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ARTICLE INFO ABSTRACT

Iron deficiency anemia and iron overload conditions affect more than one billion people
worldwide. Iron homeostasis involves the regulation of cells that export iron into the
plasma and cells that utilize or store iron. The cellular iron balance in humans is primarily
mediated by the hepcidin—ferroportin axis. Ferroportin is the sole cellular iron export
protein, and its expression is regulated transcriptionally, post-transcriptionally and post-
translationally. Hepcidin, a hormone produced by liver cells, post-translationally regu-
lates ferroportin expression on iron exporting cells by binding with ferroportin and
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Beta-thalassemia promoting its internalization by endocytosis and subsequent degradation by lysosomes.
Hepcidin Dysregulation of iron homeostasis leading to iron deposition in vital organs is the main
IroE overload cause of death in beta-thalassemia patients. Beta-thalassemia patients show marked
Ferroportin hepcidin suppression, ineffective erythropoiesis, anemia and iron overload. Beta-thalas-

semia is common in the Mediterranean region, Southeast Asia and the Indian subconti-
nent, and the focus of this review is to provide an update on the factors mediating
hepcidin related iron dysregulation in beta-thalassemia disease. Understanding this pro-
cess may pave the way for new treatments to ameliorate iron overloading and improve the
long term prognosis of these patients.

1. Introduction

With the exception of a few species of bacteria, all living
things need iron as an absolute requirement for viability. The
ability of iron to act as both an electron donor and an electron
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acceptor makes it a critical component of many cellular oxida-
tion/reduction reactions, and in addition iron is the substrate for
heme, the critical component of hemoglobin, the essential oxy-
gen carrying molecule of all vertebrates [11. However, free iron is
potentially extremely toxic to cells. Iron can donate electrons to
oxygen resulting in the formation of the reactive superoxide
radical (O*7) or to hydrogen peroxide generating the hydroxyl
(*OH) radical [1], and these molecules can oxidize biological
macromolecules including lipids, proteins and DNA with
extremely damaging consequences to the cell [2].

Humans contain approximately 3—4 g of iron in various
forms [31. Although iron is extremely plentiful in the
environment, much of it is present in insoluble,
bioavailable forms, and so humans have evolved to be highly

non-

efficient in conserving iron. Indeed, humans have no mechanism
for excretion of excess iron under conditions of iron overload.
Bioavailable iron in the diet serves mainly to replace iron lost
from the body through processes such as the shedding of cells
from the surface of the skin and lumen of the gut as part of the
normal process of epithelial cell turnover. Additional loss of iron
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from the body may occur through minor bleeding events. In
general it is believed that only some.

1-2 mg of iron (less than 0.1% of the total iron in a body) are
lost from the body each day that require replacement though
dietary sources (3.

The majority of the iron in humans is in the form of hemo-
globin in red blood cells, and red blood cells combined contain
between 2 g and 2.5 g of iron (out of 3—4 g in total). Red blood
cells have a life span of some 120 days under normal conditions
(2], after which they are degraded by macrophages and the iron
returned to the plasma. Plasma contains some 2-3 mg of iron
bound to a protein called transferrin, which is the primary
molecule that transports iron for use in erythropoiesis in the
bone marrow and by other iron requiring cells. Macrophages
return some 20-25 mg of iron daily, ensuring a rapid turnover
of iron in the plasma. When the binding capacity of serum
transferrin is exceeded, iron starts to make complexes with
other plasma proteins and molecules such as citrate. This iron
is generally termed non-transferrin bound iron (NTBI) [4].
NTBI is easily taken up by hepatocytes and other parenchymal
cells, and the intracellular accumulation of iron in these cells
rapidly causes damage through oxidation reactions [21.

