.

(E) Northern blot analysis of RNA associated with a-NS1 or control antibody using a full-length, internally labeled probe specific to M-vRNA.

(A)–(E) show representative examples of two independent experiments.
RNA matched the size range of flu genome segments (890–2341

nt) and was not found in smaller fractions (Figure 6E). Thus, direct

RIG-I precipitation reveals only the presence of flu viral genomes

and not other stimulatory nucleic acids in flu-infected cells.

RIG-I Is Triggered by Viral Genomic RNA during Sendai
Virus Infection
To extend our findings to other viruses sensed by RIG-I, we

chose SeV. The SeV genome consists of a single negative sense

50-PPP-bearing RNA molecule 15,384 nt long that serves as
402 Cell 140, 397–408, February 5, 2010 ª2010 Elsevier Inc.
a template for the synthesis of capped mRNAs and 50-PPP anti-

genomes. Unlike flu, SeV makes short (�50 nt long) leader and

trailer 50-PPP RNAs during infection. Thus, in SeV-infected cells,

these RNAs could serve as RIG-I agonists, as proposed for the

related measles virus (Plumet et al., 2007).

Total RNA from SeV-infected cells but not from uninfected

cells potently induced the IFN-b promoter upon transfection

into reporter cells (Figure 7A). As for flu, stimulatory activity

was RIG-I dependent and sensitive to RNase, but not DNase

treatment (Figures S6A and S6B) and was additionally sensitive
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Figure 6. Influenza A Virus Genomes and Antigenomes Trigger IFN Induction during Infection

(A) HEK293 cells expressing FLAG-RIG-I were infected with flu PR8 WT or PR8 DNS1 at an MOI of 1. After 16 hr, RIG-I was precipitated with a-FLAG antibody.

An isotope matched antibody (IgG) was used as a control. RNA extracted from the precipitates was tested in the IFN-b reporter assay (top). The precipitates were

also tested by WB using a-FLAG antibodies (bottom).

(B) RNA associated with FLAG-RIG-I (from PR8 DNS1 infection) was analyzed by CIP and TER treatment and tested as in (A).

(C) Stimulatory RNA in the control and FLAG-RIG-I precipitates was analyzed by primer extension for the presence of PB2 and NA mRNA, cRNA, and vRNA, as

well as 5S rRNA.

(D) Northern blot analysis of RNA bound to FLAG-RIG-I using a full-length probe specific for M-vRNA.

(E) Size profile of the FLAG-RIG-I associated stimulatory RNA (from PR8 DNS1 infection) determined as in Figure 5B.

(A) and (B)–(E) are representative examples of four and two independent experiments, respectively. See also Figures S5 and S7.
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Figure 7. Viral Genomes Constitute the Primary RIG-I Agonist during Sendai Virus Infection

(A) HEK293 cells were infected or not with SeV at an MOI of 5. After 16 hr, RNA was extracted with TRIZOL and tested in the IFN-b reporter assay as in Figure 1B.

(B) Stimulatory RNA extracted from SeV-infected cells was treated with CIP or TER. The minus sign denotes a control reaction without enzyme. Aliquots were

tested as in (A) (top) and by agarose gel electrophoresis and ethidium bromide staining (bottom).

(C) Size profile of stimulatory RNA extracted from SeV-infected cells. RNA from (A) was resolved by agarose gel electrophoresis. The gel was cut into two

fractions, corresponding to RNAs migrating above or below 300 nt by comparison with an RNA marker. RNA was re-extracted and analyzed as in (A). IVT-

RNA (Neo1–99, 99 nt) was included as a control.

(D) HEK293T cells were transfected with plasmids expressing NS1 or NS1-R38A/K41A. After 24 hr, cells were infected with SeV at an MOI of 5. Cell lysates were

prepared 20 hr later, and NS1 was precipitated. The precipitates were analyzed by WB (bottom) and nucleic acids were extracted and tested as in (A) (top).

(E) Transiently transfected HEK293T expressing NS1 were infected with SeV and NS1 was precipitated as in (D). Nucleic acid extracted from the cell lysate (input)

or associated with a-NS1 or IgG control antibodies (IP) was analyzed for the presence of SeV genomic, antigenomic, and messenger RNA and 5S rRNA by primer

extension.

