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SUMMARY

Skeletal muscles adapt to increasing workload by
augmenting their fiber size, through mechanisms
that are poorly understood. This study identifies the
cytokine interleukin-6 (IL-6) as an essential regulator
of satellite cell (muscle stem cell)-mediated hypertro-
phic muscle growth. IL-6 is locally and transiently
produced by growing myofibers and associated sat-
ellite cells, and genetic loss of IL-6 blunted muscle
hypertrophy in vivo. IL-6 deficiency abrogated satel-
lite cell proliferation and myonuclear accretion in the
preexisting myofiber by impairing STAT3 activation
and expression of its target gene cyclin D1. The
growth defect was indeed muscle cell intrinsic, since
IL-6 loss also affected satellite cell behavior in vitro,
in a STAT3-dependent manner. Myotube-produced
IL-6 further stimulated cell proliferation in a paracrine
fashion. These findings unveil a role for IL-6 in hyper-
trophic muscle growth and provide mechanistic
evidence for the contribution of satellite cells to this
process.

INTRODUCTION

Loss of muscle mass occurs in multiple settings, including can-

cer, AIDS, cachexia, and neuromuscular disorders, as well as

during aging, remaining an important factor contributing to mor-

bidity. Understanding the molecular pathways that regulate gain

or loss of muscle mass is therefore crucial for treating muscle

wasting-associated disorders. Positive modulation of skeletal

muscle mass in response to increased workload results in hyper-

trophy of individual myofibers, but the key molecular mediators

of this process are only beginning to be clarified (Glass, 2005).

Mounting evidence indicates that the endogenous adaptive

growth capacity of mature myofibers is limited to a certain thresh-

old due to the necessity of maintaining equilibrium between the

increased cytoplasmic volume and the genetic machinery. Be-

cause multinucleated myofibers are permanently differentiated

and are incapable of mitotic activity, the acquisition of new ge-

netic material during postnatal muscle growth relies on accretion

of new nuclei provided by a population of self-renewing muscle
stem cells named satellite cells (Adams, 2006; Dhawan and

Rando, 2005). Satellite cells, located in the muscle basal laminae,

are quiescent but become activated to meet myofiber adaptive

requirements. Indeed, if satellite cells’ dividing capacity is ab-

lated by local irradiation, increases in myonuclear number and

full fiber hypertrophy do not occur in response to increased mus-

cle loading (Adams et al., 2002; Rosenblatt and Parry, 1992;

Rosenblatt et al., 1994). Once activated, satellite cells follow an

ordered set of events, including proliferation, migration, and in-

corporation into the adult overloaded myofiber, leading to myo-

fiber growth, in a process that can be partially recapitulated in

vitro. In this context, although a number of secreted molecules

have been implicated in the modulation of satellite cell behavior

in vitro and ex vivo, the molecules controlling myonuclear accre-

tion in the myofiber during the growth process in vivo remain

basically unknown. Notably, autocrine/paracrine loops involving

IGF-1 (insulin-like growth factor 1) are able to induce myofiber

hypertrophy by activating PI3K (phosphatidylinositol 3-kinase)/

AKT-dependent pathways (Bodine et al., 2001; Glass, 2005).

The muscle-secreted cytokine interleukin-4 (IL-4) has been

shown to promote muscle regeneration, a process which in-

volves de novo myofiber formation, by specifically stimulating

the fusion of myoblasts with myotubes (Horsley et al., 2003).

Interleukin-6 (IL-6) is a pleiotropic cytokine associated with

the control and coordination of immune responses (Kishimoto,

2005). In addition to the classical cell types known to produce

IL-6 (Kamimura et al., 2003), increasing evidence indicates that

skeletal muscle cells are a further important source of IL-6 (His-

cock et al., 2004; Keller et al., 2001; Penkowa et al., 2003). In vitro

studies have confirmed that IL-6 is produced by human primary

myoblasts and murine C2C12 myogenic cells (Bartoccioni et al.,

1994; De Rossi et al., 2000). Significantly, we have previously

demonstrated that IL-6 mRNA knockdown reduces muscle-spe-

cific gene expression in cultured C2C12 myoblasts (Baeza-Raja

and Munoz-Canoves, 2004), suggesting a potential myogenic

role for this cytokine. Since IL-6 is detected locally at elevated

concentrations in actively contracting muscle fibers and after

increased workload (Carson et al., 2002; Hiscock et al., 2004;

Jonsdottir et al., 2000; Keller et al., 2001; Penkowa et al.,

2003), both of which are known to induce satellite cell activities

and stimulate an increase in muscle mass, we hypothesized

a role for this cytokine in adult muscle growth. In this study, we

first analyzed potential differences in growth capacity between

muscles of IL-6+/+ (wild-type, WT) and IL-6�/� (IL-6-deficient)
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Figure 1. IL-6 Expression Is Induced during

Hypertrophic Muscle Growth

Plantaris muscles from wild-type (WT) and IL-6�/�

mice were obtained before surgery from nonover-

loaded controls (C) and after the indicated number

of days of compensatory hypertrophy (CH).

(A) Top: IL-6 expression was analyzed by RT-PCR.

Gapdh expression was used as a control. Bottom:

IL-6 protein expression was analyzed by ELISA.

Concentration (mean ± SD) is expressed as

ng/mg of total muscle protein extract.

(B) Representative images of plantaris muscle

sections stained with hematoxylin and eosin from

WT and IL-6�/� mice before (C) and after 3 and

14 days of CH. Scale bar = 50 mm.

(C) Top: immunostaining for IL-6 expression be-

fore (C) and after 3 days of CH in muscles from

WT and IL-6�/�mice. Scale bar = 50 mm. Bottom:

double immunolabeling for Pax7 (green) and IL-6

(red) in plantaris muscle sections after 3 days of

CH. Arrows indicate Pax7-expressing cells. Scale

bar = 20 mm.

(D) Mean cross-sectional area (CSA) of muscle

fibers before (C) and after 14 and 42 days of CH

in WT and IL-6�/� mice. Data are mean ± SEM.