Within cells, iron is normally stored as the ferric (Fe3+ form)
in association with a globular protein complex called ferritin.
Ferritin is essentially a hollow sphere in which can sequester up
to 4500 iron atoms. The ferritin complex consists of 24 subunits
of heavy (H) and light (L) chains the exact composition of which
can vary between tissues. The H chain has ferroxidase activity
which converts Fe?* to Fe>* for storage inside the shell, while
the L chain primarily stabilizes the structure and facilitates
transport of iron ions to the inside of the structure [1]. This
formation is the main storage system of iron (outside of the
iron in hemoglobin). Under conditions of iron deficiency, iron
is released from the complex to the plasma, while under
conditions of mild iron excess the system can provide some
buffering against the increased iron levels. In the average
male, one gram of iron is held in storage mostly in
hepatocytes and macrophages in the liver but also in spleen
red pulp macrophages. Women of reproductive age tend to
have significantly lower stored iron as a consequence of
menstruation and childbearing [51.

As noted above, only a very small fraction of the total iron
content is lost daily, and this is replaced through bioavailable
iron sourced from the diet. Iron from the diet can be obtained
from heme based sources (found in meat) and from non-heme
iron sources (iron in cereals, vegetables, pulses etc). Iron ab-
sorption takes place in the gut duodenum and upper jejunum and
occurs by transport across the apical membrane of enterocytes,
which appears to occur through two independent pathways [6],
one for heme iron and one for non-heme iron [3]. While
absorption of non-heme iron is fairly well understood, the ab-
sorption of heme iron and ferritin iron is rather less well un-
derstood. Dietary non-heme iron is normally in the form of ferric
iron (Fe**) which is reduced in the gut to the ferrous (Fe>*) form
by ferric reductase activity provided by duodenal cytochrome B
and possibly Steap2 [3]. The ferrous iron is then transported
across the apical (gut lumen) side of enterocytes by the ferrous
iron transporter divalent metal ion transporter 1 (DMT-1), also
known as Nramp-2 (natural resistance-associated macrophage
protein) [71. Some evidence suggests that heme iron may be
taken up by receptor mediated endocytosis, although no high-
affinity heme receptor has been identified to date [3]. There is
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some evidence that dietary ferritin is also taken up by
endocytosis [8]. Once inside the enterocyte heme is broken
down by heme oxygenase and dietary ferritin iron is released
from ferritin. It is currently believed that iron from the various
sources enters a common iron pool within the enterocyte.
Some of the iron may be stored directly within the enterocyte
as ferritin, while other iron will be released from the cell to
end up bound to blood transferrin [8].

2. Intracellular iron trafficking and transportation

There is only one known cellular iron exporter, namely fer-
roportin [9-11]. This protein is found on the basolateral
membrane of enterocytes as well as on other cells such as
reticuloendothelial macrophages that export recycled iron,
hepatocytes that release storage iron and on differentiating
erythrocytes. Ferroportin exports iron in the ferrous (Fe**)
form, but transferrin binds iron in the ferric (Fe3+) form, so
ferroxidases are believed to play a role in iron export. In
intestinal enterocytes it is believed that hephaestin is the active
ferroxidase, while in other cells this action is performed by the
either circulating or GPI-linked multicopper ferroxidase ceru-
loplasmin [3.5]. Once bound to transferrin the iron is delivered to
peripheral tissues by the transferrin—transferrin receptor system.
After binding to the transferrin receptor,
internalized by receptor mediated endocytosis and upon
acidification of the endosome iron is released from transferrin
and converted to the ferrous form (Fe2+) by the ferrireductase
Steap family proteins [12.13] and transported across the
membrane of the endosome into the cytoplasm by the action
of the ferrous iron transporter divalent metal ion transporter 1
(DMT-1) protein [3.51.

Ferroportin has been shown to be regulated transcriptionally
in enterocytes and macrophages [11.14] and to be translationally
regulated by the iron responsive element (IRE) present in the
5'-UTR of the ferroportin mRNA through the action of iron
regulatory proteins (IRP). The IRE-IRPs system is controlled
by intracellular iron levels [9.11.15.16]. IRPs are activated during
low iron condition under which they bind to the IRE of
ferroportin  mRNA resulting suppression.
Restrained ferroportin expression leads to reduced iron export,
maintaining iron for cellular requirements. In addition,
ferroportin is regulated at a post-translational step by the mas-
ter iron homeostasis hormone, hepcidin. In erythroid precursor
cells (and in enterocytes) a second mRNA encoding for ferro-
portin has been reported [17.18]. This mRNA is produced by the
use of an alternate, upstream gene promoter and has an identical
open reading frame in the mRNA, and as such the protein
produced is identical. Critically, this second mRNA (termed
FPN1B) does not contain an IRE in the 5-UTR, and as such
is not regulated by iron deficit [18]. It is currently believed that
during erythropoiesis the relative expression of these two
messages is coordinated to ensure that iron is exported from
the cells during early differentiation, but kept in the cells
during late differentiation when heme synthesis begins and
iron demand is at its highest [18].