(F) FLAG-RIG-I and FLAG-MDA5 were expressed in HEK293T cells by transient transfection, followed by infection with SeV after 24 hr. Cell lysates were prepared

after 20 hr and RIG-I and MDA5 were precipitated using a-FLAG antibodies. Nucleic acids were extracted from precipitates (IP) and analyzed as in (A) (top panel).

The bottom panel shows a WB using an aliquot of the IP.

(G) Nucleic acids extracted from cell lysates (input) and precipitates (IP) as in Figure 7F were tested by primer extension for SeV genomic RNA and 5S rRNA.

Panels (A), (C), (F), and (G) and panels (B), (D), and (E) are a representative examples of three and two independent experiments, respectively. See also Figures S6

and S7.
to CIP but not TER (Figure 7B). Size fractionation into ‘‘large’’

(>300 nt) and ‘‘small’’ (<300 nt) RNAs showed that stimulatory

RNA from SeV infected cells was ‘‘large,’’ whereas that of

a control 99 nt IVT RNA was ‘‘small’’ (Figure 7C). This excludes
404 Cell 140, 397–408, February 5, 2010 ª2010 Elsevier Inc.
a major role for leader and trailer RNAs in triggering RIG-I and

together with the CIP sensitivity suggests that genomic and/or

antigenomic RNA is the primary RIG-I agonist during SeV

infection.



To capture the physiologically relevant RIG-I agonist during

SeV infection, we again made use of flu NS1, which is able to

inhibit IFN responses to SeV (Wang et al., 2000). As predicted,

WT NS1 but not the NS1 mutant was able to precipitate stimula-

tory RNAs from extracts of transiently transfected cells infected

with SeV (Figure 7D). We next tested by primer extension if

NS1-associated stimulatory RNA contains SeV genomic, antige-

nomic, and/or messenger RNA (Figure S6D). Compared to RNA

extracted from the cell lysate, SeV genomic RNA was enriched

between 6.6- and 11.5-fold in the NS1 precipitate, while the anti-

genome and N-mRNA were not detectable (Figure 7E and

Figure S6C). We validated these results by precipitating FLAG-

RIG-I (or FLAG-MDA5 as a control) from transiently transfected

cells infected with SeV. Stimulatory RNA was recovered only in

the FLAG-RIG-I immunoprecipitation and SeV genomic RNA

was enriched between 7.4- and 17-fold in the RIG-I precipitate

compared to cell lysate (Figures 7F and 7G). Thus, flu NS1 or

RIG-I precipitation selectively enriches for SeV viral genomes.

Taken together with the size characteristics of the stimulatory

RNA and the CIP sensitivity, these observations show that

50-PPP bearing genomic RNA is the main trigger for RIG-I during

SeV infection.
DISCUSSION

Sensing of virus presence and cytokine induction via the RIG-I

pathway are crucial for successful host defense against infec-

tions with RNA viruses (Pichlmair and Reis e Sousa, 2007;

Yoneyama and Fujita, 2009). Although the signaling cascade

from RIG-I to IFN induction is well defined, the identity and prop-

erties of RIG-I agonists and the mechanisms that allow the heli-

case to be activated specifically in infected cells are controver-

sial. Viral genomes, shorter viral transcripts, double-stranded

RNA, or cellular RNA cleaved by RNase L have all been sug-

gested to trigger RIG-I (Habjan et al., 2008; Hausmann et al.,

2008; Hornung et al., 2006; Kato et al., 2008; Malathi et al.,

2007; Pichlmair et al., 2006; Plumet et al., 2007; Ranjith-Kumar

et al., 2009; Samanta et al., 2006; Takahasi et al., 2008). Such

RNAs have been variably defined as containing no phosphates,

50-monophosphates, 50-triphosphates, or 30-monophosphates

(Hornung et al., 2006; Kato et al., 2008; Malathi et al., 2007; Pichl-

mair et al., 2006; Takahasi et al., 2008) and, in some cases, to

require specific structural determinants or sequence motifs

(Marques et al., 2006; Saito et al., 2008; Schlee et al., 2009b;

