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determine the role of NFkB in SAH-induced activation of endothelial cells. Furthermore, we examined whether
SAH, as a potent inhibitor of S-adenosylmethionine-dependent methyltransferases, suppresses the function of
EZH2 methyltransferase to contribute to SAH-induced endothelial cell activation. We found that excess SAH
increases the expression of adhesion molecules and cytokines in human coronary artery endothelial cells. Impor-
tantly, this up-regulation was suppressed in cells expressing a dominant negative form of the NFkB inhibitor, IkB.
Moreover, SAH accumulation triggers the activation of both the canonical and non-canonical NFkB pathways,
decreases EZH2, and reduces histone 3 lysine 27 trimethylation. EZH2 knockdown recapitulated the effects of
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NFkB excess SAH on endothelial activation, i.e., it induced NFKB activation and the subsequent up-regulation of adhe-
Methylation sion molecules and cytokines. Our findings suggest that suppression of the epigenetic regulator EZH2 by excess
EZH2 SAH may contribute to NFkB activation and the consequent vascular inflammatory response. These studies unveil

new targets of SAH regulation, demonstrating that EZH2 suppression and NFKB activation mediated by SAH

accumulation may contribute to its adverse effects in the vasculature.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

S-adenosylhomocysteine (SAH) is an inhibitor of cell methyltrans-
ferases that accumulates during hyperhomocysteinemia. SAH-induced
hypomethylation of DNA, protein, and RNA has been associated with
vascular disease [1-4]. Elevated homocysteine in plasma is an indepen-
dent risk factor for cardiovascular diseases [5]. We and others have
suggested that SAH is a key mediator of homocysteine-associated
atherogenesis [1,6,7]. Our previous studies show that SAH can induce
endothelial cell dysfunction and activation by decreasing nitric oxide
production and increasing oxidative stress and leukocyte adhesion
[1,8]. The molecular mechanisms by which SAH induces a pro-
inflammatory phenotype are, however, not completely understood.
Several studies have reported a role for the nuclear transcription factor
kB (NFkB) in endothelial dysfunction and atherosclerosis [9-11].

NFKkB is a major regulator of important cell processes, such as inflam-
mation, immunity, cellular proliferation, and apoptosis [12,13]. NFkB
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complexes are composed of homo- or heterodimers of various NFkB
family members, including p50, p52, p65 (RelA), RelB, and c-Rel
[12,14]. The NFKB pathway can be triggered by several stimuli, including
inflammatory cytokines such as tumor necrosis factor-o (TNF-at) and
interleukin-1(3 (IL-1p), which initiate the classical pathway; or other
stimuli such as the CD40 ligand and lymphotoxin 3, which trigger the
alternative NFkB pathway [12,13].

DNA and histones are well studied targets of methyltransferases that
can modulate important cellular processes. Enhancer of zeste homolog
2 (EZH2) is the catalytic core of the polycomb repressive complex
(PRC) 2 and establishes the major mark of transcriptional repression
in mammalian cells: the trimethylation of lysine 27 on histone 3
(H3K27me3) [15]. As an S-adenosylmethionine-dependent methyl-
transferase, EZH2 is a target for SAH-mediated inhibition. EZH2
modulates many cellular processes, including inflammation and
cell adhesion, by targeting genes such as IL1B and CDH13 [16]. The
H3K27me3 mark can be removed by the Jumonji domain containing
3 (JMJD3) or the ubiquitously transcribed tetratricopeptide repeat
on X chromosome (UTX) demethylases [17-19].

We previously used human umbilical vein endothelial cells (HUVEC)
to investigate the role of excess SAH in endothelial activation. Our
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findings showed that SAH-induced oxidative stress promotes an up-
regulation of adhesion molecules [1]; however, the molecular mecha-
nisms by which redox changes activate inflammatory responses under
excess SAH were not completely resolved. Here, we analyze the effects
of SAH on human coronary artery endothelial cells (HCAEC), and dem-
onstrate the role of SAH-mediated hypomethylation on NFkB activation
and modulation of pro-inflammatory signals. Additionally, we show
that excess SAH suppresses the expression of EZH2 and that EZH2
knockdown mimics the endothelial cell responses to excess SAH, sug-
gesting that the suppression of this methyltransferase may contribute
to SAH-mediated endothelial dysfunction.