*p < 0.05 versus C.

tinued to be elevated after 3 and 14 days,

decreasing thereafter (Figure 1A). Con-

firming the expected induction of muscle

growth in this model, a significant in-

crease in myofiber cross-sectional area

(CSA) of the plantaris muscle was readily

observed in comparison to control nono-

verloaded muscles 14 days after over-

loading (Figure 1B, see WT panel). Next,

we investigated the specific cellular

source of IL-6 in skeletal muscle by immu-

nohistochemistry. After overloading, IL-6
mice after increasing mechanical load. Second, by using satellite

cells derived from both WT and IL-6�/� muscles, we compara-

tively investigated their functional properties in response to

IL-6. Based on our results, IL-6 emerges as an important mole-

cule for muscle hypertrophy by controlling satellite cell prolifera-

tion and myonuclear accretion. Moreover, we uncover a role for

the STAT3 activation pathway in mediating these effects.

RESULTS

IL-6 Deficiency Blunts Hypertrophic Muscle Growth
To investigate the putative role of IL-6 in skeletal muscle growth,

we induced functional overloading of the mouse plantaris muscle

by incapacitation of the gastrocnemius muscle and examined

IL-6 expression during the process of compensatory hypertro-

phy (CH) of the plantaris at different time points. In nonoverloaded

control muscles, IL-6 expression was almost undetectable at

the mRNA and protein levels in the basal state (Figure 1A). In

contrast, IL-6 expression was induced after 1 day of CH and con-
expression was clearly associated with both hypertrophying my-

ofibers and mononucleated interstitial cells, including basal

membrane-associated satellite cells, as shown by double label-

ing with specific antibodies for IL-6 and Pax7 (a satellite cell-spe-

cific marker) (Figure 1C). As a control, no IL-6 expression was

detected in overloaded plantaris muscles from IL-6�/�mice (Fig-

ure 1C). Altogether, these results demonstrate a muscle-specific

induction of IL-6 during hypertrophic growth.

To investigate the relevance of IL-6 in this process, we as-

sessed potential differences in muscle growth between IL-6�/�

and WT mice after overloading by morphometric analyses. Com-

pared to WT mice, no significant increase in myofiber CSA was

observed in IL-6�/� mice at 14 and 42 days after overloading

(Figure 1D), indicating that IL-6 is necessary for myofiber hyper-

trophic growth. However, loss of IL-6 did not affect the baseline

CSA of nonoverloaded plantaris myofibers (Figure 1D) or myo-

fiber number (WT, 795 ± 132; IL-6�/�, 751 ± 43; mean ± SD,

p > 0.05), indicating that IL-6 is not required for muscle formation

or basal maintenance of myofiber size.
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Figure 2. Myonuclear Accretion during Muscle Compensa-

tory Hypertrophy Is Attenuated in IL-6�/� Mice

Plantaris muscles were obtained from WT and IL-6�/�mice before and

after the indicated number of days of CH.

(A) Phosphorylated AKT, total AKT protein, and phosphorylated

p70S6K were analyzed by western blotting using specific antibodies.

Ponceau red was used as a loading control.

(B) Top: representative immunostaining for dystrophin (red) and nu-

clear staining with DAPI (blue) to illustrate myonuclear number assay.

Scale bar = 20 mm. Bottom left: numbers of DAPI-stained nuclei within

the dystrophin-positive sarcolemma were counted before (C) and after

14 and 42 days of CH and are expressed per 100 myofibers. Bottom

right: the cytoplasm/nucleus ratio before and after muscle overloading

is expressed as the number of DAPI-stained nuclei within the dystro-

phin-positive sarcolemma per mm2. Data are mean ± SD. *p < 0.05

versus C.

(C) Left: Pax7 mRNA expression was analyzed by RT-PCR in control

plantaris muscles from WT and IL-6�/� mice. Gapdh mRNA expres-

sion was used as a control. Right: identification of satellite cells by

Pax7 immunostaining (arrow) in control plantaris muscles. Scale

bar = 20 mm.

paired increase in CSA of IL-6�/� myofibers results from

defects in satellite cell-derived myonuclear accretion in

the preexisting myofiber. Of note, the cytoplasm/nucleus

ratio (expressed as myonuclei/mm2) did not change sig-

nificantly throughout the hypertrophic process (Figure 2B).

In addition, no differences in satellite cell number at mus-

cle basal state (as determined by quantification of Pax7-

positive cells) were found between WT and IL-6�/� mice

(satellite cells/100 fibers: WT, 2.27 ± 0,41; IL-6�/�,

3.17 ± 0.06; mean ± SEM, p > 0.05). In agreement with

this, Pax7 mRNA expression in control muscles from

both genotypes was also similar (Figure 2C). These data

provide direct in vivo evidence for the function of mus-

cle-produced IL-6 in the myonuclear accretion occurring

during myofiber hypertrophy.
Reduced Myonuclear Numbers
in Overloaded IL-6-Deficient Myofibers
Since hypertrophic muscle growth is known to be regulated by

protein synthesis pathways, such as the PI3K/AKT pathway

(Glass, 2005), we comparatively analyzed the activation of AKT

and its downstream mediator p70S6K in WT and IL-6�/�muscles

at different time points during CH. As expected, both AKT ex-

pression and activation levels were induced during CH (Fig-

ure 2A); likewise, p70S6K was also activated during CH (Bodine

et al., 2001) (Figure 2A). Notably, no differences in activated

AKT and p70S6K were observed between overloaded muscles

from WT and IL-6�/� mice, indicating that IL-6 is not required

for the activation of the protein synthesis- and growth-associ-

ated PI3K/AKT pathway during CH and suggesting that IL-6

might affect satellite cell incorporation into hypertrophying myo-

fibers. To this end, myonuclear number was assessed in control

and overloaded WT and IL-6�/� plantaris muscle by determining

the number of DAPI-stained nuclei within the dystrophin-stained

sarcolemma (Figure 2B, top). A 40% increase in myonuclei num-

ber was observed in WT plantaris muscles at 14 days of CH and

was maintained at 42 days, while no significant increase was ob-

served in IL-6�/� muscles (Figure 2B), suggesting that the im-
IL-6 Loss Reduces Satellite Cell Proliferation
Since activation of satellite cells and their subsequent prolifera-

tion are necessary steps prior to the ultimate addition of myonu-

clei to growing myofibers (Darr and Schultz, 1989; Rosenblatt

and Parry, 1993) and since local IL-6 induction occurred soon

after overloading (at 1–3 days) (Figure 1A), we postulated that

the reduced myonuclear number and CSA of IL-6�/� myofibers

might result from defects at the early myogenic stages of the

CH process in the absence of IL-6. To analyze the consequences

of IL-6 loss on satellite cell activation and proliferation in vivo,

we quantified the number of satellite cells expressing MyoD

(a marker of activated satellite cells) and phosphorylated histone

H3 (p-H3) (a marker of cells in S phase) in WT and IL-6�/� mus-

cles 3 days after overloading. In basal conditions, the number of

quiescent satellite cells was similar in both genotypes (see

above), while no expression of MyoD was detected in WT or

IL-6�/� muscles (data not shown). Muscle overloading induced

the activation of satellite cells, as detected by the induced ex-

pression of MyoD with respect to control muscles, to a similar

extent in both genotypes (Figure 3A). However, the number of

cells double-positive for MyoD and p-H3 was severely reduced

in IL-6�/� overloaded muscles (Figure 3B). Confirming the
ll Metabolism 7, 33–44, January 2008 ª2008 Elsevier Inc. 35
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Figure 3. Loss of IL-6 Reduces Satellite Cell