transferrin  is

in translational

2.1. Iron regulation by hepcidin

The absorption of iron by enterocytes, the efflux of recycled
iron from macrophages and the efflux of stored iron by
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hepatocytes are all systemically controlled by the 25 amino acid
peptide hormone hepcidin  [19.20] produced
predominantly in hepatocytes. Hepcidin is initially synthesized
as an 84 amino acid preprohormone, before undergoing
processing to generate a 60 amino acid prohormone and
finally a 25 amino acid hormone [19]. The structure of the
mature hormone is a compactly folded protein with 32% beta-
sheet and 4 disulphide bonds [19]1. Hepcidin regulates iron
efflux by post-translationally negatively regulating ferroportin,
the sole iron efflux channel. When iron is present in the plasma
in excess hepcidin is secreted from the liver into the plasma.
Hepcidin then directly binds to ferroportin expressed on the
surface of iron storage cells, triggering endocytosis of both
ferroportin and hepcidin which are subsequently degraded by
lysosomes [21]. A reduction of ferroportin expression on the cell
surface results in less intracellular iron being exported from
storage cells, effectively locking iron inside the cell. This
event reduces iron efflux into the plasma, returning iron to
regular levels. The mechanism by which hepcidin regulates
absorption of dietary iron is less clear as ferroportin is located
on the basal surface of enterocytes cells, while absorption of
dietary iron occurs on the apical surface. The mechanism by
which a reduction in the basolateral ferroportin is
communicated to the apical iron absorption mechanism
remains unclear, although rising intracellular iron levels (as a
consequence of reduced efflux) may play a role [5.21].
Mechanistically however it is known that hepcidin inhibits the
uptake step of duodenal iron absorption but does not affect the
proportion of iron transferred to the circulation [22].

which is

2.2. Regulation of hepcidin expression

Hepcidin is primarily produced by hepatocytes [21], and
hepcidin production is regulated by a number of factors,
although it is believed that the primary stimuli are the level of
iron in the plasma. Some studies have suggested that the two
transferrin receptors (TfR1 and TfR2) together with the
membrane protein hereditary hemochromatosis protein (HFE)
serve to sense iron levels in the body and induce hepcidin
expression, but the mechanism is incompletely understood [5].
A second pathway, the bone morphogenic protein (BMP)
pathway, is probably activated in response to iron levels in
intracellular iron stores, which results in increased expression
of BMP6 which binds to a BMP receptor (BMPR) in
association with a co-receptor hemojuvelin which activates the
Smad signaling pathway resulting in increased hepcidin
expression [5]. Recent evidence has shown that TMPRSS6,
which encodes a hepatocyte-specific type Il transmembrane
serine protease, matriptase-2, cleaves hemojuvelin decreasing
the BMP-SMAD signaling axis, and thus inhibiting hepcidin
expression [23]. Inhibition of the expression of this inhibitory
protein may provide an attractive pathway for increasing
hepcidin expression in beta-thalassemia patients [24], although
some drawbacks exist [25]. A further hepcidin stimuli is
inflammation, and this pathway is mainly modulated through
the inflammatory cytokine IL-6 which activates the JAK-
STAT3 pathway leading to increased hepcidin expression in
the liver [26,27].