2. Materials and methods
2.1. Cell culture and treatments

Human coronary artery endothelial cells (HCAECs) were cultured at
37 °Cin 5% CO,. Cells were grown in EBM-2 supplemented (EGM-2-MV)
medium (Lonza) without antibiotics. Experiments were performed
between passages five and eight and with cells 70 to 80% confluent.
Treatments with adenosine-2’,3’-dialdehyde (ADA) (Sigma) were per-
formed for 48 h at 20 uM. Tumor necrosis factor-o (TNF-at) treatments
(10 ng/mL; R&D systems) were performed for 24 h.

2.2. SAH and SAM analysis

SAH and SAM were measured in deproteinized cell extracts by
tandem mass spectrometry as previously described [20].

2.3. Real-time PCR

RNeasy Mini kit (Qiagen) was used for RNA extraction. DNase (Qiagen)
treatment was performed during the RNA extraction protocol, according to
the manufacturer's instructions. After reverse-transcription using the Ad-
vantage RT-for-PCR kit (Clontech), cDNA was used for real-time PCR reac-
tions with TagMan Universal PCR Master Mix (Life Technologies) and
specific gene expression primers (Life Technologies): ACTB (p-actin)
(4352935E); ICAM1 (Hs00164932_m1); SELE (Hs00950401_m1); VCAM1
(Hs00365485_m1); PECAM1 (Hs00169777_m1); RELA (Hs00153294_m1);
NFKB1 (Hs00231653_m1); NFKB2 (Hs00174517_m1); IL1B (Hs01555410_m1);
TNFA (Hs01113624_g1); EZH2 (Hs00544833_m1); KDM6B (Hs00996325_g1);
CDKN1A (Hs00355782_m1); CDKN2A (Hs00923894_m1). PCR reactions
were performed using a PRISM 7900 HT Sequence Detector (Applied
Biosystems). The AACT method was used for relative quantification
using [>-actin as the endogenous control.

2.4. Western blotting

Proteins were separated by SDS-PAGE before semi-dry transfer.
After blocking, the following specific primary antibodies were
used: anti-pB-actin (Sigma-Aldrich), anti-ICAM-1 (Santa Cruz), anti-
H3K27me3 (Epigentek), anti-VCAM-1, anti-IkBa, anti-p65, anti-
NFKB2 p100/p52, anti-IL-1P, anti-EZH2, anti-CDKN1A, and anti-H3
(Cell Signaling). Secondary anti-rabbit HRP-linked antibody (Cell
Signaling) was used for ECL-mediated (GE Healthcare Life Sciences)
detection.

2.5. Nuclear protein extraction

Nuclear protein extracts were obtained with the NE-PER nuclear
and cytoplasmic extraction reagents (Thermo Scientific) following the
kit protocol.

2.6. NFKB inhibition

The dominant negative IkBa adenovirus (AdIKBDN) (Vector Biolabs)
was used to overexpress a recombinant form of the IkBa, which is
resistant to its phosphorylation-induced degradation. HCAEC infection
with AdIkBDN was performed simultaneously with ADA treatment. An
empty adenoviral vector was used as a control (AdCtrl) (Vector
Biolabs).

2.7. Luciferase and [3-galactosidase assays

A luciferase adenoviral expression vector (AdNFkB-Luc) (Vector
Biolabs) controlled by a promoter containing five repeats of the NFkB
enhancer element (TGGGGACTTTCCGC) was used to infect HCAECs
that were simultaneously infected with a 3-galactosidase expression
vector (Vector Biolabs). HCAEC were infected with adenovirus for 24 h
prior to treatments. Cell lysates were obtained using the reporter
lysis buffer (Promega) and promptly used for the luciferase and -
galactosidase enzyme assays (Promega). Firefly luciferase activity was
measured using the 20/20" luminometer (Turner Biosystems), while
3-galactosidase activity was measured by absorbance detection at
420 nm (SPECTRA MAX 190, Molecular Devices).