Proliferation after Muscle Overloading

Sections of plantaris muscles obtained from WT

and IL-6�/�mice 3 days after overloading were im-

munostained with antibodies against MyoD and

phosphorylated histone H3 (p-H3). Nuclei were

detected with DAPI.

(A) Quantification of the number of MyoD-positive

cells per mm2. Data are mean ± SD.

(B) Top: double immunostaining for MyoD (green)

and p-H3 (red) in muscle sections. Scale bar =

20 mm. Bottom: percentage of total MyoD-positive

cells coexpressing p-H3 in both genotypes. Ar-

rows indicate MyoD-positive cells. Data are

mean ± SD.

(C) Top: double immunostaining for BrdU (red) and

dystrophin (green) and nuclear staining with DAPI

(blue) in muscle sections from WT and IL-6�/�

mice before (C) and after 3 days of CH. Middle:

higher magnification of BrdU and dystrophin im-

munostaining is shown. Bottom: BrdU-positive

cells per mm2 were quantified in WT and IL-6�/�

plantaris muscle sections after 3 days of CH. Scale

bar = 20 mm. Data are mean ± SEM.

*p < 0.05 versus WT.

myotubes in vitro (see Figures S1A and

S1B available online), in agreement with

the in vivo expression in satellite cells

and growing myofibers (Figure 1C). Since

no clear evidence for the presence of the

IL-6 receptor complex in muscle cells has

yet been provided, we investigated the

expression of the IL-6 receptor complex

components gp130 and IL-6Ra in muscle

cells. Indeed, transcripts of both compo-

nents as well as membrane-bound IL-

6Ra protein were expressed in primary

and C2C12 muscle cells (Figures S1C–

S1E). Interestingly, IL-6 loss did not affect

the expression of IL-6Ra in IL-6-deficient

cells (Figures S1E and S1F). Furthermore,
defective proliferation in the absence of IL-6, bromodeoxyuridine

(BrdU) administration to IL-6�/� and WT mice after overloading

showed cells in S phase (BrdU+) outside of the dystrophin outline

in plantaris muscle of both WT and IL-6�/� mice at 3 days after

overloading, but not in control nonoverloaded muscles; notably,

the number of BrdU-positive cells was strongly reduced in the

absence of IL-6 after CH (Figure 3C). Together, these data dem-

onstrate that IL-6 is dispensable for satellite cell activation but is

critical for satellite cell proliferation during CH; hence, the im-

paired proliferation in the absence of IL-6 may impede new

myonuclear accretion in growing myofibers.

IL-6 Regulates Myoblast Proliferation and Migration
To further investigate whether the in vivo growth defects in the

absence of IL-6 are muscle cell intrinsic, we examined satellite

cell-derived primary myoblast functions in vitro. RT-PCR and

ELISA analyses showed that IL-6 transcript and protein were

expressed by proliferating primary myoblasts and by growing

36 Cell Metabolism 7, 33–44, January 2008 ª2008 Elsevier Inc.
IL-6Ra was also detected in plantaris muscle membrane ex-

tracts (Figure S1G). Additionally, we demonstrate that shedding

of the receptor, which has been reported in other cell types

(Rose-John, 2003), also occurs in muscle cells. Indeed, western

blotting analysis of primary and C2C12 myoblast cell culture me-

dia and plantaris muscle extracts revealed the presence of the

soluble 50 kDa IL-6Ra (sIL-6Ra) (Figures S1H and S1I). Thus,

IL-6 may signal in muscle cells through both the cell-surface-

associated and soluble forms of IL-6Ra.

Based on the synthesis of IL-6 by both satellite cells and grow-

ing myofibers in vivo, we hypothesized potential autocrine and/

or paracrine actions of IL-6 on satellite cell proliferation. To ad-

dress the autocrine role of IL-6, we analyzed the differences in

proliferation rates between WT and IL-6�/� myoblasts by deter-

mining the incorporation of BrdU. IL-6�/� cells exhibited an

�50% reduction in the rate of proliferation compared to WT cells

(Figure 4A); importantly, the proliferation deficit was rescued by

addition of recombinant IL-6 (rIL-6). This result argued against
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a possible nonspecific effect derived from the deletion of the IL-6

gene in myoblasts. Furthermore, C2C12 myoblasts stably ex-

pressing IL-6 (C2/IL-6) also exhibited a higher proliferation rate

than mock-transfected C2C12 cells (Figure S2A). The potential

paracrine action of growing myofiber-produced IL-6 on satellite

cell proliferation was addressed in vitro by determining the BrdU

incorporation rate of IL-6�/� myoblasts in response to condi-

tioned medium (CM) from WT and IL-6�/� growing myotubes.

CM from IL-6�/� myotubes stimulated myoblast proliferation to

a lesser extent than CM from WT myotubes (Figure 4B). Thus,

IL-6 is necessary for adequate myoblast proliferation in vitro, in

agreement with the in vivo proliferation defect observed in over-

loaded muscles of IL-6-deficient mice. Moreover, these findings

underscore the contribution of both myoblast- and myofiber-

produced IL-6 to the proliferation of muscle cells during the

growth process.

Proliferating satellite cells must migrate and establish stable

cell-fiber contacts for accretion of myonuclei. Thus, we analyzed

the contribution of IL-6 to myoblast migration by using standard

transwell migration assays. As shown in Figure S3A, migration of

primary myoblasts from IL-6�/�mice was reduced compared to

WT cells, while supplementation with rIL-6 rescued this defect.