To maintain iron homeostasis, the negative regulation of
hepcidin expression is an important mechanism to ensure the
availability of iron for biological activities. The erythropoietic
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cells of the bone marrow are the main consumers of iron pro-
vided by transferrin, and erythropoiesis is wholly dependent
upon this source of iron. During erythropoiesis, erythroid cells
secrete a factor or factors that suppress hepcidin expression in
liver cells. This results in increased ferroportin activity and the
transfer of iron from cellular stores to transferrin, thus supplying
the demand for iron during erythropoiesis. The suppression of
hepcidin also increases absorption of dietary iron [22]. The factor
or factors secreted by erythroid cells remain to be clearly
elucidated. Studies have implicated the growth and
differentiation factor 15 (GDF15) which is known to be highly
elevated in beta-thalassemia patients [28]. Other studies have
suggested that the twisted gastrulation protein (TWSG1) may
be the primary factor regulating hepcidin suppression in liver
cells [29]. Moreover, erythroferrone has been recently identified
and proposed as a candidate for suppressing hepcidin
expression during erythropoiesis [301.

3. Thalassemia syndromes

Thalassemia syndromes are a group of inherited hematolog-
ical disorders that constitute a major public health problems
worldwide [31]. The term “thalassemia”, which has been used to
describe autosomal recessive anemic disorders, is derived from
the Greek word (the Mediterranean sea) and
“haima” (blood) since it was first applied to the anemias
frequently encountered in people around the Mediterranean
sea, particularly in Italy and the Greek coast and nearby
islands [32]. Thalassemia syndromes are a heterogeneous group
of anemias which are caused by genetic defects in globin
genes. Defect of one or more globin genes cause a partial
reduction or total depletion of globin chains synthesis thereby
leading to inadequate production of hemoglobin [33]. The
major types of thalassemia are alpha- and beta-thalassemia
which are classified according to the nature of the defective
globin [33].

“thalassa”

4. Beta-thalassemia

Beta-thalassemia is a heterogeneous group of disorders
leading to decreased or absent beta-globin production. A genetic
defect of one or two beta-globin genes, which are located on
chromosome 11 (p15.5), is the cause of beta-thalassemia [34]. To
date, more than 200 point mutations have been identified in beta-
globin genes and the immediate flanking regions [35]. The
expression of mutated beta-globin genes can result in reduced
or absent beta-globin production, unlike the large gene deletions
in alpha-globin gene, which solely result in loss of function [34].
According to these finding, beta-thalassemia can be phenotypi-
cally classified into 2 types; beta’-thalassemia where no beta-
globin chains are synthesized and beta®-thalassemia where
some beta-globin chains are synthesized [36l. In beta®-
thalassemia, there is a 5% to 30% reduction of beta-globin
chains from normal levels [37]. The hallmark of beta-
thalassemia is the reduced production or absence of Hb A
(alpha, betay), reactivation of Hb F (alphagammaj), and
importantly, accumulation of excess alpha-globin chains which
appears to underlie the main physiopathology of the disease.
Patients with the most severe form of beta-thalassemia (betaO/
betao) develop serious microcytic anemia due to severe hemo-
lysis and impaired production of new RBCs [38]. Bone deformity
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as a result of erythroid hyperplasia and enlargement of liver and
spleen are also observed [35]. In heterozygous beta-thalassemia
(beta/betao, beta/beta®) or beta-thalassemia traits, Hb A forma-
tion is substantial due to the output from the remaining intact
beta-globin gene, thus resulting in a nearly asymptomatic pre-
sentation with mild hypochromia with microcytosis but with
relatively little evidence of anemia, hemolysis, or impaired
erythropoiesis.

The most common subgroup of beta-thalassemia is beta-
thalassemia/Hb E which accounts for almost 50% of the pa-
tients with severe beta-thalassemia worldwide [38]. This
compound heterozygote is very common in many regions
where Hb E is predominant. Hemoglobin E (Hb E) is the
structural hemoglobin variant which is the most common in
Southeast Asia including Thailand (10-50% of the population)
[39.40]. The betaE-globin gene produces only small amounts of
betaE-globin chains, which is similar to some mutations causing
beta*-thalassemia and therefore Hb E trait resembles a very mild
beta*-thalassemia trait while Hb E homozygotes exhibit more
microcytosis but are still asymptomatic [41]. The severity of beta-
thalassemia/Hb E generally depends on the co-inheritance of
alpha-globin hemoglobinopathies as well as the level of Hb F.
Although patients with beta*-thalassemia/Hb E develop a mild
anemia with only a few clinical abnormalities, an extraordinarily
wide clinical spectrum, ranging from a moderate to a severe
form of anemia resembling homozygous beta’-thalassemia are
observed in beta’-thalassemia/Hb E patients [40.42-44],