2.8. Histone extraction

Histone extracts were prepared using EpiQuik total histone extrac-
tion kit (Epigentek) following the manufacturer’s instructions.

2.9. siRNA transfections

Transfections with small interference RNA (siRNA) were performed
in OPTI-MEM medium (Life Technologies) using lipofectamine 2000
(Life Technologies) and a stealth siRNA to EZH2 (5’-GACCACAGUGUU
ACCAGCAUUUGGA-3') or a scrambled control siRNA (5-GGUAGCGC
CAAUCCUUACGUCUCUU-3’). The final siRNA concentration used was
52 nM.

2.10. Statistics

All of the experiments were repeated three to five times. Results
are shown as mean 4 standard deviation. Statistical significance of
the differences between means was determined by Student's t test
or ANOVA followed by post-hoc multiple comparisons using the
Newman-Keuls test for experiments with two or more conditions,
respectively.

3. Results
3.1. Endothelial cell activation by excess SAH

We previously showed that ADA-induced SAH hydrolase inhibition
reduces the S-adenosylmethionine (SAM)/SAH ratio over 6-fold in
HUVEC due to a significant accumulation in SAH. In HUVEC, this treat-
ment results in increased expression of adhesion molecules [1]. In Fig.
1, we examined whether ADA modulates the expression of the adhesion
molecules, intercellular adhesion molecule-1 (ICAM-1), vascular cell
adhesion molecule-1 (VCAM-1), E-selectin, and platelet/endothelial ad-
hesion molecule-1 (PECAM-1), in human endothelial cells derived from
coronary artery (HCAECs), a type of endothelial cells more relevant to
atherosclerotic vascular disease than HUVECs. In HCAEC, 48 h exposure
to the ADA significantly increased SAH from 76 + 19 to 1545 +
478 pmol/mg (p < 0.007). Under SAH hydrolase inhibition, SAM was
also modestly increased from 429 + 23 to 514 + 49 pmol/mg
(p < 0.05) and the SAM/SAH ratio was significantly decreased from
5.81 £ 1.6 to 0.35 £ 0.09 (p < 0.005). After 48 h of incubation with
the SAH hydrolase inhibitor, HCAECs showed a 4.0 & 1.1- and
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Fig. 1. SAH accumulation and cell activation. A, ICAM-1, E-selectin (encoded by the SELE gene), VCAM-1, and PECAM-1 transcript levels were measured by quantitative RT-PCR to deter-
mine the effects of ADA 20 uM (ADA) compared to control (Ctrl) (n = 3-5). B, Western blot analysis of ICAM-1 and VCAM-1 following ADA treatment for 48 h. Summary densitometry
measurements for five independent experiments are shown on the right of the representative immunoblots. **p < 0.005, ***p < 0.0005 versus control.

2.5 £ 0.5-fold increase in ICAM-1 and VCAM-1 mRNA levels (p <
0.005), respectively (Fig. 1A), similar to our previous findings in
HUVECs [1]. E-selectin transcripts were also increased by 5.2 +
1.0-fold (p < 0.005), whereas ADA significantly decreased PECAM-
1 transcript levels by 37.4 + 13.4% (p < 0.0005) (Fig. 1A). Accord-
ingly, ICAM-1 and VCAM-1 protein levels were up-regulated by 2.2 +
0.4- and 3.5 + 0.8-fold (p < 0.0005), respectively, in ADA-treated
HCAECs (Fig. 1B).