The extent of migration was also higher in C2/IL-6 myoblasts

compared to C2C12 control cells (Figure S3B). Moreover, CM

from WT myotubes stimulated the migration of WT or IL-6�/�

myoblasts to a greater extent than IL-6�/� myotube CM (Fig-

Figure 4. IL-6 Is Necessary for Myoblast Proliferation

Satellite cell-derived primary myoblasts from WT and IL-6�/� mice were ana-

lyzed.

(A) Percentage of BrdU-positive cells in WT and IL-6�/� primary myoblasts

treated without (left two columns) or with (right two columns) rIL-6. *p < 0.05

versus untreated WT.

(B) Relative proliferation rates of WT and IL-6�/�myoblasts in the presence of

conditioned medium (CM) from WT or IL-6�/� myotubes, expressed as prolif-

eration rate with respect to each cell type in the presence of nonconditioned

medium, which was arbitrarily given a value of 1. *p < 0.05 versus control.

Data are mean ± SD.
ure S3C). These in vitro results support the idea that migratory

defects of myoblasts in the absence of IL-6 may also contribute

to the reduced myonuclear number and size of overloaded fibers

in IL-6-deficient mice.

Role of STAT3 in IL-6-Induced Myoblast
Proliferation and Migration
To gain mechanistic insights into how IL-6 controls myoblast

functions, we first examined potential differences in the activa-

tion of IL-6-responsive signaling pathways in WT and IL-6�/�

myoblasts. ERK and PI3K/AKT pathways have been previously

implicated in myogenesis (Forcales and Puri, 2005; Mourkioti

and Rosenthal, 2005), and both pathways can be activated by

IL-6 in certain cell types (Ernst and Jenkins, 2004). On the other

hand, the JAK/STAT3 pathway is a major route activated by IL-6,

especially in inflammatory cells (Kamimura et al., 2003), although

its implication in myogenesis has remained unclear. We there-

fore analyzed the activation of these three pathways in myo-

blasts expressing or lacking IL-6 using anti-phosphospecific

antibodies for the activated forms of ERK, AKT, and STAT3, re-

spectively. The levels of activated STAT3 were much lower in

IL-6�/� myoblasts than in WT cells, and, importantly, they were

rescued by exogenous rIL-6 (Figure 5A), indicating a muscle-

intrinsic modulation of STAT3 activity by IL-6. Addition of rIL-6

(Figure 5A) or CM from WT myotubes (data not shown) further in-

creased the activation of STAT3 in WT myoblasts, supporting the

idea of a paracrine action of IL-6 in myoblast signaling via STAT3.

At variance with these results, no significant differences in ERK

and AKT activation were detected between cells expressing or

lacking IL-6 or in response to exogenous IL-6 (Figure 5A). These

results suggested that the activation of STAT3—rather than

activation of AKT and ERK—by IL-6 could underlie its control

of myoblast proliferation and migration.

To test this possibility, WT myoblasts were cultured in the

absence or presence of AG490, an inhibitor of the JAK/STAT3

pathway, and wortmannin, an inhibitor of the PI3K/AKT pathway

(used as a negative control) (Figure S4), and cell proliferation and

migration rates were determined. The effects of both inhibitors

on exogenous IL-6-induced myoblast proliferation and migration

were also examined in parallel assays. AG490, but not wortman-

nin, blocked myoblast proliferation and migration both in WT

myoblasts and in rIL-6-treated WT and IL-6�/� myoblasts (Fig-

ure 5B; Figure S4B); also, the effect of WT myotube CM on myo-

blast proliferation and migration was blunted by AG490, but not

by wortmannin (Figure 5C; Figure S4C), suggesting that STAT3

activation is a major contributor to the autocrine and paracrine

effects of IL-6 on myoblast proliferation and migration.

To confirm the direct and specific role of STAT3 activation in

these IL-6-mediated processes, we used two independent ap-

proaches consisting of retroviral overexpression of a domi-

nant-negative form of STAT3 (STAT3D) and cell treatment with

a specific inhibitory peptide for STAT3 dimerization (STAT3pi)

(Turkson et al., 2001). Both STAT3D and STAT3pi reduced the

proliferation and migration of WT myoblasts and of IL-6�/�myo-

blasts treated with rIL-6 or with CM from WT myotubes (Figures

5D and 5E; Figures S4D–S4G). Thus, if STAT3 mediates the IL-6

effect on myoblast proliferation, the ectopic expression of a con-

stitutively active form of STAT3 (STAT3C) should be sufficient to

rescue the proliferation and migration defect of myoblasts

Cell Metabolism 7, 33–44, January 2008 ª2008 Elsevier Inc. 37
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Figure 5. Reduced Activation of the STAT3

Pathway Underlies the Proliferation Defect

of Myoblasts in the Absence of IL-6

(A) Activation of the STAT3, AKT, and ERK signal-

ing pathways was analyzed in WT and IL-6�/� pri-

mary myoblasts, treated with or without rIL-6, by

western blotting using specific antibodies against

their phosphorylated forms.

(B) Percentage of BrdU-positive WT and IL-6�/�

primary myoblasts treated with or without rIL-6 in

the absence or presence of AG490 and wortman-

nin as indicated.

(C) Relative proliferation rates of WT and IL-6�/�

myoblasts in the presence of CM from WT or

IL-6�/� myotubes, treated with or without AG490

and wortmannin where indicated, and expressed

as proliferation rate with respect to each cell

type in the presence of nonconditioned medium,

which was arbitrarily given a value of 1.

(D) Percentage of BrdU-positive WT and IL-6�/�

primary myoblasts treated with or without rIL-6 in

the absence or presence of a STAT3 inhibitor pep-

tide (STAT3pi) as indicated.

(E) Relative proliferation rates of WT and IL-6�/�

myoblasts in the presence of CM from WT myo-

tubes, treated with or without STAT3pi where indi-

cated, and expressed as proliferation rate with re-

spect to each cell type in the presence of

nonconditioned medium, which was arbitrarily

given a value of 1.

(F) Percentage of BrdU-positive WT and IL-6�/�

primary myoblasts treated with or without rIL-6

(left) or with CM from WT myotubes (right) in the

presence of a retroviral vector encoding a constitu-

tively active (MSCV-STAT3C) or negative (MSCV-

STAT3D) form of STAT3. Empty vector (MSCV)

was used as a control.