4.1. Molecular pathogenesis of beta-thalassemia

The main pathophysiology of beta-thalassemia is caused by
the unbalanced production of alpha-globin and Beta-globin
chains where alpha-globin chains appear to be in excess [35].
Unlike beta-globin chains, alpha-globin chains are unable to
form stable tetramers thus free excess alpha-globin chains tend
to form insoluble aggregates which precipitate within the
developing erythroid cell. This results in the induction of
apoptosis in the developing erythroid precursor at the poly-
chromatophilic normoblast stage in a process termed ineffective
erythropoiesis [45]. In the small percentage of erythroid cells that
progress to maturation, the accumulation of free alpha-globin
chains efficiently generates ROS and oxidative stress, resulting
in RBC membrane damage and subsequently increased hemo-
lysis [46]. In normal RBCs hemoglobin is reversibly oxidized to
methemoglobin, with cytochrome b5 reductase mediating the
reduction back to hemoglobin. However, free globin chains
(both alpha and beta) are susceptible to oxidation to
hemichromes which can become irreversibly modified [47],
allowing the hemichrome iron to generate reactive oxygen
species [48]. A large part of the difference in pathology
between OATNO- and Peto-thalassemia arises from the fact
that the excess Peta-chains present in oATM0-thalassemia can
form a soluble tetramer (hemoglobin H, HbH) while the
excess OATMa-globin chains present in beta-thalassemia
cannot, resulting in the deposition of insoluble aggregates in
the RBC membranes. In beta-thalassemia therefore, the combi-
nation of ineffective erythropoiesis of the developing erythroid
precursor cells and increased hemolysis of the mature RBC are
the main causes of anemia in these patients. The anemia in these
patients leads to a feedback loop that results in increased
expansion of erythroid progenitors and accelerated erythroid
differentiation [49]. The markedly increased erythropoiesis in
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beta-thalassemia has been reported in many studies either by
prediction, based on ferrokinetic studies [50], by differential
counting from bone marrow aspirates [511, or by in vitro
observation of CD34 hematopoietic progenitor culture [45.52-
54]. The marked expansion of the erythroid mass is a well
documented feature of beta-
thalassemia cases which results in the generation of more dis-
tressing features such as organ enlargement and particularly
bone deformity and fragility [42.55.56]. Ultrastructural studies
using electron microscopy have shown that the precipitated
oATtno-globin chains are in both the cytoplasm and the
nucleus [57] and begin to be present predominately in
polychromatic erythroblasts [58-60].  Moreover,
erythroid nuclei showing a partial loss of nuclear membrane
and presence of intranuclear aggregates of QATTNMa-globin
chains have also been observed in bone marrow erythroblasts
of homozygous PeTa-thalassemia patients [58]. These findings
led to investigations of intramedullary death which showed
later that programmed cell death or apoptosis clearly occurred
in erythroid precursors of beta-thalassemia major as detected
by DNA ladder formation [61] and the outer externalization of

intermediate and severe

abnormal

phosphatidylserine (PS) to the membrane leaflet [62].
Additionally, in vitro studies have also demonstrated that
apoptosis  primarily occurs at the polychromatophilic

normoblast stage [45], the intermediate stage of erythroid
precursor differentiation where the aATNA-globin chain
aggregates appear to present [58]. Previous studies have
demonstrated that heat shock protein 70 (HSP70) interacts
directly with excess free OATNA-globin chains and is
sequestered in the cytoplasm [63]. This prevents HSP70 from
performing its normal physiological role of protecting GATA-
binding factor 1 (GATA1) from proteolytic cleavage resulting
in premature degradation of GATA1 and maturation arrest and
apoptosis of polychromatic normoblasts [64]. The marked degree
of anemia, due to ineffective erythropoiesis, combined with a
considerable tissue hypoxia promote erythropoietin (EPO)
production, which has been shown in several studies to be
increased in beta-thalassemia/Hb E patients as compared to
normal controls [52.65-67]. Increased levels of EPO are believed
to be the main factor driving the expansion of the erythroid
mass. Extensive erythropoiesis induces a large erythropoietic
mass which can be found in the bone marrow, liver and
spleen, as well as at extramedullary sites.

