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1. Introduction

The notion of entropy is ubiquitous. The first appearance of this concept has been in the context of thermodynamics in
the first half of the XIX century. In the 1930s Shannon recovered this notion and defined a notion of entropy that turned
out to be a useful tool in the context of information theory. The measure entropy defined by Kolmogorov and Sinai played
a fundamental role in the ergodic theory of dynamical systems since the 1950s. In 1965 Adler, Konheim and McAndrew [1]
defined the topological entropy of a continuous self-map of a compact space, extended and deeply studied by many authors
in the sequel. In the final part of [1], the authors suggested also a different notion of entropy of endomorphisms of discrete
Abelian groups, called algebraic entropy. This kind of entropy received surprisingly less attention than topological entropy.
Recently, the algebraic entropy and its extensions to different contexts were deeply studied [9–17,23–26,40–42,2,48,50,57].
The aim of this survey is to discuss the various notions of entropy on a topological space or a group defined in [1,7,37,38,
11,48] and describe the relations among them, correcting some errors appearing in the literature (see Examples 4.8, 4.20
and Claim A.2).

The topological entropy on compact spaces and the uniform entropy on uniform spaces are exposed in Section 2. In par-
ticular, in Section 2.1 we recall the first definition of topological entropy for continuous self-maps of compact spaces from [1].
Some basic properties and examples are discussed here as well.

In his celebrated paper [7], Bowen gave a definition of entropy for uniformly continuous self-maps on metric spaces. Later
on, Hood [31] extended Bowen’s entropy to uniformly continuous self-maps on uniform spaces. This entropy function hU (−)

will be recalled and discussed in Section 2.2.
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At this point, it appears natural to ask whether the topological and uniform entropy coincide whenever both make sense.
In particular, given a compact space X and a continuous self-map φ : X → X , is it true that the topological entropy hT (φ)

of φ and the uniform entropy hU (φ) of φ with respect to the unique admissible uniform structure U on X coincide? An
affirmative answer to this question is known in the case of a compact metric space X (see for example [52, Theorem 6.12]).
In Section 2.3 we extend this coincidence result to the general case (see Corollary 2.14). This is why, we prefer to avoid
using two terms (topological and uniform) and adopt the more general term uniform entropy also for self-maps of compact
spaces, where the uniform entropy coincides with the (widely used) topological entropy.

In the last two Sections 2.4–2.5 we discuss some notions of entropy on non-compact spaces. In particular, the first
part of Section 2.4 presents some results contained in [29], while the second part proposes a new notion of entropy on
non-compact spaces leaving some open questions. In Section 2.5 we discuss an alternative approach to uniform entropy
of a uniformly continuous self-map φ of a locally compact space X , endowed with a Borel measure μ satisfying a specific
compatibility condition with respect to φ.

In Section 3 some known and some new results about uniform entropy and algebraic entropy on locally compact (LC) and
locally compact Abelian (LCA) groups respectively are given. In Sections 3.1–3.2 we recall the definition of Peters’ entropy
and of algebraic entropy (which we denote by hA(−)). In particular, Section 3.1 consists mainly of definitions, while in
Section 3.2 we discuss some deep results about the algebraic entropy on discrete Abelian groups. In fact, in this context hA(−)

is deeply understood and it is possible to establish a uniqueness theorem for the algebraic entropy, that characterizes hA(−)

as the unique function satisfying five axioms (see Theorem 3.5). Also some important dynamical aspects are considered. The
results in these subsections are based on the recent papers [9–11,26,17]. Then, in Section 3.3 we study the uniform entropy
on compact groups. A uniqueness theorem for this entropy, imposing a set of eight axioms, was obtained by Stojanov [43]
(see Theorem 3.12). We discuss these axioms and the possibility to remove or weaken some of them. The reader more
familiar with the measure entropy can find right after the theorem the important fact about the coincidence of the measure
entropy with the uniform entropy for continuous endomorphisms of compact groups equipped with their Haar measure. In
the final part of the subsection, mainly based on [39,43,55,56], we focus on some classical dynamical aspects.

In Section 4 we discuss two claims appearing in [38]. In particular, Section 4.1 examines the possibility to connect
algebraic and uniform entropy on LCA groups using the Pontryagin–Van Kampen duality, while Section 4.2 deals with the
so-called Addition Theorem.

In the final part of the paper, having a merely algebraic setting, we discuss the so-called L-entropy which generalizes to
module theory the concept of entropy. This part is based on [42,41,46]. In particular, following [41], we give a uniqueness
theorem for the L-entropy similar to the one discussed in Section 3.2 for the algebraic entropy on discrete Abelian groups
(see Theorem A.7). Then we use a connection, established in [41], between L-entropy and multiplicity (in the sense of
Northcott [36]) in order to correct a claim appearing in [56].

Notation and terminology

Our notation and terminology is standard. For instance, Z, N, N+ , Q and R respectively stand for the set of integers,
the set of natural numbers, the set of positive integers, the set of rationals and the set of reals. When considered as a
topological space R is equipped with the Euclidean topology.

We denote by eG or simply e the neutral element of a generic group G , the Abelian groups will be written additively and
their neutral element will be denoted by 0. For a group G and a ∈ G we denote by ϕa the inner automorphism (conjugation)
x �→ xa := a−1xa of G . Let F and I be sets. We denote by F I the Cartesian product

∏
i∈I F . If F is a group, then F I is a group

and we denote by F (I) the direct sum
⊕

i∈I F , namely the subgroup of all elements of F I with finite support.
Unless otherwise stated, all topological spaces are assumed to be Tychonoff. The closure of a subset A of a space X will

be denoted by A (or A X or clX (A) to prevent a possibility of confusion). The restriction of a function f to a subset A will
be denoted by f �A .

The Pontryagin dual of a topological Abelian group G is denoted by Ĝ .
For undefined notions and terminology see [18,19,21,28,30,51].

2. Topological entropy versus uniform entropy

2.1. Topological entropy

We now recall the definition of topological entropy given in [1]. Let X be a compact topological space and let

O(X) = {U: U is an open cover of X}.
We allow open covers to have empty members. Given U,V ∈ O(X), the join of U and V is the open cover

U ∨ V = {U ∩ V : U ∈ U, V ∈ V}.
For U ∈ O(X), let N(U) denote the number of elements of a subcover of U with minimal cardinality.
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If φ : X → X is a continuous self-map, then the topological entropy of φ respect to a cover U is defined as

hT (φ,U) = lim
n→∞

log N(U ∨ φ−1(U) ∨ φ−2(U) ∨ · · · ∨ φ−n+1(U))

n
,

where, as usual, φ−1(U) stands for the open cover {φ−1(U ): U ∈ U}.
The topological entropy of φ is

hT (φ) = sup
{

hT (φ,U): U ∈ O(X)
}
. (1)

2.1.1. Basic properties and examples
In this subsection we recall the very basic properties of topological entropy and we give the main examples in the

context of entropy, namely the Bernoulli shifts. Proofs of these properties and a comprehensive outline of the standard facts
about hT (−) can be found in [1,51,52].

The first property to notice is the monotonicity of hT (−) under continuous images. That is, given two continuous self-
maps φi : Xi → Xi (i = 1,2) of the compact spaces X1, X2, if there exists a continuous and surjective map α : X1 → X2, with
αφ1 = φ2α, then

hT (φ2) � hT (φ1).

An easy consequence of monotonicity under continuous images is the invariance of hT (−) under topological conjugation.
More precisely, for compact spaces X and Y , a continuous self-map φ : X → X and a homeomorphism α : Y → X

hT (φ) = hT
(
α−1φα

)
[1, Theorem 1]. The last relevant property of hT (−) that we want to state explicitly is the so-called logarithmic law. For a
continuous self-map φ : X → X of a compact space X ,

hT
(
φn) = n · hT (φ) (2)

for every n ∈ N, moreover hT (φ−1) = hT (φ) if φ is a homeomorphism [1, Theorem 2 and its corollary].
Now we come to an important reduction that allows us to simplify the computation of topological entropy in many

cases:

Remark 2.1 (Reduction to surjective self-maps). Let X be a compact metric space and φ : X → X a continuous self-map.
Consider the subspace

Eφ(X) :=
⋂

φn(X). (3)

It is easy to see that Eφ(X) is closed, φ(Eφ(X)) = Eφ(X) (i.e., Eφ(X) is φ-invariant and the induced self-map φ �Eφ(X) of
Eφ(X) is surjective) and hT (φ) = hT (φ �Eφ(X)) [51, Corollary 8.6.1]. Moreover Eφ(X) is the largest subspace of X with these
properties.

The Bernoulli shifts introduced in the next definition provide a fundamental source of examples for the computation of
(not only topological) entropy.

Definition 2.2. Let F be a set.

(i) We denote by λF : F N → F N the left Bernoulli shift defined by (xn)n∈N �→ (xn+1)n∈N , i.e.,

(x0, x1, . . . , xn, . . .) �→ (x1, x2, . . . , xn+1, . . .).

(ii) Furthermore, denote by βF : F Z → F Z the two-sided Bernoulli shift defined by

(xn)n∈Z �→ (xn+1)n∈Z.

(iii) If a specific point a ∈ F is fixed, one can also define the right Bernoulli shift ρF : F N → F N by letting

(x0, x1, . . . , xn, . . .) �→ (a, x0, . . . , xn−1, . . .).

If in the above definition F is a group, then βF (resp., λF ) is a group automorphism (resp., endomorphism). In this case,
we always take the specific point a ∈ F of part (iii) to be the neutral element e of F . With this choice, also ρF is a group
endomorphism. Sometimes, we briefly call the two-sided Bernoulli shift βF a Bernoulli automorphism (note that neither λF
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nor ρF can be automorphisms). Finally, a Bernoulli shift (no matter if right, left or two-sided) is called simple if F is a
simple group.

In case F is a topological space (or just a finite set considered as a discrete compact space), F Z and F N will carry the
product topology. Then all shifts are continuous. If |F | > 1, the left Bernoulli shift is surjective but not injective, while the
right Bernoulli shift is injective but not surjective. This difference explains why historically there has been less interest
in the right Bernoulli shifts (being non-surjective, they are not measure preserving when F N is endowed with its standard
measure). We shall see in the sequel the prominent role of the right Bernoulli shift ρF when F is a finite Abelian group
(and especially the restriction of ρF to the direct sum F (N)) in the case of algebraic entropy (see Theorem 3.5).

Example 2.3. Let F denote a finite non-empty set, then

(i) hT (βF ) = log |F | (see for example [43] or [56]);
(ii) as EρF (F N) reduces to a single point, one has hT (ρF ) = 0, by Remark 2.1.

2.2. Uniform entropy

Topological entropy on compact spaces was extended by Bowen [7] to uniformly continuous self-maps of a metric space
(X,d) by using the metric uniformity Ud . Later on, Hood [31] adapted Bowen’s definition to uniformly continuous self-maps
on a uniform space. To recall the definition of the uniform entropy hU (−) let (X,U ) be a uniform space and let φ : X → X
be a uniformly continuous self-map. Set

K(X) = {K : K is a compact subset of X}.
Given an entourage of the diagonal V ∈ U , and a natural number n,

– a subset F ⊆ X is said to (n, V )-span a compact K ∈ K(X) with respect to φ, if for every x ∈ K there is y ∈ F such that
(φ j(x),φ j(y)) ∈ V for each 0 � j < n;

– a subset F ⊆ X is said to be an (n, V )-separated set with respect to φ, if for each pair of distinct points x, y ∈ F there
exists j such that 0 � j < n and (φ j(x),φ j(y)) /∈ V .

For V ∈ U , K ∈ K(X) and n ∈ N, set

– rn(V , K , φ) = min{|F |: F (n, V )-spans K with respect to φ};
– sn(V , K , φ) = max{|F |: F ⊆ K and F is (n, V )-separated with respect to φ}.

The numbers rn(V , K , φ) and sn(V , K , φ) are finite and well defined as K is compact. Let us list some useful relations
between them:

Fact 2.4. ([31, Lemma 1]) Let φ be a uniformly continuous self-map on the uniform space (X,U ). If K ∈ K(X) and
W , V ∈ U with W ⊆ V , then

(i) σn(V , K , φ) � σn(W , K , φ), n � 0;
(ii) rn(V , K , φ) � sn(W , K , φ), n � 0;

where σn stands either for rn or for sn .

Given K ∈ K(X), n ∈ N, and letting σ = r, s, define

σ(V , K , φ) = lim sup
n→∞

logσn(V , K , φ)

n
,

for every V ∈ U . Furthermore, let

hσ (K , φ) = sup
{
σ(V , K , φ): V ∈ U

}
.