Schmidt et al., 2009; Uzri and Gehrke, 2009). Most of these

studies, however, have been limited to the analysis of RIG-I acti-

vation by defined RNAs, including synthetic RNAs made by

chemical or enzymatic synthesis or vRNAs isolated from virus

particles. Although such studies have been instrumental in

defining the range of RNAs that can activate RIG-I, they have

fallen short of identifying physiological RIG-I agonists that are

actually responsible for activating RIG-I and triggering IFN

production in virus-infected cells. Here, we analyze the proper-

ties of relevant RIG-I agonists in cells infected with flu or SeV.

Using three complementary approaches, we find that genomic

RNA generated by viral replication constitutes the major trigger

for RIG-I and conclude that viral transcripts, RNase L cleavage
products, and/or other RNA species make only a minor contribu-

tion to cell-intrinsic antiviral innate immunity.

We started with a mock infection system that allows the recon-

stitution of flu vRNP complexes and leads to IFN induction and

accumulation of stimulatory RNA (Figure 1). Using this system,

we found that an artificial genome segment that retains the viral

promoter but otherwise lacks viral sequences behaved similarly

to bona fide flu vRNA segments (Figure 1C). Therefore, RIG-I

activation in this setting is largely sequence independent. This

is in contrast to recent reports suggesting that a polyuridine motif

in the hepatitis C virus 30 untranslated region is required for trig-

gering RIG-I (Saito et al., 2008; Uzri and Gehrke, 2009). Impor-

tantly, those conclusions were based on cellular responses

to transfected IVT-RNAs, whereas the vRNP reconstitution sys-

tem used here allowed us to look at RNAs made endogenously

by the mock-infected cell. Nevertheless, it remains possible

that sequence motifs may facilitate RIG-I activation in some

instances. Indeed, such motifs could contribute to the observed

quantitative differences in accumulation of stimulatory RNA and

IFN secretion depending on which of eight flu genome segments

was used for reconstitution (Figures 1B and 1E). Alternatively,

those differences may be due to the expression of viral proteins

associated with the viral genome (such as the PB2, PB1, PA, NP,

M1, NS1, and NS2 proteins), which may inhibit or facilitate the

access and/or function of RIG-I.

In a particularly striking example of the latter point, the viral

NS1 protein completely blocked IFN induction during vRNP

reconstitution (Figures S1B–S1E). NS1 can interact with RIG-I

(Mibayashi et al., 2007), especially in the presence of stimulatory

RNA through formation of a trimeric complex (Figures S4A–S4D)

(Pichlmair et al., 2006). This activity of NS1 is dependent on the

integrity of the RNA binding domain, which is reported to bind

double-stranded RNA (Hatada and Fukuda, 1992). Interestingly,

recent studies demonstrate that, in addition to the 50-PPP,

synthetic RNAs require base pairing at the 50 end in order to

trigger RIG-I (Schlee et al., 2009b; Schmidt et al., 2009). Such

50 base-paired regions can be found within the genomes of flu

and SeV (Knipe and Howley, 2007). We therefore envisage that

one mechanism of NS1 action may be to bind to the base-paired

region at the 50 end of viral genomes. This does not prevent RIG-I

binding to the 50-PPP via its C-terminal domain (Cui et al., 2008;

Takahasi et al., 2008) but may block translocation along the base

paired stretch, which has been proposed to be necessary for

signaling (Myong et al., 2009). This model (Figure S4G) therefore

suggests that the ability of NS1 to associate with stimulatory

RNAs is due to its propensity to recognize RNA secondary struc-

ture determinants important for RIG-I activation (Schlee et al.,

2009b; Schmidt et al., 2009) and is consistent with the finding

that NS1 binds agonistic RNA in the absence of functional

RIG-I (Figure S4E). This model does not exclude additional

modes of NS1 action, such as inhibition of TRIM25-mediated

RIG-I ubiquitination (Gack et al., 2009).