Data in (B)–(F) are mean ± SD. *p < 0.05 versus

control WT in (B), (D), and left panel of (F); *p <

0.05 versus each cell type in (C), (E), and right

panel of (F).
lacking IL-6. Indeed, retroviral expression of STAT3C in IL-6�/�

myoblasts restored their proliferation and migration rates to

levels similar to those of WT cells (Figure 5F; Figures S4F and

S4G). Moreover, the proliferation and migration of WT myoblasts

were further enhanced by STAT3C (Figure 5F; Figure S4F). These

results demonstrate that IL-6 produced by myoblasts or myo-

tubes induces activation of STAT3, which is then required for

efficient myoblast proliferation and migration.

IL-6 and STAT3 Control Myoblast
Proliferation Gene Expression
Since STAT3 binding sites have been described in the promoters

of myoblast proliferation-associated cyclin D1 (Ccnd1) and

c-myc genes (Endo and Nadal-Ginard, 1986; Kiuchi et al.,

1999; Masuda et al., 2002; Wei and Paterson, 2001), we postu-

lated that their expression in myoblasts could be modulated by

38 Cell Metabolism 7, 33–44, January 2008 ª2008 Elsevier Inc.
IL-6. RT-PCR analysis showed that cyclin D1 and c-myc levels

were reduced in myoblasts lacking IL-6 compared to WT myo-

blasts, and importantly, their levels were rescued by addition

of rIL-6 (Figure S5A) or CM from WT myotubes (data not shown).

To confirm that STAT3 activation specifically mediated the IL-6-

induced expression of these genes in proliferating myoblasts, we

analyzed their transcript levels in the presence or absence of

STAT3-specific inhibitors and activators. Retroviral delivery of

STAT3D and treatment with STAT3pi or AG490 reduced the ex-

pression of cyclin D1 and c-myc both in WT myoblasts and in rIL-

6-treated IL-6�/�myoblasts (Figures S5B and S5C); conversely,

infection of IL-6-deficient myoblasts with STAT3C rescued the

lower expression of both genes (Figure S5C). No effect was ob-

served by addition of wortmannin (Figure S5B). Thus, IL-6 is nec-

essary for myoblast proliferation via activation of the STAT3

pathway, which in turn controls the expression of key cell
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proliferation regulators such as cyclin D1 and c-myc. The expres-

sion of myoblast migration-associated gene products such as

the uPA receptor, uPAR (Plaur), and fibronectin (Fn1), whose

promoters harbor STAT3 binding sites and/or are regulated by

IL-6 (Birchmeier and Brohmann, 2000; Bonavaud et al., 1997;

Turner et al., 1983; Wells and Strickland, 1997), was also re-

duced in IL-6-deficient myoblasts compared to WT myoblasts

and was upregulated by the addition of rIL-6 (Figure S5D), sug-

gesting that their reduced expression may underlie, at least in

part, the migration defect of myoblasts lacking IL-6.

The IL-6/STAT3 Axis Regulates Satellite Cell Response
to Muscle Overloading
Based on the defective satellite cell proliferation after muscle

overloading in IL-6-deficient mice (see Figure 3B), we aimed to

confirm the relevance of the IL-6/STAT3 axis in the proliferation

of satellite cells during compensatory muscle growth. To this

end, we analyzed STAT3 activation in overloaded muscles of

WT and IL-6�/�mice using both western blotting and immunohis-

tochemical approaches. STAT3 expression and activation levels

were induced during CH in both genotypes as reflected by immu-

noblotting assays (Figure S6A). In contrast, immunohistochemical

analysis revealed that the number of satellite cells coexpressing

MyoD and activated STAT3 was significantly reduced in IL-6�/�

muscle 3 days after overloading (Figure 6), in accordance with

the reduced presence of satellite cells coexpressing MyoD and

the proliferation marker p-H3 (see Figure 3B). These results are

in agreement with the in vitro data demonstrating that IL-6 in-

duces satellite cell proliferation through the activation of the

STAT3 pathway. Accordingly, IL-6 loss resulted in reduced ex-

pression of the proliferation- and migration-associated STAT3

target genes cyclin D1 and fibronectin in plantaris muscles 3

days after overloading (Figure 7A). Together, these results indi-

cate that loss of IL-6 results in normally activated satellite cells

that fail to proliferate early after the hypertrophic stimulus (3 days).

We next investigated the myogenic progression of satellite

cells from both WT and IL-6�/�mice during the course of the hy-

pertrophic growth process, at days 0, 3, 5, 7, 9, and 14 after over-

loading (Figure S7). We found that the number of satellite cells

expressing the activation marker MyoD increased at the earliest

time point after overloading in both WT and IL-6-deficient mus-

cles (Figure 3A; Figure S7). Importantly, while the number of sat-

ellite cells expressing MyoD increased at later time points after

overloading (5 and 7 days) in WT muscle in a proficient prolifer-

ative response, no increase was observed in the absence of

IL-6 (Figure S7), in agreement with the defective proliferation of

IL-6-deficient myoblasts in vitro. Reinforcing these data, no in-

crease in BrdU-positive cells was detected in IL-6-deficient mus-

cle at later time points after overloading (in conditions of daily

BrdU administration; data not shown), suggesting a persistent

block of cell proliferation in the absence of IL-6. In addition, the

time-dependent myogenic progression of satellite cells to further

differentiation stages was compromised in overloaded muscles

lacking IL-6, as evidenced by the impaired increase in myogenin-

and embryonic myosin heavy chain (eMHC)-positive cells al-

ready detectable at early stages (Figures 7B and 7C; Figure S7)

and at late points after overloading (Figure S7) compared to WT

muscles. These results suggest that, in the absence of IL-6, the

deficient satellite cell differentiation after muscle overloading
may be a consequence of the cell proliferation block, thereby

resulting in the abrogation of myofiber growth.

Altogether, these data demonstrate that IL-6 loss results in de-

ficient STAT3 signaling in activated satellite cells, leading to their

reduced proliferation and myogenic progression, and highlight

the major role played by the IL-6/STAT3 axis in controlling these

processes during compensatory hypertrophy.