The following result permits us to work either with hr(K , φ) or with hs(K , φ).

Fact 2.5. ([31, Lemma 1]) Let (X,U ) be a uniform space and let φ : X → X be a uniformly continuous self-map. If K ∈ K(X),
we have hr(K , φ) = hs(K , φ).
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This gives the notion of uniform entropy or Bowen’s entropy hU (φ) of φ (with respect to the uniform structure U ):

hU (φ) = sup
{

hr(X, φ): K ∈ K(X)
} = sup

{
hs(X, φ): K ∈ K(X)

}
. (4)

It is not difficult to prove that hU (−) is monotone under continuous images, invariant under topological conjugation, and
satisfies the logarithmic law. Furthermore its values on the three Bernoulli shifts coincide with the ones of hT (−). For these
and other basic properties we refer to [52].

2.3. Uniform entropy meets topological entropy

The goal of this section is to present an approach to the uniform entropy similar to the definition of topological entropy,
that is, by means of covers (see (7)). The first in using this formulation has been Hofer [29]. However, no links were
established in [29] between this (a priori) different notion of entropy and uniform entropy. Here we prove that the two
approaches are equivalent. As an application we shall show that the topological entropy and the uniform entropy coincide
in the case of a continuous self-map on a compact space. The necessary results and definitions are borrowed from [3].

Given a uniform space (X,U ), consider the uniform covers CU = {C(V ): V ∈ U } defined as

C(V ) = {
V (x): x ∈ X

}
, V ∈ U ,

where as usual V (x) = {y: (x, y) ∈ V }.

Definition 2.6. Let (X,U ) be a uniform space. If A is a uniform cover of X and K is a compact subset of X , then we define
the number N(K ,A) = min{|BK |: BK ⊂ A and K ⊆ ⋃

BK }.

The compactness of K guarantees that the number N(K ,A) is finite and well defined.
The next definition connects the notion of uniform entropy and topological entropy.

Definition 2.7. Let (X,U ) be a uniform space and let φ : X → X be a uniformly continuous self-map. For each compact
subset K of X and each V ∈ U , we define cn(V , K , φ) = N(K ,

∨n−1
i=0 φ−i(C(V ))).

The following lemma is an easy consequence of the previous definition.

Lemma 2.8. Let (X,U ) be a uniform space and let φ : X → X be a uniformly continuous self-map. If V , W ∈ U with W ⊆ V , n ∈ N
and K ∈ K(X), then cn(V , K , φ) � cn(W , K , φ).

The next lemma establishes a useful connection between sn(V , K , φ), rn(V , K , φ) and cn(V , K , φ).

Lemma 2.9. Let (X,U ) be a uniform space and let φ : X → X be a uniformly continuous self-map. If V ∈ U , K ∈ K(X) and n ∈ N,
then we have

(i) sn(V , K , φ) � cn(W , K , φ) for each W ∈ U with W ◦ W ⊆ V ;
(ii) cn(V , K , φ) � rn(V , K , φ).

Proof. (i) By Lemma 2.8, we only need to prove that K contains no (n, W ◦ W , φ)-separated subsets of size > cn(W , K , φ).
Indeed, suppose there is a subset E ⊆ K such that |E| > cn(W , K , φ) and choose a subcover BK ⊆ ∨n−1

i=0 φ−i(C(W )) of K of
cardinality cn(W , K , φ). Since |E| > cn(W , K , φ), we can find two distinct elements x1, x2 ∈ E and y1, y2, . . . , yn ∈ K such
that

x1, x2 ∈ W (y1) ∩ φ−1(W (y2)
) ∩ · · · ∩ φ−n+1(W (yn)

) ∈ BK . (5)

Now, if 0 � j < n, (5) tells us that x1, x2 ∈ W (y j+1) which implies that (φ j(x1),φ
j(x2)) ∈ W ◦ W . Thus, the subset E of

K is not (n, W ◦ W , φ)-separated.
(ii) Let E = {xi}s

i=1 be a subset of K of minimal cardinality which (n, V , φ)-spans K . By definition, given k ∈ K , there
exists xi ∈ E such that (φ j(k),φ j(xi)) ∈ V for each j = 0,1, . . . ,n − 1, that is,

k ∈ φ− j(V
(
φ j(xi)

))
(6)

for all j = 0,1, . . . ,n − 1. Hence the family {φ− j(V (φ j(xi)))}s
i=1 covers K for all j = 0,1, . . . ,n − 1.

Now, for each i = 1,2, . . . , s, consider the set Bi defined as

Bi =
n−1⋂

φ− j(V
(
φ j(xi)

))
.

j=0
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Notice that xi ∈ Bi (i = 1,2, . . . , s), so that (6) tells us that the family {Bi}s
i=1 is a subcover of

∨n−1
i=0 α−i(C(V )) ∩ K of

cardinality s. Thus, by the definition of cn(V , K , φ), we have cn(V , K , φ) � s. This completes the proof. �
Lemma 2.9 permits us to give the following

Definition 2.10. Let (X,U ) be a uniform space and let φ : X → X be a uniformly continuous self-map. If K ∈ K(X) and
V ∈ U , then we define

c(V , K , φ) = lim sup
n→∞

log cn(V , K , φ)

n
for each n � 0.

As a straightforward consequence of Lemma 2.9 we obtain the following

Corollary 2.11. Let (X,U ) be a uniform space and let φ : X → X be a uniformly continuous self-map. If K ∈ K(X), then

(i) s(V , K , φ) � c(W , K , φ) for all V , W ∈ U with W ◦ W ⊆ V ;
(ii) c(V , K , φ) � r(V , K , φ) for all V ∈ U .

The previous corollary allows us to consider the number hU C (φ) ∈ R�0 ∪ {∞} defined as

hU C (φ) = sup
{

hU C (K , φ): K ∈ K(X)
}

(7)

where hU C (K , φ) = sup{c(V , K , φ): V ∈ U }.

Remark 2.12. If the uniform space (X,U ) is a compact, then c(V , X, φ) = hT (φ,C(V )) for every V ∈ U , where hT (φ,C(V ))

is computed on the underlying topological space. Since every open cover of the compact topological space X is uniform, i.e.,
admits a refinement of the form C(V ) for some V ∈ U (see, for instance, [19, Exercise 8.1.H]), we deduce that

hU C (φ) = hT (φ) (8)

from the definition of topological entropy.

The following theorem points out that for a uniformly continuous self-map φ of a uniform space the uniform entropy of
φ coincides with hU C (φ), that is, uniform entropy can be obtained in a similar way as the topological entropy.

Theorem 2.13. If φ : X → X is a uniformly continuous self-map of a uniform space (X,U ), then hU (φ) = hU C (φ).

Proof. Let K ∈ K(X). By Corollary 2.11, we have hs(K , φ) � hU C (K , φ) � hr(K , φ). The result now follows from Fact 2.5. �
Now we can prove that in compact spaces the topological entropy of the continuous self-maps coincides with the uni-

form entropy computed with respect to the unique admissible uniform structure.

Corollary 2.14. Let X be a compact space and let U be the unique admissible uniform structure on X. Then hT (φ) = hU (φ) for every
continuous self-map φ : X → X.

Proof. The self-map φ : (X,U ) → (X,U ) is uniformly continuous, so Remark 2.12 implies hU C (φ) = hT (φ). The result now
follows from Theorem 2.13. �

We conclude this subsection with the following

Example 2.15. If a uniform space X has no infinite compact subsets, then hU (φ) = 0 for every uniformly continuous self-map
φ : X → X , since hU C (K , φ) = 0 for every compact subset K of X as |N(K ,V)| � |K | for every open cover V of X .

2.4. Topological entropy in the non-compact case

This subsection is addressed to analyze some concepts of entropy on non-compact spaces. We begin with two notions
introduced by Hofer [29]. In closing this subsection we take up a new notion of entropy related to the finest uniformity on
a Tychonoff space.

The first entropy function defined by Hofer is a natural adjustment of the concept of topological entropy when the space
X is non-compact. The idea is the following: given a continuous self-map φ : X → X on a topological space X , we make the
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same procedure as in the definition of Adler, Konheim and McAndrew (see Section 2.1) but using finite open covers in place
of open covers. Then we obtain an entropy function which is denoted by hT f (−).

The second kind of Hofer’s entropy is defined for Tychonoff spaces X as follows. As usual, β X stands for the Stone–Čech
compactification of a space X . It is a well-known fact that every continuous map φ from X to a compact space K has a
continuous extension φβ to β X .

Definition 2.16. Let φ : X → X be a continuous self-map of a Tychonoff space X . Then the entropy hβ(φ) is defined as the
topological entropy of the self-map φβ : β X → β X .

Obviously, hT f (φ) = hβ(φ) = hT (φ) for compact spaces.
For hβ(−) the next theorem follows from the properties of the topological entropy (see Section 2.1.1). In the case of

hT f (−), the proof runs along lines similar to the ones used in the classical case (see [29]).

Theorem 2.17. Let φ : X → X be a continuous self-map. If h	(φ) is either hT f (φ) or hβ(φ), then the following properties hold:

(i) h	(φn) = nh	(φ) for every n ∈ N. Moreover, if φ is a homeomorphism, then h	(φn) = |n|h	(φ) for every n ∈ Z.
(ii) If Y is a closed φ-invariant subset of X , then h	(φ �Y ) � h	(φ).

(iii) Let ρ : Y → Y be a continuous self-map. If f : Y → X is a continuous surjection such that f ρ = φ f , then h	(φ) � h	(ρ). In
particular, the entropy h	 is invariant under topological conjugacy.

Given a continuous self-map φ : X → X , it is natural to ask the following

Question 2.18. ([29, remark, p. 239]) Let φ : X → X be a continuous self-map. Is hT f (φ) = hβ(φ)?

In this direction, the main result of [29] states

Theorem 2.19. Let X be a normal space. If φ : X → X is a homeomorphism, then hβ(φ) = hT f (φ).

The proof of Theorem 2.19 heavily relies on the fact that the Stone–Čech compactification of a normal space is the
Wallman compactification defined by means of ultrafilters of closed sets: the point is that F β X ∩ Gβ X = ∅ whenever F and
G are pairwise disjoint closed subsets of X . This feature can be applied in a straightforward way to obtain a one-to-one
correspondence between finite open covers of X and basic open covers of β X .

In the case of a non-normal Tychonoff space X , this procedure strongly fails: β X is now the Wallman compactification
defined by using z-ultrafilters and we can only guarantee that F β X ∩ Gβ X = ∅ for pairwise disjoint zero sets F and G , and
hence one can only obtain a one-to-one correspondence between finite cozero covers of X and basic open covers of β X . As a
consequence one has

Theorem 2.20. If φ : X → X is a continuous self-map, then hβ(φ) � hT f (φ).

Now we offer a new notion of entropy for non-compact spaces. Let X be a space and let F denote the universal uniform
structure on X . Taking into account that every continuous map from X to a uniform space is uniformly continuous for the
universal uniform structure F (see, for instance, [22, 15G, (5)]) the following definition makes sense.

Definition 2.21. Let φ : X → X be a continuous self-map. The entropy hF (φ) of φ is defined as the uniform entropy of φ

considered as a uniformly continuous self-map on (X,F ).

We now establish some basic facts concerning this new entropy function.

Fact 2.22.

(i) Since a compact space admits a unique admissible uniform structure, Corollary 2.14 entails that hF (−) coincides with
hU (−) for compact spaces.

(ii) Since hF (−) is defined by means of the uniform entropy, it satisfies conditions (i)–(iii) of Theorem 2.17.
(iii) Let U be an admissible uniform structure on a space X . If φ : (X,U ) → (X,U ) is a uniformly continuous self-map,

then hU (φ) � hF (φ): notice that the identity map id : (X,F ) → (X,U ) is uniformly continuous so that every uniform
cover for U is a uniform cover for F .

Let us see now that both hβ(−) and hT (−) differ from hF (−).
f
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Example 2.23. Let G be a non-torsion discrete Abelian group and σ the endomorphism x
σ�→ kx, k > 1. By Example 2.15,

hF (σ ) = 0. We show that hβ(σ ) = hT f (σ ) = ∞. By Theorem 2.20, it suffices to check hβ(σ ) = ∞. Let G# denote the group

G equipped with its Bohr topology. Then σ : G# → G# is continuous, and its extension bσ to the Bohr compactification bG
of G# (i.e., the completion of G#) has hU (bσ) = ∞, by [4, Theorem 3.3, Case 1]. The continuous extension jβ : βG → bG of
the inclusion map j : G → bG satisfies jβσ β = bσ jβ . Hence, we have ∞ = hU (bσ) � hU (σ β) = hβ(σ ).