Given the finding that NS1 associates with stimulatory RNA,

we used it as one of our strategies to purify RIG-I agonists

from infected cells. As a complementary approach, we immuno-

precipitated epitope-tagged RIG-I from infected cells. Both

precipitations enriched for flu and SeV genomic RNAs. Further-

more, NS1- or RIG-I-associated stimulatory RNA matched the
Cell 140, 397–408, February 5, 2010 ª2010 Elsevier Inc. 405



size of vRNA and required 50-phosphates for stimulatory activity.

Thus, viral genomic RNAs represent the major RIG-I agonist in

flu- and SeV-infected cells. Antigenomes, which have an iden-

tical size to the genome and also bear 50-PPP, may also

contribute to IFN induction. Indeed, flu cRNAs were present in

the NS1 and RIG-I immunoprecipitates (Figures 5C, 5D, and

6C). Their contribution, however, is likely to be minor, as cRNA

accumulates to much lower levels compared to vRNA (Robb

et al., 2009) (Figure S1A and Figure 5C).

In contrast to vRNA and cRNA, flu or SeV transcripts do not

appear to trigger RIG-I, based on the size distribution of the stim-

ulatory RNA, the fact that the transcription-defective PA-D108A

mutant flu polymerase was fully capable of inducing IFN in vRNP

reconstitution experiments, and the fact that viral mRNAs, like

cellular mRNAs, are capped. These findings do not exclude

a role for viral transcripts in activating RIG-I in other virus infec-

tions such as measles virus and Epstein-Barr virus (Plumet

et al., 2007; Samanta et al., 2006) as those viruses use mecha-

nisms for transcription that can result in transcripts bearing

50-triphosphates. However, it is worth noting that measles-

related SeV also generates uncapped short 50-triphosphate-

bearing leader and trailer RNA transcripts, yet our size fraction-

ation experiments exclude a role for these short RNAs in RIG-I

stimulation in SeV-infected cells (Figure 7C). We speculate that

leader and trailer RNAs lack a sufficient degree of secondary

structure to potently trigger RIG-I and/or are sequestered by

association with cellular proteins. Similarly, during infection

with another paramyxovirus, respiratory syncytial virus, leader

RNAs do not play an important role in IFN induction (Bitko

et al., 2008). Thus, the ability of a virus to generate uncapped

transcripts during its life cycle does not necessarily mean that

these will act as RIG-I agonists.

Our results also appear to exclude RNase L cleavage products

as major RIG-I agonists during infection with negative-strand

RNA viruses. Such cleavage products have 50-hydroxyl and

30-monophosphate ends and are expected to be shorter than

200 nt (Malathi et al., 2007; Wreschner et al., 1981). Yet we found

that the stimulatory activity of RNA isolated from both vRNP

reconstitutions and infected cells strictly required 50-phosphates

and was longer than 200 nt. It may therefore be the case that

RNase L-cleaved self or viral RNAs are not obligate RIG-I

agonists but primarily serve to amplify RIG-I activation driven

by vRNA. Consistent with such a model, RNase L-deficient

mice show only a 6-fold reduction in serum IFN-b after infection

with SeV (Malathi et al., 2007).

Virus entry into cells can induce innate immune responses in

the absence of replication (Collins et al., 2004) and, in fact,

56�C-inactivated influenza virus was originally used to discover

IFNs (Isaacs and Lindenmann, 1957). In retrospect, the latter

observations may be explained by RIG-I-mediated recognition

of incoming viral genomes delivered by high doses of fusogenic

virus. However, the fact that NS1, a nonstructural protein only

produced after infection, can effectively prevent IFN induction

by flu indicates that the incoming genomes of virus particles

are not the major triggers of RIG-I activation during live infection.

Consistent with that notion, infection in the presence of drugs

that block translation (and, consequently, inhibit the virus life

cycle) prevents accumulation of stimulatory RNA in the cyto-
406 Cell 140, 397–408, February 5, 2010 ª2010 Elsevier Inc.
plasm of flu-infected cells (Figure S7A). Therefore, we believe

that progeny genomes are the likely source of RIG-I stimulatory

activity. However, flu replication is confined to the nucleus (Jack-

son et al., 1982; Krug et al., 1987), raising the question of how

progeny viral genomic RNA is sensed in the cytoplasmic

compartment monitored by RIG-I. It is clear that progeny

genomes traverse the cytoplasm for assembly of new virions,

but these genomes are bound at the ends by the flu polymerase

and along their length by the NP protein. For RIG-I to interact with

the genome and the critical 50-PPP moiety, these viral proteins

need either to be displaced or to dissociate from the vRNA.