4.2. Iron overload in beta-thalassemia

Severe cases of beta-thalassemia require regular blood
transfusion to reduce the chronic anemia. Multiple blood trans-
fusions, increased hemolysis of red blood cells and increased
gastrointestinal iron absorption (Figure 1) lead to iron overload
[68], and cardiomyopathy as a consequence of iron overloading is
the most common cause of death in transfusion-dependent
thalassemia patients [69]. The human body loses only 1-2 mg
iron per day, while a unit of transfused red blood cells
contains approximately 200 mg of iron [38]. A patient who
receives 25 units of blood per year, accumulates 5 g of iron
each year in the absence of any iron chelation therapy. Excess
iron is extremely toxic to all cells of the body and can cause
serious and irreversible organic damage, such as cirrhosis,
diabetes, heart disease, and hypogonadism which lead to
significant morbidity and mortality if untreated [68]. The iron
overload on the body can be estimated by means of serum
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Figure 1. Proposed mechanism of iron dysregulation in beta-thalassemia disease.

Beta-thalassemia patients experience anemia mainly from ineffective erythropoiesis and shortened red blood cell (RBC) survival. The anemia induces
erythropoietin (EPO) production leading to enhanced erythropoiesis. The dramatically increased erythroid expansion activates secretion of erythroid factors
including growth differentiation factor 15 (GDF15), twisted-gastrulation 1 (TWSG1) and erythroferrone (ERFE). Excessive erythroid factors suppress
hepcidin expression in hepatocytes resulting in increased iron absorption from duodenal enterocytes, the release of iron from the liver and the reticulo-

endothelial system, culminating in iron overload.

ferritin, hepatic iron concentration, urinary iron excretion and
TIBC levels [70]. Threshold values for iron toxicity are a liver
iron concentration exceeding 440 mmol/g dry weight, serum
ferritin >2500 ng/mL, urinary iron excretion >20 mg/day, and
transferrin saturation >75% [711. The estimation of hepatic iron
concentration by magnetic resonance imaging (MRI) is the
most commonly employed test to evaluate iron overload in
thalassemia major [72]. Increased iron overload has also been
reported in patients with non-transfusion dependent thalas-
semia (NTDT) [73]. beta-thalassemia carriers and patients who
have a histidine to aspartic acid (H63D) mutation at codon 63 of
the HFE gene show iron overloading, suggesting that the H63D
mutation may have a modulating effect on iron absorption
(74,751,

4.2.1. Pathophysiology of iron overload in beta-
thalassemia

The excess iron in beta-thalassemia patients saturates the
ability of the transferrin iron transport system, leading to non-
transferrin bound iron (NTBI) and labile plasma iron (LPI)
starting to circulate in plasma and subsequently becoming
deposited inside susceptible cells [71]. Rather than using the
transferrin  receptor, NTBI enters cells by other cellular
channels including L-type voltage-dependent Ca®* channel
(LVDCC), a promiscuous divalent cation transporter [76] and
Zip14, a member of the SLC39A zinc transporter family [77].
Long-term uptake and accumulation of NTBI and LIP, its
redox active component, leads to increased levels of storage iron
and labile cellular iron [78]. Tissues susceptible to iron
accumulation by this mechanism include the liver, endocrine
system and myocardium [79]. When the magnitude of the
cellular labile iron pool exceeds the capacity of the cell to
synthesize new ferritin molecules, a critical concentration is

reached that can generate reactive oxygen species (ROS). ROS
produced by the metabolism of NTBI plays a central role in
inducing cellular dysfunction, apoptosis, and necrosis [80l. A
variety of ROS, most notably hydroxyl radicals, increase lipid
peroxidation and organelle damage, leading to cell death and
fibrogenesis mediated by transforming growth factor betal
(TGF-betal) [811. An underappreciated effect of iron overload
is increased infection risk that is a high cause of mortality in
beta-thalassemia patients [82]. Oxidative stress is a major
inducer of autophagy, which is important in the removal of
oxidized proteins and damaged mitochondria. The increased
activation of autophagy has been reported in beta-thalassemia/
Hb E erythroblasts as compared to normal control erythro-
blasts [83], suggesting that high levels of autophagy in beta-
thalassemia/Hb E erythroblasts might be induced by ROS that
contribute to the increased levels of apoptosis that lead to inef-
fective erythropoiesis in beta-thalassemia/Hb E erythroblasts
[831].