This example shows that the global inequality hF (−) � hβ(−) fails due to examples with very special properties: the
space G# is normal precisely when G is countable [44], while the self-map σ is a continuous endomorphism, hence uni-
formly continuous with the respect to the unique compatible uniformity of the topological group G#.

The previous example leaves open the following question:

Question 2.24. Does the inequality hF (φ) � hβ(φ) hold for every continuous self-map φ : X → X of a Tychonoff space X?

2.5. Bowen’s entropy in locally compact spaces

Let (X,d) be a locally compact metric space endowed with a Borel measure μ and let φ : X → X be a uniformly continu-
ous self-map. Bowen introduced in [7, Section 2] another entropy function k(−), in case μ satisfies a specific compatibility
condition with respect to φ (see (i)–(iii) below).

Indeed, for x ∈ X , n ∈ N+ and ε > 0 define the Bowen’s ball

Dn(x, ε,φ) =
n−1⋂
k=0

φ−1(Bε

(
φk(x)

))
,

where Bε(x) denotes the ball given by the metric d. Call the Borel measure μ on X φ-homogeneous, if

(i) μ(K ) < ∞ for all compact sets K in X ;
(ii) μ(K0) > 0 for some compact subset K0 of X ;

(iii) for each ε > 0 there exist δ > 0 and c > 0 such that

μ
(

Dn(y, δ,φ)
)
� cμ

(
Dn(x, ε,φ)

)
,

for all n ∈ N+ and all x, y ∈ X .

It follows from (iii) that the value

k(φ, x, ε) = lim sup
n→∞

− logμ(Dn(x, ε,φ))

n
, (9)

does not depend on the particular choice of x ∈ X . Now we can define the rate of decay of the measure of Bowen’s ball

k(μ,φ) = lim
ε→∞k(φ, x, ε).

Bowen proved that

hs(K , φ) = k(μ,φ) (10)

for every compact K ⊆ X with μ(K ) > 0, in particular, hU (φ) = k(μ,φ), in view of (ii). Note that the more precise equality
(10) implies that Bowen’s entropy hs(K , φ) does not depend on the compact set K as far as μ(K ) > 0. This allows for a simpler
computation of hU by choosing an appropriate compact set with μ(K ) > 0.

Hood [31] noticed that the definition of Bowen’s entropy k(−) can be extended to a uniformly continuous self-map
φ : X → X of a uniform locally compact space (X,U ) as follows. For an entourage V of the uniform structure, x ∈ X and
n ∈ N+ , one can define the counterpart of the Bowen’s ball with respect to U by Dn(x, V , φ) = ⋂n−1

k=0 φ−1(V (φk(x))). Using
this notion, one can define φ-homogeneous Borel measures μ on X as above. When X is endowed with such a measure μ,
one obtains again hU (φ) = k(μ,φ) (see Proposition 13 from [31]).

In what follows we discuss Hood’s generalization of Bowen’s entropy k(−) for a locally compact group G , endowed with
a left Haar measure μ and considered in its left uniform structure. Let

C (G) = {K : K is a compact neighborhood of eG in G}.
For a positive integer n, the n-th φ-cotrajectory of a fixed V ∈ C (G) is

Cn(φ, V ) = V ∩ φ−1 V ∩ · · · ∩ φ−n+1 V . (11)
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Now, for x ∈ G , n ∈ N+ and V ∈ C (G), one has Dn(x, V , φ) = xCn(φ, U ). Therefore, the left invariance of μ yields that μ
is φ-homogeneous for every continuous endomorphism φ of G and μ(Dn(x, V , φ)) = μ(Cn(φ, V )). Now Bowen’s entropy
k(φ, V ), with V ∈ C (G) (generalizing (9) from the metric case) is

k(φ, V ) = lim sup
n→∞

− logμ(Cn(φ, V ))

n
, (12)

and Bowen’s entropy of φ is

k(φ) = sup
{
k(φ, V ): V ∈ C (G)

}
. (13)

As we mentioned, a reformulation in terms of LC groups of the results from [31] gives, for an LC group G and a contin-
uous endomorphism φ : G → G ,

k(φ) = hU (φ).

In view of this equality, we will use the symbol hU (−) also to denote k(−). We conclude this section with a remark that
simplifies the computation of the supremum (13) in many cases.

Remark 2.25.

(a) One can see that the value of k(φ, V ) computed in (12) does not depend on the choice of the Haar measure μ on G
[48, Lemma 2.1].

(b) Obviously, for V , V ′ ∈ C (G), with V ⊆ V ′ , μ(V ) � 1 and μ(V ′) � 1, one has Cn(φ, V ) ⊆ Cn(φ, V ′), so k(φ, V ) � k(φ, V ′).
In this sense, k(φ, V ) is monotone with respect to V . Therefore, in (13) one can take the neighborhoods V from a base
of C (G).

(c) It is well known that when G is totally disconnected, then C (G) has a base of clopen compact subgroups (see [28]).
Therefore, one can take in (13) clopen compact subgroups V in this case. This allows to eliminate the Haar mea-
sure μ completely. Indeed, let u := μ(V ) > 0. The open subgroup Cn(φ, V ) of V has a finite index [V : Cn(φ, V )], so
μ(Cn(φ, V )) = u

[V :Cn(φ,V )] . Hence, (12) can be rewritten in the following measure-free form

k(φ, V ) = lim sup
n→∞

log[V : Cn(φ, V )] − u

n
= lim sup

n→∞
log[V : Cn(φ, V )]

n
, (14)

as lim log u
n = 0. Moreover, when G is compact and totally disconnected, this formula can be improved as follows. From

[G : Cn(φ, V )] = [G : V ][V : Cn(φ, V )] and the equality limn→∞ log[G:V ]
n = 0 one can easily deduce

lim sup
n→∞

log[G : V ][V : Cn(φ, V )]
n

= lim sup
n→∞

log[V : Cn(φ, V )]
n

.

This gives

k(φ, V ) = lim sup
n→∞

log[G : Cn(φ, V )]
n

. (15)

(d) A topological group G is said to be SIN (abbreviation for small invariant neighborhoods), if G has a local base at eG

consisting of invariant neighborhoods V (i.e., V x = V for all x ∈ G). It is easy to see that in a locally compact SIN group
G every inner automorphism ϕa : x �→ xa has uniform entropy zero (by item (b) it suffices to note that k(V ,ϕa) = 0
for every compact invariant neighborhood V of eG ). In particular, every inner automorphism of a compact group has
uniform entropy zero. Easy examples show that this property fails in locally compact groups that are not SIN, e.g. the
group SL2(R).

3. Algebraic and uniform entropy on topological groups

In this section we discuss the uniform entropy and the algebraic entropy on some categories of topological groups.
Since few results can be proved for the whole category of topological groups, we limit our interest mainly to some full
subcategories of the category LC of all locally compact (LC) groups, denoted in the sequel as follows:

– C (resp., CA) denotes the category of compact (resp., compact Abelian) groups;
– LCA denotes the category of locally compact Abelian (LCA) groups;
– DA (resp., TA) denotes the category of discrete Abelian (resp., torsion discrete Abelian) groups;
– vec(R) denotes the category of finite-dimensional real vector spaces;
– Pro denotes the category of profinite Abelian groups.
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The usual point of view is to consider entropy (no matter if topological, uniform, algebraic, measure-theoretic, etc.) as a
map from the set of endomorphisms of a fixed object in a category D to R�0 ∪ {∞}. This point of view can be made more
rigorous as follows.

Given a category D, let Flow(D) denote the category of flows of D whose objects are the endomorphisms φ : G → G ,
where G is an object of D. Sometimes we need to make explicit the domain of an object φ : G → G of Flow(D). In these
cases we shall refer to an object of Flow(D) as a pair (G, φ).

A morphism α : (G, φ) → (H,ψ) in Flow(D) is a commutative square

G
φ

α

G

α

H
ψ

H .

For a full subcategory D of LC and two functions h,h′ from Flow(D) to R�0 ∪ {∞} we use the following terminology:

(1) h is invariant under conjugation if for every pair of isomorphic objects φ,ψ ∈ Flow(D) one has h(φ) = h(ψ);
(2) h satisfies the logarithmic law if for every φ ∈ Flow(D) we have that h(φn) = n · h(φ), for all n ∈ N;
(3) if D is closed under taking closed normal subgroups and quotients over closed normal subgroups, then h satisfies the

Addition Theorem (briefly AT) if, for every (G, φ) ∈ Flow(D), and every closed φ-invariant normal subgroup H ⊆ G , we
have

h(φ) = h(φ �H ) + h(φ̄),

where φ̄ : G/H → G/H is the morphism induced on the quotient by φ;
(4) if D is closed under taking quotients over closed normal subgroups, then h is continuous on inverse limits if, for every

(G, φ) ∈ Flow(D), and every family {Hi}i of closed φ-invariant normal subgroups Hi ⊆ G , we have

h(φ̄) = sup
i

h(φ̄i),

where H = ⋂
i Hi , and φ̄ : G/H → G/H , φ̄i : G/Hi → G/Hi are the maps induced on the quotients by φ;

(5) if D is closed under taking closed subgroups, then h is continuous on direct limits if, for every (G, φ) ∈ Flow(D), and
every family {Hi}i of closed φ-invariant subgroups Hi ⊆ G , we have

h(φH ) = sup
i

h(φi),

where H = clG(
∑

i Hi), and φH : H → H , φi : Hi → Hi are the maps induced by φ;
(6) if D consists of Abelian groups, we say that the (ordered) pair (h,h′) satisfies the Bridge Theorem (briefly BT) on Flow(D)

if, for every φ ∈ Flow(D)

h(φ) = h′(φ̂ ),

where φ̂ : Ĝ → Ĝ is the Pontryagin–Van Kampen dual of φ : G → G .

The category Casc(D) of cascades of D is the full subcategory of Flow(D) with objects all automorphisms in D. The
properties (1)–(3) and (6) will be considered, with the obvious modifications, for Casc(D) as well. We refer to [29] for the
notion of cascade and to [10, Section 3], [47] for the category of flows.

It is relevant to know whether (some subset of) the properties (1)–(6) can be used to uniquely characterize an entropy
function. We refer to results of this kind as Uniqueness Theorems (see Theorems 3.5–3.12–4.12–A.7). It turns out that in
addition to the properties listed above we also need normalizations. A first relevant normalization is given by the values
taken on the Bernoulli shifts (see Definition 2.2). Let us introduce a second tool to normalize the values of an entropy
function, namely the Mahler measure.

Let n ∈ N, denote by Q the discrete group of rationals and by K the Pontryagin–Van Kampen dual of Q. An endomor-
phism φ of Qn (resp., Kn) is described via an n × n rational matrix A ∈ Matn(Q). Let p(X) be the (monic) characteristic
polynomial of A over Q and s ∈ N+ be the least common multiple of the denominators of the coefficients of p(X). The
characteristic polynomial of A taken over Z is the primitive polynomial

p1(X) = sp(X) = sXn + a1 Xn−1 + · · · + an ∈ Z[X].
Note that p1(X) and the eigenvalues λi , i = 1,2, . . . ,n, of A depend only on φ. The number

m
(

p1(X)
) = log s +

∑
|λi |>1

log |λi|,

is known as (logarithmic) Mahler measure of p1(X) [20]. We shall call it also Mahler measure of φ and denote it by m(φ).
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3.1. Algebraic entropies

In the two papers [37] and [38], of 1979 and 1981 respectively, Peters defined a new entropy function with the aim to
dualize in an appropriate sense the concept of Bowen’s entropy defined by (13). Here we recall Peters’s definition as well
as the alternative notion of algebraic entropy proposed in [11,48]. Both notions are based on the concept of Haar measure
so we fix an LCA group G , a continuous endomorphism φ : G → G and a Haar measure μ on G . We recall that the modulus
is a group homomorphism

modG : Aut(G) → R>0, α �→ modG(α)

such that μ(α(E)) = modG(α)μ(E), where E is a measurable subset of G , and Aut(G) is the group of topological isomor-
phisms from G onto G (see [28, (15.26), p. 208] for the existence of such a function).

Example 3.1. The following examples are well known.

(i) If G is compact or discrete, then modG(α) = 1 for every α ∈ Aut(G).
(ii) If G = Rn for some positive integer n, then modG(α) = |detR(φ)| for every α ∈ Aut(G).