3.2. NFkB pathway activation by excess SAH

We next examined whether ADA treatment activates the NFkB
pathway. To do so, we initially monitored p50 and p65, as they are the
most abundant NFkB components in the canonical pathway [21]. ADA
treatment had no significant effect on the expression of the p50 and
p65 encoding genes, NFKB1 and RELA, respectively (Fig. 2A). Activation
of the canonical pathway is usually marked by the phosphorylation
and degradation of the NFKB inhibitory protein IkBa, releasing NFkB
and allowing its migration to the nucleus [ 14]. In order to study this pro-
cess, we assessed IkBa degradation and p65 translocation. After ADA
treatment, IkBa levels decreased by 72.2 4+ 17.1% (p < 0.005), and a
42.1 £ 17.5% increase of nuclear p65 protein was observed (p < 0.05;
Fig. 2B & C). Taken together, these data support the notion that ADA
induces activation of the NFkB canonical pathway. To confirm the effects
of excess SAH on NFkB-induced transcriptional activation, we used an
NFkB luciferase reporter construct (Fig. 2D). TNF-a was used as a posi-
tive control, as it is a well-known activator of NFkB in endothelial
cells [22]. As expected, non-infected cells had no detectable luciferase
activity, whereas infected cells treated with TNF-a for 24 h had a
4.4 4 0.6-fold increase in luciferase activity compared with infected
cells not exposed to TNF-o or ADA. Similarly, intracellular SAH accumu-
lation significantly increased NFkB-dependent luciferase activity by
2.8 4+ 0.3-fold (p < 0.0005).

IkBot degradation is induced after its phosphorylation at serine resi-
dues S32 and S36 [23]. To block NFKB activation, we overexpressed the

dominant-negative mutant NF-kB inhibitor (IkBDN), which lacks S32
and S36 and cannot be targeted for degradation (Fig. 2E & F) [24].
Wild type IkBa levels (lower molecular weight) are reduced after ADA
treatment whereas the recombinant IkBDN (higher molecular weight)
is modestly up-regulated by ADA treatment (Fig. 2F). As shown in
Fig. 2E & F, baseline adenoviral infection had no effect on the expression
of adhesion molecules when compared to non-infected cells (NV). Upon
ADA exposure, cells infected with the control adenovirus (AdCtrl) had a
4.2 4+ 0.3-fold up-regulation of ICAM-1 mRNA levels (p < 0.0005). This
effect was inhibited by the presence of the IKBDN (p < 0.0005). Similarly,
VCAM-1 and E-selectin transcript levels were reduced by IkBDN to
13.7 £ 2.2% and 6.1 + 1.5% (p < 0.0005), respectively, in ADA-treated
cells. ADA significantly augmented ICAM-1 (1.6 4+ 0.2-fold) and
VCAM-1 (1.9 + 0.3-fold) protein expression in cells transduced with
the AdCtrl (p < 0.05). These effects were attenuated by expression of
the IKBDN (p < 0.0005, Fig. 2F).

3.3. Alternative NFkB pathway activation

Unlike the canonical pathway, the non-canonical or alternative NFkB
pathway is independent of IkBa and involves p100 phosphorylation
and processing to the NFkB active subunit p52 [25]. We analyzed the
activation of the non-canonical NFkB pathway by monitoring changes
in the expression of NFKB2 and its gene products, p100 and p52
(Fig. 3). There was a significant increase in NFKB2 gene expression
(1.8 £ 0.2-fold) following ADA treatment (p < 0.0005). Western blot
analysis revealed a 1.8 4 0.2-fold concomitant increase in p100 levels
(p < 0.05) upon ADA exposure with evidence for increased p100
processing, as illustrated by the higher levels of p52 detectable under
excess SAH compared to the control (2.5 4 0.4-fold increase; p < 0.005).

We next used the adenoviral vector IkBDN to determine whether
the NFkB canonical pathway modulates the non-canonical pathway
(Fig. 3C & D). The presence of the control virus augmented the ADA-
induced up-regulation of NFKB2 gene expression compared to ADA-
treated cells with no virus, increasing further ADA-induced NFkB2
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Fig. 2. NFkB pathway activation and its role in SAH-mediated up-regulation of adhesion molecules. A, ADA-mediated changes in RELA (p65) and NFKB1 (p50) gene expression were
measured by quantitative RT-PCR using 3-actin as an endogenous control (n = 3). B, IkBa protein degradation induced by ADA was evaluated by Western blot. A representative blot
is shown on the left and summary densitometry measurements on the right (n = 3). C, Nuclear levels of p65. Western blot was used to analyze nuclear extracts. Shown are a representative
Western blot (left) and a graph of the average densitometry measurements (right, n = 3). D, The ability of ADA to promote NFkB-mediated transcription was analyzed using an NFkB
luciferase reporter adenovirus construct simultaneously with a 3-galactosidase vector (n = 4). Luciferase expression was normalized to [3-galactosidase activity. Results are shown for
uninfected HCAECs (NV) and infected cells without treatment (Ctrl) or treated with ADA for 48 h (ADA) or TNFa for 24 h (TNFa). E & F, Cells overexpressing dominant negative IkBo
(AdIKBDN), infected with an empty control adenovirus (AdCtrl), and uninfected control cells (NV) were incubated in the presence or absence of ADA. E, Quantitative RT-PCR was used
to study differences in mRNA levels of ICAM-1, VCAM-1, and E-selectin. F, Protein extracts were used for Western blot analysis. A representative immunoblot (left) and summary
densitometry measurements (right) are shown (n = 3). Note that the recombinant IKBDN migrates more slowly than the endogenous IkBa. A, B and C. *p < 0.05, **p < 0.005,
versus control. ANOVA, followed by the Newman-Keuls test for multiple comparisons, was used in the analysis shown in panels D, E and F. *p < 0.05, **p < 0.005, ***p < 0.0005, versus
the corresponding condition without ADA treatment. *p < 0.0005, versus ADA treated cells with no virus or those infected with the AdCrl (ADA-AdCtrl).