DISCUSSION

The principal finding of this study is that IL-6 plays a critical role in

skeletal muscle hypertrophic growth. Our results have evidenced

that (1) skeletal muscle fibers strongly induce the local, transient

expression and release of IL-6 in response to a hypertrophic stim-

ulus; (2) muscle-produced IL-6 regulates muscle growth in vivo,

as shown by the blunted increase of myofiber size in a compensa-

tory hypertrophy model in IL-6-deficient mice; (3) the defective

growth is due to impaired proliferation—and migration—of satel-

lite cells (muscle stem cells) affecting the subsequent myonuclear

Figure 6. Loss of IL-6 Reduces STAT3 Activation after Muscle

Overloading

Sections of plantaris muscles obtained from WT and IL-6�/�mice after 3 days

of overloading were immunostained with antibodies against MyoD and

p-STAT3. Nuclei were detected with DAPI. Top: double immunostaining for

MyoD (green) and p-STAT3 (red) in overloaded muscles, illustrating the differ-

ent coexpression patterns in muscles from WT and IL-6�/� mice. Arrows

indicate MyoD-positive cells; scale bar = 20 mm. Bottom: percentage of total

MyoD-positive cells coexpressing p-STAT3 in both genotypes. Data are

mean ± SD. *p < 0.05 versus WT.
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Figure 7. Expression of Proliferation-, Migration-, and Differ-
entiation-Associated Genes Is Reduced in IL-6�/� Muscles

after Overloading

Plantaris muscle sections and mRNA were obtained from WT and

IL-6�/� mice before and after 3 days of CH.

(A) Cyclin D1 (Ccnd1), c-myc, uPAR (Plaur), and fibronectin (Fn1)

mRNA expression levels were analyzed by qRT-PCR. Data are ex-

pressed as fold induction relative to control WT muscle.

(B) Myogenin (Myog) and eMHC (Myh3) mRNA expression levels were

analyzed by qRT-PCR. Data are expressed as in (A).

(C) Top: Representative confocal images of myogenin- and eMHC-

positive cells (red) in WT overloaded muscles. Myofiber outline is

shown by dystrophin staining (green), and nuclei are stained with

DAPI (blue). Scale bar = 25 mm. Bottom: quantification of myogenin-

and eMHC-positive cells in both genotypes.

Data are mean ± SD. *p < 0.05 versus WT.

pathway and its downstream targets p70S6K and 4E-BP1

by controlling net protein content is a crucial regulator of

skeletal muscle hypertrophic growth (Bodine et al., 2001;

Glass, 2003, 2005). Increasing evidence also demon-

strates that muscle hypertrophy is associated with and

dependent on the addition of new myonuclei via the pro-

liferation and further fusion of satellite cell-derived myo-

blasts to the adult myofiber (Dhawan and Rando, 2005;

O’Connor et al., 2007). However, the extracellular factors

and downstream molecular signaling pathways responsi-

ble for satellite cell-mediated hypertrophy have not been

yet identified. The expression of IL-6 (a cytokine classi-

cally associated with the control of immune responses)

is induced in response to increased workload (Carson

et al., 2002) and skeletal muscle contraction during exer-

cise (Pedersen and Fischer, 2007); however, its potential

role in muscle hypertrophy was unknown. Our results

show that IL-6 expression is induced in growing myofib-

ers and associated satellite cells during compensatory

hypertrophy. Moreover, we demonstrate that IL-6 defi-

ciency results in blunted myofiber hypertrophic growth

accretion in the preexisting myofiber; (4) the growth defect is in-

deed muscle cell intrinsic since loss of IL-6 results in reduced sat-

ellite cell-derived myoblast proliferation and migration, while

exogenously added IL-6 rescues these defects, and more impor-

tantly, myotube-produced IL-6 also stimulates myoblast prolifer-

ation and migration, demonstrating autocrine and paracrine ac-

tions of IL-6 on muscle growth; and (5) the STAT3 pathway

emerges as the main effector of the growth-promoting action of

IL-6 on muscle cells by controlling the expression of proliferation-

and migration-associated STAT3 target genes. These findings

provide insights into the mechanisms regulating the contribution

of satellite cells to physiological hypertrophy in adult muscles.

Notably, the beneficial function of local and transiently produced

IL-6 is opposed to the known muscle-wasting effect of infused IL-

6 or systemic high levels of IL-6 in cachectic conditions (Haddad

et al., 2005; Tisdale, 2005).

Skeletal muscles adapt to changes in their workload and activ-

ity by modifying their fiber size. The activation of the AKT/mTOR

40 Cell Metabolism 7, 33–44, January 2008 ª2008 Elsevier Inc.
due to impaired satellite cell proliferation and further incorpora-

tion into preexisting myofibers after overloading in vivo. Signifi-

cantly, IL-6 gene deletion did not produce a reduction of fiber

size in adult mice in the basal state, indicating that the mecha-

nisms involved in maintenance of fiber size in mature muscles

are IL-6 independent. Elegant studies by Horsley et al. (2003)

have previously demonstrated that the cytokine IL-4 controls

new myofiber formation during injury-induced muscle regenera-

tion, a process recapitulating embryonic myogenesis, which is

mechanistically different from physiological adaptive growth of

preexisting normal myofibers in adult muscle (as in this study).

Horsley et al. (2003) found that during new myofiber formation,

IL-4 acts exclusively at the level of myoblast fusion with nascent

myotubes, without affecting prior myogenic stages. We show

that IL-6 controls satellite cell proliferation and migration, and

hence their ulterior incorporation to the hypertrophying myofiber,

suggesting different roles and mechanisms of action of both

cytokines in distinct skeletal muscle processes.
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A previous immunohistochemical study described STAT3 ac-

tivation during injury-induced muscle inflammation and regener-

ation; however, this was ascribed to an IL-6-independent action

(Kami and Senba, 2002). Our results demonstrate that the levels

of activated STAT3, the primary STAT protein activated by liga-

tion of the IL-6 receptor (Kamimura et al., 2003; Kishimoto,

2005), are significantly reduced in IL-6-deficient myoblasts in

vitro. More importantly, STAT3 activation was also reduced in

satellite cells from IL-6�/� muscles in vivo in response to over-

loading. We demonstrate that the reduced activation of STAT3

underlies the proliferation and migration defects of myoblasts

lacking IL-6, while ectopic activation of STAT3 restores both pro-

cesses. In accordance with our results, activation of STAT3 by

LIF, an IL-6 family member, has been shown to be essential for

stem cell self-renewal (Dani et al., 1998), while hyper-IL-6, a fu-

sion protein of soluble IL-6R and IL-6 that signals via gp130

homodimer receptors, can also sustain embryonic stem cell

self-renewal (Viswanathan et al., 2002).