Given a positive integer n and K ∈ C (G), the key idea of Peters is to replace the n-th φ-cotrajectory in (11) by the
following sum

Pn(φ, K ) = K + φ−1 K + · · · + φ−n+1 K ,

where φ is a topological isomorphism. Then Peters’s entropy of φ with respect to K is defined by

H∞(φ, K ) = lim sup
n→∞

logμ(Pn(φ, K ))

n
,

and Peters’s entropy of φ is h∞(φ) = sup{H∞(φ, K ): K ∈ C (G)}. Note that h∞(φ) = 0 whenever G ∈ C (G) is compact.
The main reason to introduce the entropy h∞(−) can be found in [38, Section 9] where the following fascinating claim

appears:

Claim 3.2. ([38]) The pair (h∞,hU ) satisfies BT on Casc(LCA).

Roughly speaking h∞(−) is meant to be “dual” to hU (−). This works for Casc(DA) (see [38] or Theorem 4.9), taking into
account Fact 3.4(ii). It works (trivially) for Casc(CA) as well, since h∞(−) vanishes on automorphisms of compact groups,
while hU (−) vanishes on self-maps of discrete spaces (see Example 2.15). Unfortunately, Claim 3.2 strongly fails even for
automorphisms of the reals (see Example 4.8). Because of the failure of Claim 3.2 and of the fact that this definition covers
only topological isomorphisms, the entropy h∞(−) seems to be unsatisfactory. This is why the first named author with
Giordano Bruno in [11], and the third named author in [48], modified Peters’s definition respectively in the discrete and in
the general case. As in the case of Peters’s entropy, the key idea is to find the right notion of “trajectory” in order to replace
the cotrajectory (11).

For an Abelian group G , an endomorphism φ : G → G and a subset E ⊆ G , call the subset

Tn(φ, E) = E + φE + · · · + φn−1 E

the n-th φ-trajectory of K . If E is finite (resp., compact, a subgroup), then Tn(φ, E) is finite (resp., compact, a subgroup).
For an LCA group G , a continuous endomorphism φ : G → G , n ∈ N+ and K ∈ C (G), the algebraic entropy of φ with respect

to K is

H A(φ, K ) = lim sup
n→∞

logμ(Tn(φ, K ))

n
. (16)

The algebraic entropy of φ is hA(φ) = sup{H(φ, K ): K ∈ C (G)}.

Remark 3.3. The name “algebraic entropy” is justified by the explicit use of the algebraic operation “+” of the group in the
definition of the trajectory (unlike the cotrajectory (11) in the definition of Bowen’s entropy in LC).

The following fact establishes a precise relation between hA(−) and h∞(−):
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Fact 3.4. ([48, Remark 2.8]) Let G be an LCA group and φ : G → G a topological isomorphism. Then

(i) h∞(φ) = hA(φ) − log(modG(φ));
(ii) in particular, h∞(−) and hA(−) coincide on topological isomorphisms of discrete or compact Abelian groups.

In the forthcoming Sections 3.2–3.3, we study hA(−) and hU (−) on discrete Abelian groups and on compact groups
respectively. In particular we give the fundamental properties that enable one to completely characterize these two entropy
functions. Then we state some dynamical consequences.

3.2. Algebraic entropy on discrete Abelian groups

We are giving first the case of discrete groups, although chronologically the compact cases came first. This is motivated
by the various applications we give of the results in the discrete case.

In the sequel G will be a discrete Abelian group. The Haar measure for G is given by μ(E) = |E|, the size of a subset E
of G (by letting |E| = ∞ when E is infinite). Now C (G) is the family of finite subsets of G containing the 0 element. For
F ∈ C (G) the value of H A(φ, F ) in (16) is obtained as a limit in [11]. In case G is torsion, hA(φ) coincides with the function
(that can be defined also in the general case)

ent(φ) = sup
{

H A(φ, F ): F is a finite subgroup of G
}
. (17)

The first definition of ent(−) was given in [1] and some of its basic properties were investigated in [53]. For a deep
study of ent(−) we refer to [16] (for alternative defining formulae see Appendix A).

3.2.1. Uniqueness of the algebraic entropy for the discrete Abelian groups
The following uniqueness theorem for the algebraic entropy in DA is proved in [11, Theorem 1.5]. It shows that the

function hA(−) is completely determined by a set of five axioms.

Theorem 3.5 (Uniqueness Theorem). The algebraic entropy hA : Flow(DA) → R�0 ∪ {∞} is the unique function such that

(DA1) hA(−) is invariant under conjugation;
(DA2) hA(−) is continuous on direct limits;
(DA3) hA(−) satisfies AT;
(DA4) if K is a finite Abelian group and ρK is the right Bernoulli shift of K N , then hA(ρK �

K (N)
) = log |K |;

(DA5) for every automorphism φ of Qn the algebraic entropy of φ coincides with the Mahler measure of φ , in symbols hA(φ) = m(φ).

If we restrict hA(−) to the subcategory TA of DA, condition (DA5) can be ignored and the axiom (DA1)–(DA4) suffice
to guarantee uniqueness (see [16], where also the logarithmic law is given as a fifth axiom, but one can prove as in [40,
Proposition 2.1] that it is not necessary).

The verification of the properties (DA1), (DA2) and (DA4) are quite standard (see [11]), unlike the highly non-trivial
property (DA5), called Algebraic Yuzvinski Formula. Its proof is the main result of [26]. Finally, property (DA3), the Addition
Theorem, is proved in [11] making substantial use of (DA5). Giordano Bruno [23] proved that hA(ρK ) = ∞ whenever K is
a non-trivial finite Abelian group. This explains the necessity to use the restriction ρK �K (N) in (DA4), rather then the right
shift ρK itself.

Given a positive integer n and an endomorphism φ : Q → Q, an elementary proof of the weaker form of (DA5),

hA(φ) � max
{

log s, log |λ1|, . . . , log |λn|
}
,

where {λ1, . . . , λn} is the family of complex eigenvalues of φ and s is the least common multiple of the denominators of
the coefficients of the (monic) characteristic polynomial of φ over Q, using only basic facts from linear algebra was given
in [17]. This fact provides an alternative proof of the forthcoming Theorem 3.8 for the case of Qn , making no use of the
stronger (DA5).

Using the Addition Theorem one can reduce the computation of the algebraic entropy to the case of automorphisms.
This can be obtained in two steps. Firstly, for φ ∈ End(G) consider the hyperkernel

ker∞ φ =
∞⋃

n=0

kerφn

of φ. Obviously, the induced endomorphism φ̄ : G/ker∞ φ → G/ker∞ φ is injective and hA(φ̄) = hA(φ), as hA(φ �ker∞ φ) = 0
(see Example 3.7(b)). Secondly, for an injective φ ∈ End(G) one can consider the φ-invariant subgroup Eφ(G) := ⋂

φn(G).
Then the restriction φ �Eφ(G): Eφ(G) → Eφ(G) is an automorphism, while the induced endomorphism φ̄ : G/Eφ(G) →
G/Eφ(G) satisfies E φ̄ (G/Eφ(G)) = 0 and hA(φ) = hA(φ̄) + hA(φ �Eφ(G)). Note that this step need not preserve the entropy, as

hA(φ̄) need not vanish.
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3.2.2. Dynamical aspects: Pinsker subgroup and (quasi-)periodicity
All results and notions in this part come from [9], where the reader can find major details. Let G be a discrete Abelian

group and φ ∈ End(G). For a finite F ⊆ G and n ∈ N+ let

τF ,φ(n) = ∣∣Tn(φ, F )
∣∣.

Now, τF ,φ(n) � |F |n , so τF ,φ(n) has at most exponential growth. Motivated by this, one says that

• τF ,φ(n) has exponential growth, if there exists b > 1, such that τF ,φ(n) � bn for all n ∈ N+;
• τF ,φ(n) has polynomial growth, if there exists a polynomial P (X) ∈ Z[X], such that τF ,φ(n) � P (n) for all n ∈ N+ .

One has the following important and somewhat surprising fact:

Theorem 3.6. ([9, Dichotomy Theorem]) The function τF ,φ(n) has either exponential or polynomial growth for every non-empty finite
subset F of G and every φ ∈ End(G).

This Dichotomy Theorem captures a typical behavior of the Abelian groups. Indeed, one can similarly define algebraic
entropy for endomorphisms of arbitrary (not necessarily Abelian) groups (see [12]). It is a well-known fact that such a
dichotomy is not available even for the identity endomorphism φ = idG if the group G is not Abelian. This question was
raised by Milnor [34], a negative answer was given by Grigorchuk [27], who constructed a series of groups with intermediate
growth (see [12] for more details on the connection between the algebraic entropy and the growth rate).

For an Abelian group G and φ ∈ End(G) one says that

• φ has polynomial growth, if τF ,φ(n) has polynomial growth for every finite subset F of G;
• φ has exponential growth, if τF ,φ(n) has exponential growth for some finite subset F of G .

Obviously, Theorem 3.6 implies the following Global Dichotomy Theorem: every φ ∈ End(G) has either a polynomial growth
or an exponential growth.

An element x ∈ G is said to be a quasi-periodic point of φ if there exist m �= n ∈ N such that φn(x) = φm(x).

Example 3.7. Let G be an Abelian group, φ ∈ End(G) and F be a finite subset of G .

(i) If all elements of F are quasi-periodic, then τF ,φ(n) has polynomial growth. Thus, H A(φ, F ) = 0.
(ii) Consequently,

• hA(φ) = 0, if φ has polynomial growth.
• hA(φ �ker∞(φ)) = 0, as all the elements in ker∞(φ) are trivially quasi-periodic.

Every endomorphism φ of an Abelian group G admits:

– a greatest φ-invariant subgroup P(G, φ) of G (named Pinsker subgroup of φ) such that hA(φ �P(G,φ)) = 0;
– a greatest φ-invariant subgroup Pol(G, φ) of G such that φ �Pol(G,φ) has polynomial growth;
– a smallest φ-invariant subgroup Q(G, φ) of G such that the induced endomorphism of G/Q(G, φ) has no quasi-periodic

points.

Using Example 3.7, one can immediately see that P(G, φ) ⊇ Pol(G, φ) and both Pol(G, φ) and P(G, φ) contain all quasi-
periodic points. The last fact, combined with an easy iterated application of the Addition Theorem [9] gives P(G, φ) ⊇
Q(G, φ). Another iterated argument, used in [9] proves the less trivial inclusion Pol(G, φ) ⊇ Q(G, φ), which gives the chain
of inclusions

P(G, φ) ⊇ Pol(G, φ) ⊇ Q(G, φ). (18)

The inclusion P(G, φ) ⊆ Q(G, φ) follows from the next theorem, proved in [9] with a substantial use of the Algebraic
Yuzvinski Formula:

Theorem 3.8. Let G be a non-trivial Abelian group and φ ∈ End(G). If hA(φ) = 0 then φ has non-trivial quasi-periodic points.

Using the equality P(G, φ) = Q(G, φ) and the chain of inclusions (18), one obtains:

Theorem 3.9. ([9, Main Theorem]) Q(G, φ) = Pol(G, φ) = P(G, φ) for every (G, φ) ∈ Flow(DA).
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Following [9], we say that φ ∈ End(G)

– is algebraically ergodic, if Q(G, φ) = {0};
– has completely positive algebraic entropy (and we write hA(φ) � 0), if hA(φ �H ) = 0 yields H = {0} for every φ-invariant

subgroup H of G .

Clearly, hA(φ) � 0 if and only if P(G, φ) = {0}. So Theorem 3.6 implies the following algebraic version of Rohlin’s Theo-
rem [39] concerning the uniform entropy:

Theorem 3.10. φ ∈ End(G) is algebraically ergodic if and only if φ has completely positive algebraic entropy.

Actually, the following more precise statement can be deduced from the previous results:

Corollary 3.11. Let (G, φ) ∈ Flow(DA) and denote by φ̄ : G/P(G, φ) → G/P(G, φ) the induced endomorphism. Then:

(i) hA(φ̄) � 0;
(ii) P(G/P(G, φ), φ̄) = {0};

(iii) hA(φ̄) = hA(φ).

3.3. Uniform entropy on compact groups

The uniform entropy in the realm of topological groups has been studied mainly for compact groups where it is quite
well understood (for uniform entropy of continuous endomorphisms on a totally bounded topological group see [4]). In this
section we try to give an overview of the main results.

3.3.1. Uniqueness of the uniform entropy for compact groups
The following uniqueness theorem for the entropy hU (−) on compact groups has been proved by Stojanov [43]. It

provides a complete characterization of hU (−) with a set of eight axioms.