mRNA levels 2.0 £ 0.04-fold (p < 0.0005) in the AdCtrl cells compared Accordingly, endothelial cells infected with the AdCtrl also manifested
to ADA-treated cells with no virus. In contrast, ADA-induced expression an increase in p52 (2.9 £ 0.6-fold; p < 0.0005) with ADA treatment,
of NFKB2 was significantly attenuated by IkBDN (p < 0.0005). which was abolished by the presence of IkBDN (p < 0.0005, Fig. 3D).
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Fig. 3. Activation of the NFkB alternative pathway. A, NFKB2 (p100/p52) transcript levels from control and ADA-treated cells were measured by quantitative RT-PCR (n = 4).
*p <0.05, **p < 0.005, ***p < 0.0005, versus control. B, Protein expression of p100 and p52 in HCAECs control and with ADA treatment. Representative Western blots (left)
and summary densitometry analysis (right) are shown (n = 3). The statistical analysis was performed as in A. C, NFKB2 mRNA levels under SAH accumulation, analyzed by quantitative
RT-PCR, for cells infected with AdIKBDN, the control adenovirus (AdCtrl), or control uninfected cells (NV) (n = 3). ANOVA with multiple comparisons was used for statistical significance

ok

analysis.

p <0.0005 versus the correspondent no ADA condition. *p < 0.0005 versus ADA treated cells with no virus or infected with the AdCtrl. D, Western blot analysis of p52 expres-

sion in cells infected with AdIkBDN, AdCtrl, or NV that were treated or untreated with ADA. Representative blot is shown (top) with the densitometry measurements (below, n = 3).

Statistical analysis was performed as in C.

3.4. SAH accumulation results in increased expression of pro-inflammatory
cytokines

Interestingly, inflammatory cytokines, such as TNF-ot or IL-103, are
not only NFkB activators, but also its downstream transcriptional targets
[23,26]. ADA treatment increased the expression of IL1B and TNFA genes
by 73.3 &+ 20.8- and 5.9 + 0.6-fold, respectively (p < 0.0005; Fig. 4A).
Notably, quantitative RT-PCR results showed very low basal expression
of these cytokines in control cells. Likewise, the IL-1p cytokine is virtu-
ally undetectable by Western blot in control cells (Fig. 4B), although
its expression is significantly augmented by ADA (50.4 + 4.8-fold; p <
0.0005). We next examined whether inhibiting NFkB pathways modu-
lates ADA-induced cytokine expression (Fig. 4C). Unexpectedly, the
ADA-induced up-regulation of IL1B expression was 63.1 4 3.2% lower
when the cells were infected with AdCtrl (compared to uninfected
cells exposed to ADA), but still significantly increased compared with
cells not exposed to the SAH hydrolase inhibitor (12.8 4+ 1.1-fold; p <
0.0005). IKBDN reduced the ADA-induced expression of IL1B by
63.4 + 2.4% compared to the ADA-treated AdCtrl (p <0.0005); however,
IKBDN failed to eliminate completely ADA-induced IL1B up-regulation
as IL1B expression remained 7.7 £ 0.5-fold higher in IKBDN expressing

cells with ADA compared to untreated IkBDN expressing cells (p <
0.005). ADA-treated cells infected with the AdCtrl had substantially
greater expression of TNFA when compared with uninfected cells
exposed to ADA (p < 0.0005; Fig. 4C); nonetheless, TNFA up-regulation
by ADA was completely abolished by IkBDN expression (p < 0.0005).