We identified cyclin D1 as a STAT3 target gene product down-

regulated in satellite cells from IL-6-deficient muscle in vitro and

in vivo. Cyclin D1 is necessary for proliferation of different cell

types, including myogenic cells; in particular, myoblast prolifer-

ation and cell-cycle exit are critically dependent on the regulation

of the cyclin D1 gene in response to cellular growth signals (Kitz-

mann and Fernandez, 2001; Rao et al., 1994; Wei and Paterson,

2001). Thus, the reduced proliferation of myoblasts in the ab-

sence of IL-6 could be attributed to the reduced expression of

cyclin D1. Indeed, forced activation of STAT3 restored cyclin

D1 expression in IL-6�/�myoblasts concomitantly with their pro-

liferation capacity. Previous reports have demonstrated a regula-

tory role for the NF-kB and JNK/c-Jun pathways (Guttridge et al.,

1999; Perdiguero et al., 2007) in cyclin D1 gene transcription in

myoblasts in vitro. Our results provide an additional mechanism

underlying cyclin D1 gene expression in proliferating myoblasts

both in vitro and in vivo, via IL-6-induced STAT3 activation. Be-

sides controlling muscle-specific gene expression, the myo-

genic regulator MyoD can induce growth arrest in normal and

transformed cells independently of differentiation, at least in

part by inducing expression of the p21 gene (Cdkn1a) (Crescenzi

et al., 1990; Halevy et al., 1995; Sorrentino et al., 1990; Wei and

Paterson, 2001). An interaction of MyoD with STAT3 resulting in

impaired MyoD-mediated activities has been previously re-

ported in cell overexpression experiments (Kataoka et al.,

2003). Thus, in addition to downregulating cyclin D1, loss of

IL-6 may promote the myoblast growth-arresting function of

MyoD by restraining it from the inhibitory action of STAT3. Sup-

porting this possibility, the expression of the MyoD-inducible

p21 gene was induced in IL-6�/� myoblasts in vitro and in over-

loaded IL-6�/� muscles (see Figure S6B), which may contribute

to the observed reduced muscle cell proliferation. On the other

hand, migration of myoblasts in response to IL-6/STAT3 may

also constitute a necessary step for their incorporation into the

preexisting myofiber, leading to muscle growth, at least in part

by regulating the expression of the migration-associated gene

products fibronectin and uPAR. Interestingly, migratory func-

tions have also been attributed to cyclin D1 (Li et al., 2006) in ad-

dition to its classical cell-cycle-controlling role (Kitzmann and

Fernandez, 2001), thus suggesting that cyclin D1 may also con-

tribute to the promigratory action of IL-6 during muscle growth.
The fact that IL-6 is produced not only by proliferating satellite

cells but also by growing myofibers during hypertrophy in vivo

suggests that IL-6 may also impact satellite cell proliferation—

and migration—during compensatory growth in a paracrine

fashion. Indeed, IL-6 produced by growing myotubes (and exog-

enous recombinant IL-6) stimulated the proliferative potential of

myoblasts in vitro. Most importantly, loss of IL-6 in overloaded

muscles prevents satellite cell myogenic progression, since the

normal transition of satellite cells from a proliferative to a differen-

tiated state is hampered during the hypertrophic process. We

further demonstrated that satellite cells can be normally acti-

vated after hypertrophic stimulus in the absence of IL-6, as evi-

denced by the similar number of MyoD-expressing cells at

3 days after overloading; however, they are incapable of further

proliferating and differentiating at subsequent stages during

the progression of the muscle growth process. Our results lead

us to propose that the reduced STAT3 activation in satellite cells

of IL-6-deficient muscles after overloading may play a causal

role in the subsequent block of satellite cell myogenic progres-

sion. Interestingly, since IL-6 production by nerve-mediated

skeletal muscle contraction has recently been shown to be partly

dependent on the activation of the calcineurin pathway (Banzet

et al., 2007) and since calcineurin is a major mediator of nerve ac-

tivity on muscle gene expression (Schiaffino and Serrano, 2002),

IL-6 may play a role as a factor released in response to neural

influences that promotes contraction-induced muscle growth.

Taken together, the results of this study demonstrate that IL-6

is necessary for adult hypertrophic muscle growth in vivo and un-

veil a role for muscle-produced IL-6 as a major regulator of satel-

lite cell proliferation and myonuclear accretion. More importantly,

our data uncover the IL-6/STAT3 axis as a critical mechanism un-

derlying satellite cell proliferation-mediated hypertrophic muscle

growth. This mechanism is distinct from previously known adult

muscle cell-autonomous endogenous pathways, which stimu-

late protein synthesis. By identifying a pathway responsible for

controlling skeletal muscle hypertrophy, this work carries poten-

tial significance for the search for muscle atrophy therapies.

EXPERIMENTAL PROCEDURES

Animals

IL-6�/�mice, produced on the 129SvJ 3 C57BL/6 background (WT) and gen-

erated by heterozygous mating of mice carrying a targeted disruption in which

the second exon in the IL-6 gene was replaced by a neor cassette (Kopf et al.,

1994), were generously provided by A. Bernad (Centro Nacional de Investiga-

ciones Cardiovasculares, Madrid). Mouse genotypes were confirmed by PCR

analysis of tail genomic DNA (Kopf et al., 1994). In vivo studies were performed

using male mice between 8 and 12 weeks of age.

Induction of Compensatory Muscle Growth

Animals were anesthetized with ketamine/xylazine (80/10 mg/kg, intraperitone-

ally), and compensatory hypertrophy (CH) of plantaris muscles was induced by

surgical section of the distal tendon of the medial and lateral gastrocnemius

muscle, which was folded back and sutured close to its proximal origin. This

procedure induces an adaptive growth response to functional overloading in

the soleus and plantaris muscles. Sham-operated limbs were used as controls.

In some experiments, to investigate cell proliferation during compensatory hy-

pertrophy, 30 mg/kg/day BrdU (Sigma) in saline solution was injected intraper-

itoneally for 2 days. At the indicated times, animals were sacrificed and muscles

were dissected, frozen in isopentane cooled with liquid nitrogen, and stored at

�80�C until analysis. A minimum of five animals of each genotype were
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analyzed for every experiment and time point studied. All animal experiments

were approved by the Catalan government Animal Care Committee.

Cell Culture

C2C12, IL-6-overexpressing C2C12 (C2/IL-6), and RAW264.7 cell lines were

cultured as described in Supplemental Data. Satellite cell-derived primary

myoblasts were obtained from muscles of WT and IL-6�/� mice. Myoblast

isolation and culture were performed as described in Supplemental Data.