Theorem 3.12 (Uniqueness Theorem). ([43]) The uniform entropy hU : Flow(C) → R�0 ∪ {∞} is the unique function such that

(C1) hU (−) is monotone, that is, if (G, φ), (H,ψ) ∈ Flow(C) and there exists a continuous monomorphism α : G → H such that
αφ = ψα, then hU (φ) � hU (ψ);

(C2) if φ ∈ Flow(C), then hU (φ) = hU (φ �Eφ(G)), with Eφ(G) as in Remark 2.1;
(C3) hU (−) satisfies the logarithmic law;
(C4) hU (ϕa) = 0 for every inner automorphism ϕa of G;
(C5) hU (−) is continuous on inverse limits;
(C6) hU (−) satisfies AT;
(C7) if G = F Z for some finite group F and φ = βF is the two-sided Bernoulli shift, then hU (φ) = log |F |;
(C8) if G = Kn for some positive integer n, then hU (φ) = m(φ) is the Mahler measure of φ .

This theorem provides another way to prove that the uniform entropy of a surjective continuous endomorphism of a
compact group coincides with its Kolmogorov–Sinai entropy hmes(−) (possessing the same properties). For the coincidence
of hU (−) and hmes(−) we refer to [5,6] (or [54] in the totally disconnected case).

We pass now to discuss the various axioms. It is not difficult to see that hU (−) satisfies (C1), (C3), (C4), and (C7), for a
proof we refer to [52] (for (C4) see also Remark 2.25(b)). We conjecture that axiom (C3) can be replaced by the following
weaker one:

(C3∗) if φ ∈ Flow(C) has hU (φn) = 0 for some n ∈ N+ , then hU (φ) = 0.

We are not aware if there exists a function h′ : Flow(C) → R�0 ∪ {∞} satisfying axioms (C1)–(C2) and all axioms
(C4)–(C8), such that (C3∗) fails.

The proof of (C5) can be found in [43, Proposition 2.1]. Furthermore, a partially extended form for LCA groups of the
continuity on inverse limits is given in [37, Corollary 11]. Nevertheless the proof heavily uses the non-proved Addition
Theorem for LCA groups (see Section 4.2). Thus it is fair to say that the validity of this extension is still open. According to
[43, Lemma 4.5], property (C5) allows for a reduction of the computation of the uniform entropy to the case of metrizable
compact groups.

The Addition Theorem (C6) has been proved by Yuzvinski [56] in the metrizable case, but can be derived also from a
more general result of Bowen [7] always in the metric case. The case of arbitrary compact groups, can be easily deduced
from the metric case using (C5).



1930 D. Dikranjan et al. / Topology and its Applications 159 (2012) 1916–1942
Axiom (C2) is simply a reduction to surjective endomorphisms (an application of the Addition Theorem (C6) and the
continuity on inverse limits (C5) shows that (C2) holds for hU (−)). To the effect of this property one can note that if F is a
finite group, then the right Bernoulli shift ρF : F N → F N is injective, but not surjective and EρF (F N) = 0, hence hU (ρF ) = 0.
Furthermore, it turns out that axiom (C2) can be replaced by a much weaker one:

Theorem 3.13. ([15]) Theorem 3.12 remains true whenever axiom (C2) is replaced by:

(C2∗) hU (ζL) = 0 for all simple compact connected Lie groups L and the trivial endomorphism ζL : L → L.

Moreover, there exists a function h′ : Flow(C) → R�0 ∪ {∞} satisfying axiom (C1) and all axioms (C3)–(C8), such that h′(ζL) = ∞
for all simple compact connected Lie groups L.

The proof of (C8) firstly appeared in [56], a different proof can be found in [32]. It can be shown that if in (C8) one takes
only endomorphisms of Tn (instead of Kn), then uniqueness fails [43].

In the rest of this subsection we show that the computation of the uniform entropy of a continuous endomor-
phism φ of a compact group G can always be reduced to the case when φ is an automorphism (compare with the
last part of Section 3.2.1). Firstly one reduces to surjective endomorphisms according to (C2). Secondly one reduces
to automorphisms. Namely, let G be a compact group and φ : G → G a continuous surjective endomorphism. Then
Kφ(G) := ker∞ φ is a φ-invariant closed normal subgroup of G with φ−1(Kφ(G)) = Kφ(G), in other words the induced
endomorphism φ̄ : G/Kφ(G) → G/Kφ(G) is an automorphism. In particular, K φ̄ (G/Kφ(G)) = {e}, while the restriction
φ1 := φ �Kφ(G): Kφ(G) → Kφ(G) is surjective and has dense hyperkernel, i.e., Kφ1 (Kφ(G)) = Kφ(G). The next example shows
that hU (φ1) > 0 (i.e., hU (φ) > hU (φ̄) due to the Addition Theorem) unless φ1 is trivial. In other words, this reduction step
is not supposed to preserve the entropy. Yet it is useful since the formula hU (φ) = hU (φ̄) + hU (φ1) allows for a reduction to
separate computation of the entropy in these two cases.

Example 3.14.

(i) Let F be a finite non-trivial group. It is easy to see that the left Bernoulli shift λF : F N → F N has dense hyperkernel.
Since hU (λF ) = log |F | > 0, we deduce that a surjective endomorphism of a compact group with dense hyperkernel need
not necessarily have zero uniform entropy.

(ii) This phenomenon can be formulated in a more precise form as follows: If G is a non-trivial compact totally disconnected
group and φ : G → G is a continuous surjective endomorphism with Kφ(G) = G, then hU (φ) > 0. This follows from the follow-
ing more precise property established by Stojanov [43, Corollary 3.3] in this situation. Namely, for every open normal
subgroup M of G such that G/M is simple there exists a closed normal subgroup H of G with φ(H) = H such that the
induced endomorphism φ̄ : G/H → G/H is conjugated to λG/M . Since hU (φ) � hU (φ̄) = log |G/M|, the above claim be-
comes obvious. On the other hand, such an open normal subgroup M of G obviously exists, as G is totally disconnected.

3.3.2. Dynamical aspects: ergodic automorphisms
Definition 3.15. A continuous surjective endomorphism φ : G → G of a compact group G , equipped with its Haar measure μ,
is said to be ergodic, if one of the following two equivalent properties is satisfied:

(i) φ−1 B = B implies μ(B) = 0 or μ(B) = 1 for every measurable set B;
(ii) for every pair A, B of measurable subsets of G with μ(A) > 0 and μ(B) > 0 there exists n ∈ N such that

μ(φ−n(A) ∩ B) > 0.

If φ : G → G is ergodic, then for every φ-invariant closed normal subgroup N of G the induced endomorphism of G/N is
ergodic as well.

Let us recall the following criterion, due to Halmos and Rohlin [51, Theorem 1.10]: an automorphism φ of a compact Abelian
group G is ergodic if and only if its Pontryagin dual φ̂ has no periodic points beyond 0. Therefore, one obtains:

Fact 3.16. ([9]) A continuous surjective endomorphism φ of a compact Abelian group G is ergodic if and only if its Pontryagin
dual φ̂ is algebraically ergodic, i.e., Q(φ̂, Ĝ) = 0.

The Abelian case of the next example follows from Halmos–Rohlin’s criterion:

Example 3.17. ([43, Lemma 3.5]) A continuous automorphism φ of a compact totally disconnected group G is ergodic if and
only if there exists no proper open normal φ-invariant subgroup of G .

One can show that every continuous automorphism φ of a compact totally disconnected group G admits a largest closed
φ-invariant subgroup E (φ) such that the restriction φ �E (φ) is ergodic:
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Proposition 3.18. ([43, Proposition 3.4]) Let G be a compact totally disconnected group and let φ : G → G be a continuous automor-
phism. There exists a transfinite sequence {Nα: α � τ } of closed φ-invariant subgroups such that

(i) N0 = G and Nα+1 is open in Nα for α < τ ;
(ii) Nβ = ⋂

α<β Nα for all limit ordinals β � τ ;
(iii) φ �Nτ is ergodic (i.e., E (φ) = Nτ ).

A proof in the Abelian case can be obtained using the forthcoming Bridge Theorem 4.10 and [16, Proposition 3.13]. For a
version of this theorem in the Abelian case, where total disconnectedness is completely removed, see Theorem 4.11.

The structure of the ergodic restriction φ �E (φ) is described by the following theorem of Yuzvinski:

Theorem 3.19. ([56, Theorem 11.7]) If φ is an ergodic automorphism of a totally disconnected compact metrizable group G, then there
exists a decreasing sequence G = G0 ⊇ G1 ⊇ · · · of φ-invariant closed subgroups such that

(i)
⋂

n Gn = {e};
(ii) Gn+1 is a normal subgroup of Gn for every n ∈ N;

(iii) the automorphism of Gn/Gn+1 induced by φ is a simple Bernoulli automorphism.

As a consequence of Theorem 3.19, one can see that every ergodic automorphism φ of a totally disconnected compact
group G is densely periodic (i.e., the set of periodic points of φ is dense in G) [56, 11.8].

Example 3.20. One may notice that ergodic automorphisms of non-Abelian connected compact groups did not appear so
far. Indeed, Wu [54] proved that a finite-dimensional compact connected group admitting ergodic automorphisms must
necessarily be Abelian. On the other hand, this is not true in the infinite-dimensional case: the two-sided Bernoulli shift
βK : K Z → K Z of any compact connected group K is an ergodic automorphism, yet K Z may fail to be Abelian (just take K
to be a non-Abelian compact connected group).

4. The Bridge Theorem and the Addition Theorem

As already mentioned, the pair (h∞,hU ) does not satisfy the Bridge Theorem on Casc(LCA). We actually do not know if
the counterpart for hA(−) does hold. We state this question more precisely:

Question 4.1. Does the pair (hA,hU ) satisfy BT on Flow(LCA)?

The forthcoming Section 4.1 is dedicated to the discussion of the above question. In particular, Question 4.1 is known
to have positive answer for the subcategories Flow(vec(R)), Flow(TA), and Flow(DA). Clearly the proof for Flow(DA)

generalizes the case of Flow(TA). The latter can be easily derived directly from the definitions of the two entropies involved
(see Theorem 4.10). The proof in the former case can be found in [11], it is more complicated and makes recourse to
the properties (DA1)–(DA5) of the algebraic entropy. There is also a second proof of the BT for Flow(DA), based on the
Uniqueness Theorems for hA(−) and hU (−) [11]. The Bridge Theorem is very useful as it converts results about hU (−) into
results about hA(−) and vice versa.

In [38], Peters introduces a new entropy function h∗(φ) for a topological isomorphism φ from an LCA group G onto itself,
using the formula

h∗(α) = hU (α) + h∞(α). (19)

The following claim can be found in [38, Theorem 10]:

Claim 4.2. ([38])

(i) hU (−) satisfies the AT on Casc(LCA);
(ii) h∞(−) satisfies the AT on Casc(LCA);

(iii) h∗(−) satisfies the AT on Casc(LCA).

Only a proof of part (i) of the above claim is given in [38, Theorem 10] (but it contains various gaps, see Section 4.2.2),
then (the false) Claim 3.2 is used to deduce part (ii) and so (iii). Even if the proof of Claim 4.2 does not work, we do not
know whether these statements are true or not:

Question 4.3. Does hU (−) (resp., hA(−), h∞(−)) satisfy AT on Flow(LCA)?
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In the proof of [32, Lemma 4.5] one can find: “Bowen’s definition of entropy is not in general additive over products [51,
p. 176]”. But at that place in Walters’ book [51] one finds an example of direct product of two self-homeomorphisms of R
that are shifts x �→ x + 1, so notoriously non-homomorphisms. Hence, to the best of our knowledge, Question 4.3 seems to
be open for LCA groups even in the case of direct products.

Some cases of the above questions are studied in Section 4.2. First of all, in Section 4.2.1, we use the concept of “compact-
covering” map to give some general result in the spirit of Question 4.3. Then we analyze the proof of Claim 4.2.

The new entropy function hA+U (−) in the next question is motivated by Peters’ definition (19). Due to the problems
related to h∞(−) we hope that hA+U (−) can be the correct substitute for h∗(−).

Question 4.4. Let hA+U : Flow(LCA) → R�0 ∪ {∞} be defined as hA+U (φ) = hA(φ) + hU (φ) for every φ ∈ Flow(LCA). Is
it possible to find a set of axioms to characterize hA+U (−) with some Uniqueness Theorem? In particular, does hA+U (−)

satisfy the AT?

Taking into account the role of the duality theory for Abelian (locally) compact groups in the previous results, the
question arises whether the previous results can be improved in the realm of non-Abelian compact groups. The first step is
to choose a suitable duality framework with a suitable notion of entropy for the dual objects.