3.5. Excess SAH disturbs EZH2 and EZH2-related proteins

Previous studies have shown that SAHH inhibitors can suppress
the activity of the S-adenosylmethionine-dependent methyltrans-
ferase EZH2 [27]. The balance between the activity of EZH2 and
the demethylase JMJD3 modulates epigenetic regulation through
H3K27me3. EZH2 is known to suppress the expression of the senes-
cence markers, cyclin-dependent kinase inhibitor 1A (CDKN1A/p21)
and 2A (CDKN2A/p16) [28].

To determine whether EZH2 was altered by SAHH inhibition in
HCAEC, we investigated the effects of ADA on the expression of EZH2;
the EZH2-regulated genes, CDKN1A and CDKN2A; and KDM6B, which
encodes the demethylase JMJD3 (Fig. 5A). ADA treatment resulted in a
58.0 + 11.7 and 68.4 + 7.7% reduction of EZH2 and KDM6B mRNA levels,
respectively (p < 0.005). CDKN1A gene expression was 2.1 4 0.3-fold
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p <0.0005, versus control. B, Western blot analysis of IL-1> protein expression induced by ADA treatment. A representative blot is shown. Mean densitometry results are presented.

Statistical significance was measured as in A. C, Cytokine mRNA expression was determined for control and ADA treated cells infected with the adenovirus IkBDN (AdIkBDN), a control
adenovirus (AdCtrl), or no virus (NV) by quantitative RT-PCR (n = 3-4). A multiple comparison ANOVA statistical analysis was performed, and the significance of the differences between
the means is indicated. ***p < 0.0005, **p < 0.005 versus corresponding condition without ADA; #p < 0.005, compared to ADA treated no virus or ADA treated AdCtrl.

higher after ADA treatment (p < 0.005), whereas CDKN2A expression
was not significantly changed. EZH2 protein levels decreased by
59.8 + 0.1% with ADA treatment (p < 0.005; Fig. 5B). SAH accumulation
also decreased H3K27me3 content by 25.5 + 0.2% (p < 0.05; Fig. 5C),
consistent with a decrease in cellular EZH2 activity. Fig. 5D suggests
that SAH-mediated changes in EZH2 expression and activity are inde-
pendent of NFKB activation, as the presence of IkBDN had no effect
on ADA-induced suppression of EZH2 nor did it alter the ADA-induced
increase of CDKN1A.

3.6. EZH2 knockdown mimics SAH-mediated effects on cell activation

To determine whether ADA-induced EZH2 suppression could
contribute to the pro-inflammatory activation of endothelial cells, we
knocked down EZH2 using a targeted siRNA (siEZH2) and analyzed
the expression of adhesion molecules and CDKN1A, as well as IL-13, an-
other known target of EZH2-associated epigenetic regulation [ 16]. EZH2
knockdown resulted in a 94.1 & 0.9 and 73.3 £ 8.9% reduction of EZH2
mRNA and protein levels, respectively (p < 0.005 vs siCtrl; Fig. 6). Sup-
pression of EZH2 expression increased CDKN1A mRNA and protein
levels when compared to siCtrl treated cells by 2.3 + 0.4- and 1.3 +
0.1-fold, respectively (p < 0.005). [The up-regulation of CDKN1A gene
expression was also significant when comparing the siEZH2 and
nontransfected cells, but the protein levels were not significantly differ-
ent between these groups.] A significant increase of 4.8 4+ 1.4-and 2.6 +
0.5-fold was also observed for ICAM1 and VCAM1 expression following
EZH2 knockdown compared to siCtrl conditions (p < 0.05). The role of
EZH2 on the expression of adhesion molecules was further confirmed
by Western blot, where EZH2 knockdown resulted ina 1.5 + 0.1-fold in-
crease of ICAM-1 expression (p <0.0005, Fig. 6B). EZH2 knockdown also
resulted in a 7.3 & 2.1-fold increase of IL-1> mRNA levels compared to
siCtrl conditions (p < 0.005).