The former process could be facilitated by the ATP-driven heli-

case activity of RIG-I (Takahasi et al., 2008), whereas the latter

may occur naturally as part of an equilibrium reaction. Indeed,

viral RNA within vRNPs is accessible to nucleases (Duesberg,

1969) and might therefore also permit RIG-I docking, at least

for a fraction of the estimated 100,000 viral genome segments

present within an infected cell.

Here, we report that viral genomes are the major trigger for

RIG-I in cells infected with negative-sense single-stranded

RNA viruses. Our findings confirm earlier suggestions that single

stranded RNAs bearing 50-PPPs constitute effective agonists for

RIG-I (Hornung et al., 2006; Pichlmair et al., 2006). It is worth

noting that single-strandedness does not mean absence of

base pairing. Flu genome segments and SeV genomic RNA

adopt a ‘‘panhandle’’ conformation by pairing of complementary

50 and 30 ends (Knipe and Howley, 2007). Interestingly, Myong

et al. showed that RIG-I translocates on synthetic double-

stranded RNA molecules and that this movement is enhanced

the presence of 50-PPP (Myong et al., 2009). Notably, treatment

of the stimulatory RNAs studied here with the double-stranded

RNA specific nuclease RNase III abolishes RIG-I stimulatory

activity (Figure S7B), which indicates that these RNAs contain

base-paired regions. Therefore, we envisage that base-pairing

within the ‘‘panhandle’’ structure of single-stranded flu and

SeV genomic RNAs acts in cooperation with the presence of

50-PPP to allow for potent RIG-I activation (Pichlmair et al.,

2006). This model is likely to apply to other viruses sensed by

RIG-I as panhandle structures are found in many single stranded

RNA virus genomes (Schlee et al., 2009b). Thus, RIG-I integrates

RNA secondary structure determinants and the presence of a

50-PPP to effectively discriminate viral genomes from self-RNA.

EXPERIMENTAL PROCEDURES

Reconstitution of Flu vRNPs

One million HEK293T cells were transiently transfected using lipofectamine

2000 (Invitrogen) with 1 mg each of pcDNA-PB2, -PB1, -PA, and -NP (all from

the flu WSN strain) and a pPOLI construct expressing a flu genome segment

(derived from the flu A/PR/8/34 [PR8] strain). Two days after transfection,

cell culture supernatants were collected and total RNA was extracted with

TRIZOL (Invitrogen).

RNA Analysis

CIP (New England Biolabs), TER (Epicenter Biotechnologies), RQ1 DNase

(Promega), and RNase V1 (Ambion) combined with RNase A (Sigma) or RNase

III (Ambion) were used according to manufacturer recommendations. A control

reaction omitting the enzyme was carried out in parallel. RNA was recovered

by extraction with phenol:chloroform:isoamylalcohol (25:24:1), followed by

chloroform extraction and precipitation with ethanol and sodium acetate in



the presence of glycogen. For size fractionation, RNAs were separated on

0.75% TBE-agarose gels at 70 V for 3 hr. Gels were cut into slices (including

the well and bottom of the gel) and RNA was recovered from gel pieces with

Quantum Prep Freeze N Squeeze Spin Columns (Bio-Rad) and precipitation

(as above). Primer extension and northern blot assays are described in the

Extended Experimental Procedures. Oligonucleotide sequences are given in

Table S1.

Immunoprecipitation from Virally Infected Cells

Lysates from cells infected with flu PR8, flu PR8 DNS1, or SeV were used for

immunoprecipitation as detailed in the Extended Experimental Procedures.

Aliquots of the beads were boiled in SDS sample buffer for western blot anal-

ysis or RNA was recovered from the beads by extraction and precipitation as

described above.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and one table and can be found with this article online at doi:10.1016/j.

cell.2010.01.020.
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