Problem 4.5. Find a counterpart of BT in the case of Flow(C) using Tannaka–Kreı̆n duality for compact not necessarily
Abelian groups.

4.1. The Bridge Theorem for some LCA groups

In this section we discuss Question 4.1 in the case of flows on finite-dimensional real vector spaces and on discrete
Abelian groups. Furthermore we apply these results to show the failure of Claim 3.2 (see Example 4.8).

Let n be a positive integer, and φ : Rn → Rn be a continuous (i.e., R-linear) endomorphism. We start recalling the
formulae to compute hU (φ) and hA(φ). The first equality was proved in [7, Theorem 15], the second in [48, Fact A]:

Theorem 4.6. Let n be a positive integer, and φ : Rn → Rn be a continuous endomorphism. Then we have

hU (φ) =
∑

|λi |>1

log |λi| = hA(φ)

where {λi: i = 1, . . . ,n} ⊆ C is the family of the eigenvalues of φ .

In order to prove that (hA,hU ) satisfies BT on Flow(vec(R)) it suffices to show that, given a continuous endomorphism
φ : Rn → Rn (with n ∈ N+), φ and φ̂ have the same eigenvalues. With this reduction and an application of Theorem 4.6, we
get the following

Corollary 4.7. (hA,hU ) satisfies BT on Flow(vec(R)).

Example 4.8. Given a real number r, we denote by φr the endomorphism of R such that φr(x) = r · x. Notice that φr is a
topological isomorphism of R whenever r �= 0. We claim that

h∞(φr) = hU (φ̂r) if and only if r = ±1, while hA(φr) = hU (φ̂r) for every r ∈ R.

Indeed, applying Corollary 4.7 we get

hU (φ̂r) = hA(φr) =
{

log |r| if |r| > 1;
0 otherwise;

and this gives the part of our claim regarding (hA,hU ). To see the first part of the claim we need to recall that

h∞(φr) = hA(φ) − log
∣∣det R(φr)

∣∣ = hA(φ) − log |r|,
this comes by Fact 3.4(i) and Example 3.1(ii). Thus we get

h∞(φr) =

⎧⎪⎨
⎪⎩

log |r| − log |r| = 0 �= log |r| = hA(φ) = hU (φ̂ ) if |r| > 1;
0 − log |r| = 0 = hA(φ) = hU (φ̂ ) if |r| = 1;
0 − log |r| = − log |r| �= 0 = hA(φ) = hU (φ̂ ) otherwise.

Therefore, for the group R, Claim 3.2 fails for all automorphisms beyond ±idR .
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A similar example can be given in the field Qp of p-adic numbers. Here the automorphism φ : Qp → Qp defined by
φ(x) = x/p for x ∈ Qp has hU (φ) = hA(φ) = log p, while h∞(φ). The relevance of this equalities to the above examples
comes from the fact that Q̂p = Qp and φ̂ = φ, thus log p = hU (φ̂ ) �= h∞(φ) = 0.

The proof of the next consequence of Theorem 3.5 uses the fact that the restriction of hU (−) to Flow(CA) has various
strong properties. In particular one needs to know that this restriction of hU (−) satisfies all the axioms stated in the
forthcoming Theorem 4.12.

Theorem 4.9. ([10]) (hA,hU ) satisfies BT on Flow(DA).

The particular case of this theorem for discrete torsion Abelian groups (and dually for profinite Abelian groups) is due to
Weiss [53]. For the reader’s convenience we give a short direct proof using Pontryagin duality:

Theorem 4.10. ([53]) (hA,hU ) satisfies BT on Flow(TA).

Proof. Let G be a discrete torsion Abelian group and φ : G → G an endomorphism. Consider also the Pontryagin–Van Kam-
pen dual φ̂ : Ĝ → Ĝ . It is well known that Ĝ is a profinite Abelian group, in particular it is a compact Abelian group.
According to Remark 2.25, the uniform entropy of φ̂ is

hU (φ̂ ) = sup
{
k(φ̂, U ): U is an open subgroup of Ĝ

}
. (20)

Moreover, by (15)

k(φ̂, U ) = lim sup
n→∞

log[G : Cn(φ̂, U )]
n

. (21)

Furthermore we already noticed that

hA(φ) = ent(φ) = sup
{

H A(φ, F ): F is a finite subgroup of G
}
. (22)

The annihilator F = U⊥ is a finite subgroup of G for every open subgroup U of Ĝ . Furthermore,

Tn(φ, F ) = F + · · · + φn−1(F ) = Cn(φ̂, U )⊥ and Tn(φ, F ) ∼= Ĝ/Cn(φ̂, U ).

Hence |Tn(φ, F )| = |G : Cn(φ̂, U )| for all n ∈ N+. After taking logarithms, dividing by n and taking limits, we get H A(φ, F ) =
k(φ̂, U ). To finish the proof it suffices to note that when U runs over the family of all open subgroups the subgroup F = U ⊥
runs over the family of finite subgroup of G (as U = F ⊥) and apply (20), (21) and (22). �

Let G be a compact group, an endomorphism φ : G → G has completely positive uniform entropy if every non-trivial
factor of the endomorphism has positive uniform entropy. Rohlin [39] proved that ergodic automorphisms of compact
metric Abelian groups have completely positive uniform entropy. This was extended to arbitrary compact metric groups by
Yuzvinski [56]. Indeed, the case of totally disconnected groups easily follows from Theorem 3.19 (since both properties are
preserved under taking quotients, it suffices to see that all ergodic automorphisms have positive uniform entropy).

Now, using the Bridge Theorem 4.9, one can see that an automorphism φ of a compact Abelian group G has com-
pletely positive uniform entropy if and only if its Pontryagin–Van Kampen dual φ̂ has completely positive algebraic entropy.
Therefore, using again Theorem 4.9, we deduce from Theorem 3.10 an alternative proof of Rohlin’s Theorem [39].

From Theorem 4.9 and Corollary 3.11 we get the following more precise result:

Theorem 4.11. ([9, Theorem 7.4, Corollaries 7.6, 7.7]) For every continuous automorphism φ of a compact Abelian group G there exists
a closed φ-invariant subgroup E (φ) of G such that:

(i) the restriction φ �E (φ) is ergodic;
(ii) if for some closed φ-invariant subgroup H of G the restriction φ �H is ergodic, then H ⊆ E (φ);

(iii) the induced endomorphism φ̄ : K/E (φ) → K/E (φ) has uniform entropy 0;
(iv) if for some closed φ-invariant subgroup N of G the induced endomorphism φ̄ : G/N → G/N has uniform entropy 0, then N

contains E (φ).

Using the Bridge Theorem 4.9 one obtains from Theorem 3.5 the following admittedly simpler counter-part of Theo-
rem 3.12 in the Abelian case:

Theorem 4.12. The uniform entropy hU : Flow(CA) → R�0 ∪ {∞} is the unique function such that:

(CA1) hU is invariant under conjugation;
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(CA2) hU is continuous on inverse limits;
(CA3) hU satisfies AT;
(CA4) if G = F Z for some finite group F , then hU (βF ) = log |F |;
(CA5) if G = Kn for some positive integer n, then hU (φ) = m(φ) is the Mahler measure of φ .

Let us note that the last four axioms (CA2)–(CA5) coincide with the last four axioms (C5)–(C8) from the Uniqueness
Theorem 3.12. Axiom (CA1) is a weaker form of the first axiom (C1) (monomorphisms replaced by isomorphisms). Finally
we remark that, while the redundancy of axiom (C4) (as well as the stronger form (C1)) in the Abelian case is obvious, it is
less obvious that axioms (C2) and (C3) are obsolete in the Abelian case.

4.2. The Addition Theorem

In this section we discuss Question 4.3. In particular, in Section 4.2.1 we use the notion of “compact-covering” map in
order to establish monotonicity of hU (−) under taking quotients and restrictions to closed invariant normal subgroups. In
Section 4.2.2 we discuss Peters’s proof of AT for h∗(−) on Casc(L).

We start with a direct proof of the Addition Theorem for profinite and discrete torsion Abelian groups:

Theorem 4.13. hA(−) satisfies AT on Flow(TA) and hU (−) satisfies AT on Flow(Pro).

Proof. The first assertion can be easily deduced by [16, Theorem 3.1] which states that ent satisfies AT on Flow(TA), using
the fact that ent(φ) = hA(φ) for every endomorphism φ of a discrete torsion Abelian group. Hence we only need to prove
the second assertion. We will obtain such proof using Weiss’s Theorem 4.10. Let G be a profinite Abelian group, φ : G → G be
a continuous endomorphism, and H a closed φ-invariant subgroup of G . We have to prove that hU (φ) = hU (φ �H ) + hU (φ),

where φ̄ : G/H → G/H is the map induced by φ on the quotient.
Let X = Ĝ and ψ = φ̂. By the Pontryagin–Van Kampen duality, Y = H⊥ is a ψ-invariant subgroup of X , and Y ⊥ =

H⊥⊥ = H (being H closed) and Ĝ/H ∼= H⊥ . Moreover, we have the following commutative diagrams:

H

φ�H

G

φ

G/H

φ

X/Y X Y

H G G/H X/Y

ψ

X

ψ

Y .

ψ�Y

The second diagram is obtained by the first one applying the Pontryagin–Van Kampen duality functor. Applying Weiss’s
Theorem 4.10 we obtain

hU (φ) = ent(ψ), hU (φ �H ) = ent(ψ) and hU (φ) = ent(ψ �Y ). (23)

By the already proved AT in the discrete case (see also [16, Theorem 3.1]) one has

ent(ψ) = ent(ψ) + ent(ψ �Y ). (24)

Hence (23)–(24) together give the desired equality hU (φ) = hU (φ �H ) + hU (φ). �
4.2.1. Homomorphisms allowing lifting of compact sets

In this subsection we recall the concept of compact-covering map introduced in [33]. For applications of this concept to
uniform entropy on spaces we refer to [31].

Definition 4.14. ([33]) A mapping φ : E → F of topological spaces is compact-covering if each compact subset of F is the
image of some compact subset of E .

Example 4.15. Here are three natural examples of compact-covering homomorphisms.

(i) Let G, G1 be LCA groups. Then every continuous, open and surjective homomorphism φ : G → G1 is compact-covering.
Indeed, this seems to be widely known (see for example [18]).

(ii) Let G be a topological group and H an open normal subgroup of G . Then the natural projection π : G → G/H is
compact-covering.

(iii) Let G be a topological group isomorphic to the direct product of two closed subgroups G1 and G2. Then both projections
πi : G → Gi , i = 1,2, are compact-covering.
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In the following lemma we collect some monotonicity properties owned by the uniform entropy. We remark that part
(iv) of Lemma 4.16 remains true also for arbitrary compact-covering uniformly continuous maps between uniform spaces,
where the concept of “quotient over a subgroup” has to be substituted by “quotient over a suitable relation”, for this kind
of approach we refer to [31, Section 3].

Lemma 4.16. Let G be a topological group and let φ : G → G be a continuous endomorphism of G. Assume that H is a φ-invariant
closed normal subgroup of G. Then:

(i) if K ∈ K(H) and U is a neighborhood of the identity in G, then every finite subset F of K that is (n, U ∩ H)-separated with respect
to φ �H is also (n, U )-separated with respect to φ;

(ii) hU (φ) � hU (φ �H ).

Suppose now that the natural projection π : G → G/H is compact-covering and denote by φ̄ : G/H → G/H the map induced by φ .
Then:

(iii) if K̄ ∈ K(G/H), Ū is a neighborhood of the identity in G/H, and F̄ is a finite subset of K̄ that is (n, Ū )-separated with respect
to φ̄ , then there exist K ∈ K(G), a neighborhood U of the identity in G, and a finite subset F of K such that π(K ) = K̄ , π(U ) ⊆ Ū ,
π(F ) = F̄ and F is (n, U )-separated with respect to φ;

(iv) hU (φ) � hU (φ̄).

Proof. (i) Suppose that for x, y ∈ F one has y−1x /∈ α− j(U ∩ H) for some j. Then y−1x /∈ α− j(U ) ∩ H , as H is invariant.
Since y−1x ∈ H , this yields y−1x /∈ α− j(U ).

(ii) easily follows from (i).
(iii) Since π is compact covering, there exists K ∈ K(G) such that π(K ) = K̄ , and we can always find a neighborhood U

of the identity in G such that π(U ) ⊆ Ū . Now choose a finite subset F ⊆ G such that π(F ) = F̄ and π �F is injective. We
need to prove that F is (n, U )-separated. Choose x, y ∈ F , and assume φ j(x)−1 · φ j(y) ∈ U for every 0 � j < n. Then clearly

φ̄ j(π(x)
)−1 · φ̄ j(π(y)

) = φ̄ jπ
(
x−1 · y

) = πφ j(x−1 · y
) ∈ π(U ) ⊆ Ū for every 0 � j < n.