Reagents

Recombinant IL-6 (rIL-6, Peprotech; 10 ng/ml), a specific STAT3 inhibitor pep-

tide (STAT3pi, Calbiochem; 500 mM), a JAK/STAT inhibitor (AG490, Sigma;

50 mM), and a PI3K inhibitor (wortmannin, Sigma; 1 mM) were added to growth

medium (GM) or differentiation medium (DM) where indicated.

Transfections

For the generation of the stably transfected IL-6-overexpressing C2C12 cell

line (C2/IL-6), cells were transfected with the pBM6DraA6 (IL-6) expression

vector using Lipofectamine (Invitrogen) as described previously (Baeza-Raja

and Munoz-Canoves, 2004), and pools of G418-resistant colonies were

selected.

Proliferation

To detect S phase cells, cultures were pulsed with BrdU (Sigma) for 1 hr and

then processed and analyzed as described in Supplemental Data.

Migration Assays

To analyze cell migration ability, cultures were incubated in transwells and then

processed and quantified as described in Supplemental Data.

ELISA

Both primary and C2C12 myoblasts were cultured in GM (proliferating myo-

blasts) and for 48 hr in DM (myotubes). For the detection of IL-6 in cell culture

media and muscle extracts, an ELISA kit (BD Biosciences) was used according

to the manufacturer’s instructions.

Western Blot Analysis

Lysate preparation and western blotting analysis were performed as described

in Supplemental Data.

Isolation of mRNA, RT-PCR, and qRT-PCR

RNA was analyzed by RT-PCR or quantitative RT-PCR (qRT-PCR). DNA

primers and details of the procedure are listed in Supplemental Data.

Retroviral Plasmids, Production, and Infection

MSCV, MSCV-STAT3C, and MSCV-STAT3D (McLemore et al., 2001) were

generously provided by D.C. Link (Washington University School of Medicine).

Retroviral infection was performed as described previously (Perdiguero et al.,

2007). Subconfluent cultures of primary myoblasts were infected by adding

medium containing the viral particles, 10 mM HEPES (pH 7.3), and 4 mg/ml of

polybrene to each plate. The medium was removed 24 hr later, and the cells

were then cultured as indicated.

Histology and Immunohistochemistry

Cryostat sections (10 mm thickness) from plantaris muscles of WT and IL-6�/�

mice were obtained before and after overloading at the indicated times. Sec-

tions were air dried and stored at �80�C before processing for routine hema-

toxylin and eosin staining and immunohistochemical analyses. Immunodetec-

tion of IL-6, Pax7, MyoD, p-STAT3, myogenin, and eMHC was performed with

specific antibodies against IL-6 (AF-406-NA; R&D Systems), Pax7 (PAX7-c;

Developmental Studies Hybridoma Bank), MyoD (5.8A; DAKO), p-STAT3

Tyr705 (#9131; Cell Signaling Technology), myogenin (F5D, neat hybridoma

supernatant; Developmental Studies Hybridoma Bank), and eMHC (F1652,

neat hybridoma supernatant; Developmental Studies Hybridoma Bank). Quan-

tification of the number of myonuclei per myofiber was performed on sections

stained with primary specific antibody against dystrophin (MANDYS8; Sigma)

and DAPI. Labeling of cryosections with mouse monoclonal primary anti-

bodies was performed using the peroxidase or fluorescein M.O.M. Kit (Vector
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Laboratories) according to the manufacturer’s instructions. Double immunos-

tainings were performed with sequential addition of each primary and second-

ary antibody, employing appropriate positive and negative controls. Detection

of proliferating cells was performed with specific antibodies against BrdU (Ox-

ford Biotech) and p-H3 Ser10 (MC463; Upstate) using intestinal tissue as a pos-

itive control. Sections were air dried, kept unfixed (Pax7 and eMHC) or fixed in

paraformaldehyde 2%–4%, washed in PBS, and incubated with primary anti-

bodies according to manufacturer’s instructions after blocking for 1 hr at room

temperature with a high-protein solution in PBS (Vector Laboratories). Subse-

quently, the slides were washed in PBS and incubated with appropriate sec-

ondary antibodies and labeling dyes. After washing, tissue sections were

mounted with Vectashield containing DAPI (Vector Laboratories).

Data Collection and Analysis

To measure myofiber cross-sectional area (CSA), plantaris muscles were cut

crosswise through the thickest part, and cryostat sections were stained with

hematoxylin and eosin. Muscle fiber size analyses; nuclei counts; and quantifi-

cation of the numbers of Pax7-, BrdU-, MyoD-, p-STAT3-, myogenin-, eMHC-,

and p-H3-positive cells were performed on images from muscle cross-sec-

tions. Micrographs were obtained using a Leica DMR microscope equipped

with a camera, and digitized images taken from different areas of cryosections

were analyzed. Individual muscle fibers were outlined and CSA was determined

using the image analysis software ImageJ 1.36b (http://rsb.info.nih.gov/ij/).

CSA analysis was performed on a total of 6586 myofibers. Myonuclei counts

were performed by counting the number of nuclei within the dystrophin-positive

sarcolemma outline on pictures taken from control and overloaded plantaris

muscles. A total of 2326 fibers from both genotypes were analyzed. The total

number of BrdU-positive cells counted outside the dystrophin outline was

6649 and 2649 for overloaded muscles obtained 3 days after surgery from

WT and IL-6�/� mice, respectively. No BrdU-positive cells were detected in

control muscles. Satellite cell detection was performed by determining the

number of Pax7-positive cells on at least four transversal sections obtained

at two different locations for each muscle. A total of 369 Pax7-positive cells

were analyzed. Data corresponding to the number of MyoD-positive cells in

WT and IL-6�/� muscles at 3 days post-CH were obtained after counting 353

and 308 cells, respectively. At this time point, a total of 488 and 210 myoge-

nin-positive cells from WT and IL-6�/� muscles were counted, respectively,

whereas the total number of eMHC-positive cells counted was 796 and 306

for WT and IL-6�/� overloaded muscles, respectively.

Differences in fiber CSA were analyzed by nonparametric Wilcoxon signed-

ranks test using SPSS software. Statistical differences between pairs of sam-

ples were assessed by unpaired two-tailed Student’s t test. For all statistical

tests, the 0.05 level of confidence was accepted as statistically significant.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures, Supple-

mental References, two tables, and seven figures and can be found with this

article online at http://www.cellmetabolism.org/cgi/content/full/7/1/33/DC1/.
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