Recently, dysregulation of ferroportin mRNA has been re-
ported in beta-thalassemia/Hb E. While erythroblasts from
normal controls show increased expression of ferroportin
expression during differentiation under iron overload conditions,
erythroblasts from beta-thalassemia/Hb E patients show no in-
crease in ferroportin expression under the same growth condi-
tions [84]. Thus the ability of these critical erythroid cells to
export excess iron is curtailed, adding to the direct biological
consequences of iron overload.

Iron overload can also contribute to ineffective erythropoiesis
to a varying extent depending on the disorder (Figure 1). It has
been suggested that the production of growth differentiation
factor 15 (GDF15) [28.85] and possibly other proteins, such as
twisted-gastrulation 1 (TWSG1) [29],
inhibition of hepcidin synthesis and thus promotes iron

contributes to the
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absorption in beta-thalassemia patients. Kautz and colleagues
suggested that, upon increased erythropoiesis, bone marrow and
spleen erythroblasts increasingly produce erythroferrone, which,
upon secretion into the circulation, directly acts on the liver to
inhibit hepcidin production and mediates increased iron mobi-
lization and absorption during periods of erythropoietic stress
[301.

4.3. Hepcidin expression in beta-thalassemia

Deficits in hepcidin expression in relation to thalassemia
were first reported in a mouse model system (C57B1/6 Hbb" *)
of severe anemia [86], and since then hepcidin levels in beta-
thalassemia/Hb E disease, beta-thalassemia trait and Hb E trait
carriers have been reported [87]. Levels of hepcidin in beta-
thalassemia patients have been shown to be extremely low [88-
911 and serum from beta-thalassemia patients has been shown
to suppress hepcidin expression in liver cells [28]. This will lead
to continual, effectively unregulated absorption of dietary iron,
leading to overloading. Liver hepcidin mRNA expression in
patients with thalassemia major and thalassemia intermedia is
inversely correlated with soluble transferrin receptor (sTfR)
and erythropoietin (EPO), but not with iron stores [92]. The
study proposed that hepcidin suppression in beta-thalassemia/
Hb disease is associated with iron loading, saturation of iron
binding proteins, and consequently, organ damage as indicated
by an inverse association between hepcidin and NTBI across all
patients, as well as correlation of NTBI and ferritin or LIC, and
correlation of iron loading with ALT, an enzymatic marker of
hepatic damage [87]. While moderate suppression of hepcidin
with enhanced iron absorption was also observed in beta-
thalassemia carriers; this was not the case with Hb E trait car-
riers [87.93]. The coinheritance of alpha-thalassemia results in a
reduction in erythropoiesis and ameliorates hepcidin suppression
[871. Less severe forms of ineffective erythropoiesis, as observed
in alpha-thalassemia, may cause late-onset and milder iron
overload.