Since F̄ is (n, Ū )-separated, we deduce that π(x) = π(y). Hence x = y by our choice of F .
(iv) easily follows from (iii). �
Now we give a more precise version of (ii) when the subgroup H is open:

Corollary 4.17. Let G be topological group and let φ : G → G be a continuous endomorphism of G. Then for every φ-invariant open
subgroup H of G one has hU (φ) = hU (φ �H ) and hU (φ̄) = 0 for the induced map φ̄ : G/H → G/H. Hence the Addition Theorem holds
in this case.

Proof. By Example 4.15(ii) and Lemma 4.16(ii) we get hU (φ) � hU (φ �H ); we have to prove the converse inequality. Notice
that for every K ∈ K(G) there exists C ∈ K(H) and a finite subset F of G such that K ⊆ F · C (just use the discreteness of
G/H to prove that π(K ) has to be finite). Let us see that

r(U , F · C, φ) � r(U ∩ H, C, φ �H ). (25)

Let n ∈ N and assume that F1 is an (n, U ∩ H)-spanning subset of C . Then F2 = F · F1 is obviously an (n, U )-spanning subset
of F · C . Hence rn(U , F · C, φ) � |F | · rn(U ∩ H, C, φ �H ). Taking logarithms, dividing by n and taking the lim sup with respect
to n we get (25).

Since G/H is discrete, hU (φ̄) = 0 follows from Example 2.15. The last assertion is the obvious equality hU (φ)=hU (φ�H )+
hU (φ̄). �

Applying Example 4.15(i) to Lemma 4.16(iv) we easily get the following

Corollary 4.18. Let G be an LCA group, φ : G → G a continuous endomorphism, and H a φ-invariant closed subgroup. Then hU (φ) �
hU (φ̄), where φ̄ : G/H → G/H is the map induced on the quotient by φ .

The following question remains open:

Question 4.19. Is Corollary 4.18 true for arbitrary topological (Abelian) groups?
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4.2.2. The proof of Claim 4.2
Here we discuss the proof of Claim 4.2 (given as Theorem 10 in [38, Section 10]). Only a proof of part (i) is given in [38],

then (the erroneous) Claim 3.2 is used to deduce part (ii) and so (iii).
The proof of part (i) itself contains various gaps that we are going to analyze using the notation of [38]. Here is the

statement of part (i) in that notation. If G is an LCA group, α : G → G is a topological isomorphism of G and H is a closed
subgroup of G with α(H) = H , then one has

hU (α, G) = hU (α1, H) + hU (α2, G/H) (26)

where α1 is the restriction of α to H and α2 is the map induced by α on the quotient G/H .
Let φ : G → G/H be the projection. The first error comes in the proof of the inequality ‘�’ of (26). In fact the argument

suffers the same problem as the erroneous proof of Proposition 4 from [7] (see [8]). In fact, at the end of p. 484 in [38], the
author deduces hU (α, G) � hU (α1, H)+hU (α2, G/H) from the correct inequality sn(U , K + C) � sn(U ∩ H, C)sn(φ(U ),φ(K )).

This deduction cannot be done in general since lim sup does not respect addition.
We now pass to the second inequality ‘�’ in (26). First of all, if a finite set F (n, U )-spans a compact subset K , then one

has to consider images (as in the definition of (n, U )-spanning), not inverse images. So the correct writing in [38, line 2,
p. 485] must be

for every y ∈ K there exists x ∈ F with α j(y) − α j(x) ∈ U for 0 � j < n, i.e. K ⊆ F +
n−1⋂
j=0

α− j(U ),

while the wrong differences α− j(y) − α− j(x) for 0 � j < n appear in the paper. Nevertheless, since α is an automorphism,
one can formally argue also with α− j in place of α j , using the fact that the next statement is invariant under this change.
On [38, lines 2–3, p. 485] one can find the claim that

α− j(y) − α− j(x) ∈ H + U for 0 � j < n, is equivalent to y − x ∈ H +
n−1⋂
j=0

α j(U ). (27)

In other words,
⋂n−1

j=0(H + α j(U )) = H + ⋂n−1
j=0 α j(U ). This equality is wrong since these two sets need not coincide,

a counter-example is available already when both G and H are compact (so one can take K = G and C = H in [38, Sec-
tion 10]) and n = 2. To further simplify the situation, take U to be an open subgroup of G (so that U + U = U ). Using the
(failing) equivalence (27), the author deduces that whenever F1, F2 are finite sets of G such that

– H is (n, U )-spanned by F1; and
– G/H is (n, φ(U ))-spanned by φ(F2) with respect to α2;

then

F = F2 + F1, (2, U )-spans G. (28)

Finally, from the last claim the inequality

rn(U , G) � rn
(
φ(U ), G/H

)
rn(U ∩ H, H) (29)

is deduced [38, line 17, p. 485]. The next example shows that (27), (28) and (29) are all wrong.

Example 4.20. Let K = Z/2Z, G = K Z and let α = βK : G → G be the two-sided Bernoulli shift of Definition 2.2(ii). Let
U = {x = (xi) ∈ G: x0 = 0} and let

H = {
x = (xi) ∈ G: xi = x j for all i, j ∈ Z

}
be the diagonal subgroup of G . Then [G : U ] = [G : α(U )] = |H| = 2, while r2(U , G) = [G : U ∩ α(U )] = 4. Moreover,

H ∩ U = H ∩ α(U ) = H ∩ α−1(U ) = {0} and U + H = G = α(U ) + H = α−1(U ) + H,

so these sums are direct. In particular, φ(U ) = G/H and α2 = idG/H , as βK (x)−x ∈ H for all x ∈ G . Hence, r2(φ(U ), G/H) = 1,
while r2(U ∩ H, H) = 2. So (29) fails for n = 2. To see that (27) fails as well, observe that

H +
1⋂

j=0

α j(U ) = H + (
U ∩ α(U )

) �= G =
1⋂

j=0

(
H + α j(U )

) = (H + U ) ∩ (
H + α(U )

)
. (30)

Finally, for the subset F2 = {0} of G the set φ(F2) = {0} (2,π(U ))-spans G/H , as φ(U ) ∩ α−1
2 (φ(U )) = G/H . Let F1 = H .

Then obviously F1 (2, U ∩ H)-spans H . Nevertheless, (30) implies that F = F2 + F1 = H does not (2, U )-span G and so
also (28) fails.
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Appendix A. A claim of Yuzvinski, algebraic L-entropy and multiplicity

For the entropy function ent(−) defined in (17), Yuzvinski claims at the end of his paper [56], that for every torsion
Abelian group G and every φ ∈ End(G) one has

ent(φ) = sup

{
log

∣∣∣∣ T (φ, F )

φ(T (φ, F ))

∣∣∣∣: F a finite subgroup of G

}
, (A.1)

where, as usual, T (φ, F ) denotes the smallest φ-invariant subgroup of G containing F . This formula is false without the
assumption that φ is injective, as the following example shows.

Example A.1. Let G be a non-zero torsion Abelian group, and φ : G → G be the zero endomorphism. Take any non-zero
finite subgroup F ; then T (φ, F ) = F and φ(T (φ, F )) = 0. So that the right-hand side of (A.1) is greater than or equal to
log |T (φ, F )/φ(T (φ, F ))| = log |F |, while ent(φ) = 0. In particular, when G is an infinite torsion Abelian group, for every
n ∈ N+ we can pick a finite subgroup Fn of G of size � n. Then the right-hand side of (A.1) is � supn log n = ∞. So one has
0 = ent(φ) �= ∞ in (A.1).

Obviously, the gap in Example A.1 is due to the (drastic) choice of the zero endomorphism. In fact, Yuzvinski’s claim is
true for injective endomorphisms:

Claim A.2 (Yuzvinski). Let G be a torsion Abelian group and let φ be an injective endomorphism of G. Then ent(φ) can be computed
using the formula in (A.1).

We now obtain a proof of this claim by showing that this is only a very particular case of a result in [41] connecting
a general notion of algebraic entropy to the multiplicity of an endomorphism introduced in [35] and generalized in [48].
Indeed, the above Claim A.2 is a particular case of the forthcoming Corollary A.14.

In the sequel let R be a unitary and associative ring, let Mod(R) be the category of unitary right R-modules and let FR
be the class of all finitely generated right R-modules. We often say R-module or simply module to mean right R-module.
For M ∈ Mod(R) let FR(M) (or simply F (M), when there is no place for consfusion) denote the family of all finitely
generated R-submodules of M . In this context there is a first useful simplification:

Theorem A.3. ([10,41]) The category Flow(Mod(R)) is isomorphic to Mod(R[X]).

The above isomorphism is given by (M, φ) �→ Mφ ∈ Mod(R[X]), where Mφ as an R-module is just M and X acts on Mφ

via φ. Also a morphism in Flow(Mod(R)) is easily seen to commute with the action of X and thus it becomes an R[X]-
homomorphism. In what follows we will identify the categories Flow(Mod(R)) and Mod(R[X]), denoting by Mφ a generic
object. We shall sometimes abuse notation, denoting a φ-invariant submodule N of M with the structure of R[X]-module
induced by the restriction of φ to N simply by Nφ .

Finally we remark that given a full subcategory D of Mod(R) and denoting by D[X] the category of R[X]-modules whose
underlying R-module is in D, a restriction of the isomorphism given in Theorem A.3 gives D[X] ∼= Flow(D).

A.1. Invariants and length functions

Given a ring R , an invariant of Mod(R) is a map i : Mod(R) → R�0 ∪ {∞} such that i(0) = 0 and i(M) = i(M ′) whenever
M ∼= M ′ .

To be able to deal with the invariants of Mod(R), without any assumption on the structure of the ring R , we impose
three strong hypotheses considered in [36,48,42]. More precisely, an invariant i of Mod(R) is said to be:

(i) additive if for every exact sequence 0 → A → B → C → 0, we have i(B) = i(A) + i(C);
(ii) upper continuous if for every M ∈ Mod(R), i(M) = supF∈F(M) i(F );

(iii) discrete if the set of finite values of i is order-isomorphic to N.
(iv) faithful, if i(M) for some M ∈ Mod(R) yields M = 0.

Now we come to the main definition of this subsection:

Definition A.4. ([36]) An additive upper continuous invariant is said to be a length function.
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The first appearance of the concept of length function on a category of modules was in the paper [36] due to
Northcott and Reufel. The length functions were deeply investigated also by Vámos in [48,46] and recently by Zanardo
in [57].

The most investigated examples of discrete length functions are the composition length l(M) of an R-module M , for R an
arbitrary ring; the rank rk(M) of an R-module M over an integral domain R; and log |M| when M is an Abelian group. It is
understood that the value of these length functions is ∞ whenever it is not finite. It is clear that, given a class D ⊆ Mod(R),
it makes sense to speak about length functions on D, provided D is closed under isomorphisms, submodules and quotients.

A.2. Algebraic L-entropy

In this subsection we introduce a notion of algebraic entropy associated with a given length function. Our references for
this subsection are [42,41]. It turns out that the theory of length functions and the related notion of algebraic entropy can
be described more clearly in the setting of modules over commutative Noetherian rings [45,49].

Given a length function L on Mod(R), we say that a module F is L-finite if L(F ) < ∞. We denote by FinL the class of
L-finite modules. Furthermore, for every module M we let FinL(M) = {F � M | L(F ) < ∞} be the family of all the L-finite
submodules of M .

Let now φ : M → M be an endomorphism. For every submodule F of M and every n ∈ N+ , one can consider the n-th
φ-trajectory Tn(φ, F ) of F and the φ-trajectory T (φ, F ) of F , defined as for Abelian groups.

It is an easy consequence of the additivity of L that Tn(φ, F ) is L-finite for every n ∈ N+ , provided F is L-finite. Thus it
makes sense to define the L-entropy of φ with respect to F ∈ FinL(M) as

HL(φ, F ) = lim
n→∞

L(Tn(φ, F ))

n

and the L-entropy of φ as entL(φ) = sup{HL(φ, F ) | F ∈ FinL(M)}.
It is easily seen that, given an Abelian group G , an endomorphism φ : G → G and letting L = log | − |, the definition of

entL(φ) is just the same of ent(φ).
We conclude this subsection showing that entL(−) takes the values one could expect in some basic cases.

Example A.5. Let F be an L-finite module.

(i) entL(φ) = 0 for every φ : F → F (see [42, Proposition 1.8]).
(ii) Denoting as usual the right Bernoulli shift ρF : F N → F N , we have entL(ρF �F (N) ) = L(F ) (see [41, Example 2.14]).

A.3. Algebraic L-entropy as a length function

Consider for a while an Abelian group G and an endomorphism φ : G → G . Clearly every finite subgroup of G is contained
in its torsion part t(G) which is φ-invariant. Using this argument one could show that ent(φ) = ent(φ �t(G)). This is the
reason for which the function ent(−) is only well behaved on torsion groups.

Returning now to our general situation, that is, given a ring R , a discrete length function L of Mod(R) and an endo-
morphism φ : M → M , we want to find a suitable generalization of the above observation. Indeed, we say that M is locally
L-finite if every cyclic submodule of M is L-finite, i.e.

L(xR) < ∞, ∀x ∈ M.

Equivalently, FR(M) ⊆ FinL . We denote by lFinL the subclass of Mod(R) consisting of the locally L-finite modules. Obviously
FinL is contained in lFinL . Furthermore, when R = Z and L = log | − | then lFinL is the class of all torsion Abelian groups. In
the class of locally L-finite modules one can prove very strong results for the algebraic L-entropy:

Theorem A.6. ([41,50]) Let R be a ring, L : Mod(R) → R�0 ∪ {∞} a discrete length function, M a locally L-finite module and
φ : M → M an endomorphism. Then

(i) entL(φ) = sup{HL(φ, F ): F ∈ F (M)};
(ii) if N is a φ-invariant submodule of M, then entL(φ) = entL(φ �N ) + entL(φ̄), where φ̄ : M/N → M/N is the induced map.

The above theorem is very deep as part (i) implies continuity of entL(−) on direct limits and part (ii) is an Addition
Theorem for entL(−). To better understand these results it is convenient to pass to the category of flows and so, as we
explained at the beginning of this appendix, to Mod(R[X]). More precisely, denote by lFinL[X] the class of the R[X]-modules
that are locally L-finite when considered as R-modules.

Now we can change a little bit our point of view about algebraic L-entropy. In fact, we can see entL(−) as a function

entL : lFinL[X] → R�0 ∪ {∞}, Mφ �→ entL(φ).



D. Dikranjan et al. / Topology and its Applications 159 (2012) 1916–1942 1939
Viewed in this way, entL(−) is an invariant of lFinL[X]. Furthermore, the above Theorem A.6 can be rephrased saying that
entL(−) is upper continuous (part (i)) and additive (part (ii)), that is, entL(−) is a length function. In this setting we can
state the following

Theorem A.7 (Uniqueness Theorem). ([41,50]) Let R be a ring and L : Mod(R) → R�0 ∪{∞} a discrete length function. Then entL(−)

is the unique length function of lFinL[X] that satisfies the following two conditions for every F ∈ FinL .

(i) entL(φ) = 0 for every endomorphism φ ∈ EndR(F );
(ii) entL(ρF �F (N) ) = L(F ), where ρF �F (N) : F (N) → F (N) is the restriction to F (N) of the right Bernoulli shift.

This theorem was improved recently in [40, 2.1] as follows: if either L is a faithful invariant, or R is an integral domain,
then item (i) follows from item (ii), so the theorem can be formulated with item (ii) only.

A.4. Algebraic L-entropy vs multiplicity

In the previous subsection we saw that any discrete length function L on Mod(R) induces in an essentially unique way
a length function on (a suitable subclass of) the category of modules over R[X], namely the algebraic L-entropy entL(−).
When the ring R is right Noetherian, there is another way to induce a length function of Mod(R[X]) starting with a length
function L of Mod(R). This new function is called the multiplicity of L.

Multiplicity was firstly defined in terms of the composition length of modules in [35, Chapter 7]. The ideas of Northcott
where then extended by Vámos in his PhD thesis [46], where he defined the multiplicity of an arbitrary length function. In
this subsection we recall such definition, and we show the strong relation existing between the algebraic L-entropy and the
multiplicity of L.

Let R be a right Noetherian ring and let L be a length function on Mod(R). The following remark is very useful when
dealing with finitely generated R[X]-modules.

Remark A.8. We already noticed that we can consider an R[X]-module as an R-module with an endomorphism acting on
it. Then is not difficult to see that an R[X]-module Nφ is finitely generated if and only if N = T (φ, F ) for some F ∈ FR(N).

The first step is to define multiplicity for finitely generated R[X]-modules. Indeed, given Nφ ∈ FR[X] , we set

MultL(Nφ) =
{

L(N/φ(N)) − L(ker(φ)) if L(N/φ(N)) < ∞;
∞ otherwise.

(A.2)

Now, for an arbitrary R[X]-module Mφ define

MultL(φ) = sup
{

MultL(Nφ): Nφ ∈ FR[X](Mφ)
}
.

The first thing to check is that MultL(−) is an invariant. Surprisingly, this is not an easy task. The difficult part is to prove
that MultL(−) takes values in R�0 ∪ {∞}; we refer to [46, Chapter 5, Corollary 1] for this verification.

Theorem A.9. ([46]) Let R be a right Noetherian ring and let L be a length function on Mod(R). Then MultL : Mod(R[X]) → R�0 ∪
{∞} is a length function.

Proof. We already mentioned that MultL(−) is an invariant. Furthermore, the proof that MultL(−) is upper continuous
follows directly from the definition. It remains to verify that MultL(−) is additive.

As we assumed R to be right Noetherian, also R[X] is right Noetherian by Hilbert’s Basis Theorem. Then FR[X] coincides
the class of Noetherian R[X]-modules. In [46, Chapter 5, Proposition 3] it is proved that the restriction of MultL(−) to
FR[X] is an additive invariant. Now the additivity on the whole Mod(R[X]) follows by [45, Theorem 1] or the following
lemma. �
Lemma A.10. If L : FR → R�0 ∪ {∞} is an additive invariant for a right Noetherian ring R, then the function L̂ : Mod(R) → R�0 ∪
{∞} defined by

L̂(M) = sup
{

L(F ): F ∈ F (M)
}
,

for every M ∈ Mod(R), is a length function.

Proof. L̂ is an invariant since L is. Furthermore, upper continuity follows by definition. It remains to verify additivity. Indeed,
let N � M and choose F � F (M). Since the ring R is right Noetherian, the class FR is closed under taking submodules, so
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F ∩ N ∈ F (N) and (F + N)/N ∈ F (M/N). By the additivity of L on FR , we obtain L(F ) = L(F ∩ N) + L((F + N)/N) which
proves that L̂(M) � L̂(N) + L̂(M/N) by the arbitrariness of F .

On the other hand, let F1 ∈ F (N) and F 2 ∈ F (M/N). Chose a module F2 ∈ F (M) such that (F2 + N)/N = F 2 and set
F = F1 + F2. Then

L(F ) = L(F ∩ N) + L
(
(F + N)/N

)
� L(F1) + L(F 2),

since F 2 = (F + N)/N (being F1 contained in N) and F1 ⊆ F ∩ N . This gives L̂(M) � L̂(N)+ L̂(M/N), concluding the proof. �
As the definition of multiplicity is quite formal, it is useful to give here some example of computation. In the next

example we give two general observations, while in the following one we collect some computations for Abelian groups.

Example A.11. Let L be a length function on Mod(R), M an R-module and φ : M → M an endomorphism.

(i) If Mφ ∈ FR[X] and if φ is an automorphism, then MultL(Mφ) = 0. Indeed, if φ is an automorphism then M/φM = 0 and
ker(φ) = 0, so MultL(Mφ) = 0.

(ii) If L(M) < ∞, then MultL(φ) = 0 (see [41, Lemma 4.2]).

Part (i) of the above example is no longer true if Mφ is not finitely generated. That is, there exist R-modules M and
automorphisms φ : M → M such that MultL(φ) > 0. An example of such situation is part (ii) of the following example.

Example A.12. In this example we let R = Z and L = log | − |. We also fix a non-zero integer n.

(i) Let φ : Z → Z be the multiplication by n. Clearly Zφ ∈ FZ[X] and so we can apply directly the definition in (A.2). Hence
MultL(φ) = log |Z/nZ| − log |ker(φ)| = log |n|.

(ii) Part (i) can be generalized as follows. Let G be a non-trivial subgroup of Q and let φ : G → G be the multiplication
by n. As we mentioned in Remark A.8, the finitely generated Z[X]-modules of Gφ are of the form T (φ, F ) with F
a finitely generated subgroup of G . By the choice of the morphism, in our particular case one has T (φ, F ) = F , for
every F � G . Hence the finitely generated Z[X]-submodules of Gφ are all isomorphic to Zφ . Applying part (i), we have
again MultL(φ) = log |n|. Note that if the group G is n-divisible (e.g., G = Q), then φ : G → G is an automorphism with
non-zero multiplicity, provided n > 1.

(iii) Consider the endomorphism φ : Q → Q given by the multiplication by 1/n, and let F be a subgroup of Q. Then F is
φ-invariant if and only if it is n-divisible, but then φF = F that is, the restriction of φ to every φ-invariant subgroup of
Q is an automorphism. An application of Example A.11(i) shows that MultL(Fφ) = 0 for every Fφ ∈ FR[X](Qφ) and so
MultL(φ) = 0.

(iv) Let φ = ρZ(n) �Z(n)(N) : Z(n)(N) → Z(n)(N) be the restriction of the right Bernoulli shift to the direct sum Z(n)(N) . Then

(Z(n)(N))φ is finitely generated, in fact we can choose a set of generators of the form (x,0,0, . . .), where x ranges in
Z(n). Now, Z(n)(N)/φ(Z(n)(N)) ∼= Z(n) and ker(φ) = 0, hence MultL(φ) = log |n|.

The following result connects multiplicity and algebraic L-entropy.

Theorem A.13. ([41]) Let R be a right Noetherian ring and L : Mod(R) → R�0 ∪ {∞} a discrete length function. Then entL(φ) =
MultL(φ) for every Mφ ∈ IFinL[X].

The above theorem is a direct application of the Uniqueness Theorem for the algebraic L-entropy. Indeed, Theorem A.9
asserts that MultL(−) is a length function and so, for the proof of Theorem A.13 one has only to verify that MultL(−)

satisfies conditions (i)–(ii) in Theorem A.7.
As a consequence of Theorem A.13 we get the following

Corollary A.14. Let R be a right Noetherian ring and L a discrete length function of Mod(R). For every locally L-finite right R-module
M and every injective endomorphism φ : M → M we have that

entL(φ) = sup

{
L

(
T (φ, F )

φ(T (φ, F ))

)
: F ∈ FR(M)

}
.

Proof. Theorem A.13 implies that the algebraic L-entropy entL(φ) equals the multiplicity MultL(φ). Hence we have to check
that

MultL(φ) = sup
{

L
(
T (φ, F )/φ

(
T (φ, F )

))
: F ∈ FR(M)

}
.

This comes directly from the definition of multiplicity recalling that by Remark A.8 every Nφ ∈ FR[X](Mφ) has the form
T (φ, F ) for some F ∈ FR(M), and that L(ker(φ �T (φ,F ))) = L(0) = 0, by the injectivity of φ. �
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We conclude with two observations

Remark A.15.

(i) Let R be a right Noetherian ring, L : Mod(R) → R�0 ∪ {∞} a length function, M an R-module and φ : M → M an
endomorphism. Then, by [46, Theorem 6, Ch. 5], the multiplicity MultL(φ) can be computed via Lech’s Limit Formula,
that is

MultL(φ) = sup

{
lim

n→∞
L(N/φn(N))

n
: Nφ ∈ FR[X](Mφ)

}
.

Rephrased in the context of torsion Abelian groups this gives

ent(φ) = sup

{
lim

n→∞
log |T (φ, F )/φn(T (φ, F ))|

n
: F is a finite subgroup of M

}
.

This formula is somehow surprising since the limit limn→∞ log |T (φ,F )/φn(T (φ,F ))|
n seems to be genuinely smaller than

H A(φ, F ) in general.
(ii) We saw in Theorem A.13 that there are many similarities between algebraic L-entropy and the multiplicity of L. Nev-

ertheless, these two concepts are intrinsically different. In fact, we can think at algebraic entropy as an “operator” that
transforms a discrete length function on Mod(R) in a length function defined on (a suitable subclass of) Mod(R[X]),
while multiplicity in its original formulation is an “operator” that transforms a length function on a given Noetherian
ring to another length function on the same ring. For some deeper insight on these aspects of multiplicity we refer to
[35,46].
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