4.4. Hepcidin in the pathogenesis of beta-thalassemia

Anemia, tissue hypoxia and increased EPO production
observed in beta-thalassemia promote the suppression of hep-
cidin and increase iron absorption in response to the demand for
iron by erythroblasts [94]. Several hepcidin inhibitors released
from erythroblasts during the process of differentiation have
been proposed to regulate hepcidin expression in beta-
thalassemia. The cytokine members of the TGF-beta family,
namely growth differentiation factor 15 (GDF15) was shown to
be up-regulated in serum from thalassemia patients and can
suppress hepcidin expression in hepatoma cells or in isolated
human hepatocytes [28.95]. Serum levels of this cytokine are
strikingly elevated in patients with homozygous beta-
thalassemia, while intermediate levels are found in carriers of
alpha-thalassemia and in beta-thalassemia trait carriers. In
contrast, sickle cell patients whose anemia is related to chronic
hemolysis rather than ineffective erythropoiesis, show no or only
modest GDF15 elevation [28]. TWSGI1 is a second erythroid
factor that has been identified as a hepcidin regulator. Levels
of this protein are increased in the bone marrow, spleen and
liver of thalassemic mice [29]. However, the level of TWSGI1
in the serum of thalassemia patients remains to be reported.
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Hepcidin inhibition by the liver serine protease TMPRSS6 has
also been [23,96]. More recently,
erythroferrone (ERFE) has been identified as a new erythroid
regulator of hepcidin synthesis [30.97]. In mouse models of
intermediate thalassemia, bone marrow ERFE expression is
increased in response to erythropoietin and mediates hepcidin
suppression during stress erythropoiesis. ERFE-deficient mice
fail to suppress hepcidin rapidly after hemorrhage and mice
exhibit a delay in recovery from blood loss [97]. However, the
molecular mechanisms underlying the suppression of hepcidin
by these erythroid factors, as well as the interplay between the
factors remain to be clarified.

shown the hormone

4.5. Therapeutic targeting of hepcidin in beta-
thalassemia

The standard treatment of severe beta-thalassemia is currently
based on blood transfusions, iron chelation and splenectomy,
allowing an increased survival and amelioration of the patients'
quality of life [98]. A cure for inherited beta-thalassemia can be
achieved by allogeneic hematopoietic stem cell transplantation,
but the need to control transplant-related complications and the
requirement for matched donors make this option available to
only some patients [99], and as many as 60% of patients lack a
suitable donor [99]. Alternative treatments, such as gene
therapy or the induction of fetal hemoglobin (Hb F) are
promising [100], but have yet to make it to the bedside. As
iron overload is the most important complication for the
patients with blood transfusion, iron chelation is essential to
control iron overload and its toxicity [101] and effective
management of iron overload in thalassemia requires
monitoring both for iron toxicity and the effects of excessive
chelation. Recently however, improved knowledge of the
relationships between iron overload and hepcidin has led to
the development of novel approaches that target the
pathophysiology of the disease with the aim of reducing iron
overload and, at the same time, of alleviating ineffective
erythropoiesis. Hepcidin levels are low in thalassemia patients
with concomitant pathophysiological consequences, and the
restoration of hepcidin to normal levels is an attractive novel
therapeutic strategy. Studies in a mouse model of beta-
thalassemia have shown that increasing hepcidin reduces iron
bioavailable to erythroblasts, resulting in decreased heme syn-
thesis and improved erythroid precursor and reticulocyte sur-
vival [102]. Similarly small synthetic peptides (minihepcidins)
can decrease serum iron, prevent iron overload and promote
iron redistribution in hepcidin-deficient mice [103]. In another
approach, administration of BMP6, the natural ligand of the
BMP receptor involved in hepcidin regulation, was shown to
activate the hepcidin transcription regulated pathway and to
correct the high iron saturation and iron maldistribution in a
HFE model of hereditary hemochromatosis [104]. Transgenic
inactivation of the membrane protease TMPRSS6 in HFE
mice increased hepcidin expression and reversed their iron
overload phenotype, suggesting that the administration of a
specific inhibitor of the enzymatic activity of TMPRSS6 could
be used to treat iron overload [105.106]. An RNAIi therapeutic
targeting Tmprss6 has been shown to decrease iron overload
with diminished hepcidin expression and may have efficacy in
modifying disease-associated morbidities of thalassemia [24]. A
combination therapy of RNAi against Tmprss6 together with
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administration of the iron chelator deferiprone has been reported
to result in a significant reduction of liver iron content and
improved erythropoietic efficiency in thalassemic mice [107,108].

5. Conclusions

While the genetic lesions engendering beta-thalassemia are
well characterized, how these lesions lead to the full patholog-
ical spectrum of the disease remain less well understood. While
deposition of unpaired oATna-globin chains during erythro-
poiesis is a major event, it is clear that dysregulation of iron
homeostasis in both transfusion dependent and transfusion in-
dependent beta-thalassemia patients is a dominant physiological
effect. Understanding hepcidin expression and regulation in the
context of the beta-thalassemia patient is vital to developing
rational therapeutic interventions to provide safe, effective and
lifelong treatments.
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