To determine whether EZH2 inhibition could promote NFkB activa-
tion, we monitored IkBaw degradation after EZH2 knockdown. Cells
transfected with siEZH2 showed 23.0 £ 7.6% less IkBa than those
transfected with the siCtrl (p < 0.05). Furthermore, EZH2 knockdown
increased NFKB2 gene expression 2.3 £ 0.4-fold (p < 0.005), supporting
a possible role for EZH2 in modulating NFkB pathways in endothelial
cells.

4. Discussion

The role of homocysteine as a risk factor for cardiovascular disease
(CVD) has been widely debated. SAH, as a functionally important
metabolite of homocysteine metabolism, has been suggested as a po-
tentially more accurate indicator and determinant of CVD risk [29-31].
Excess SAH is a potent inhibitor of most SAM-dependent methyltrans-
ferases, and the SAM/SAH ratio has been used as a marker for the
methylation potential. Perna et al. [32] hypothesized that the lower
SAM/SAH ratio found in erythrocytes of chronic renal failure patients
contributed to the reduction of erythrocyte membrane protein carboxyl
methylation due to an inhibition of transmethylation reactions. Many
subsequent studies in cultured cells as well as in in vivo systems support
the concept that a decreased SAM/SAH ratio inhibits some methyltrans-
ferases resulting in hypomethylation of macromolecules [1,3,4,6,
33-36]. In HUVEC, ADA-induced suppression of SAH hydrolase leads
to an approximate 6-fold decrease in the SAM/SAH ratio. In HCAEC,
we found that ADA induced an approximate 16-fold decrease in
this ratio. In hyperhomocysteinemia caused by cystathionine beta-
synthase deficiency in mice [36], the SAM/SAH ratio was decreased by
2.4- to 25-fold in various tissues compared to control mice, whereas
vitamin Bg-deficiency in rodents induced hyperhomocysteinemia with
an approximate 2- to 7-fold decrease in plasma and liver SAM/SAH
ratio in various studies [37,38]. Similarly, the SAM/SAH ratio was
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Fig. 5. Effects of excess SAH on EZH2 and EZH2-related proteins. A, EZH2, KDM6B (encoding JMJD3), CDKN1A, and CDKN2A mRNA levels were studied by quantitative RT-PCR following ADA

treatment (n = 3).

**p < 0.005, versus control. B, Total protein extracts from control and ADA treated cells were used for Western blot detection of EZH2. A representative blot is shown on

the left and the summary of densitometry analysis on the right (n = 3). Statistical analysis was performed as in A. C, Western blot analysis of histone H3K27 tri-methylation (H3K27me3)

after ADA treatment. Data are analyzed as in A. *p < 0.05, versus control. D, EZH2 and CDKN1A protein expression was evaluated, by Western blot, in noninfected cells (

NV) or those

infected with the adenovirus IkKBDN or adenovirus control (AdCtrl) in the presence or absence of ADA treatment. Representative blots are presented along with densitometry analysis
(n = 3-4). An ANOVA multiple comparisons test was used to analyze the statistically significant differences between means. **p < 0.005, ***p < 0.0005, versus the corresponding condition

without ADA treatment.

decreased 4-8-fold in erythrocytes from human subjects with chronic
renal failure, a condition that causes hyperhomocysteinemia, as com-
pared to the ratio in normal control erythrocytes [32]. Thus, the
decrease in SAM/SAH induced in cell culture by pharmacological
means is within the range reported for in vivo hyperhomocysteinemia
and consistent with changes capable of causing hypomethylation. Inter-
estingly, atherosclerosis was augmented by in vivo administration
of ADA or an SAH hydrolase short hairpin RNA in ApoE ~~ mice under
conditions that modestly increased plasma SAH and decreased (by
2-fold) SAM/SAH [6], suggesting that SAH contributes to atherogenesis.

Our work has focused on targets that are impaired by excess SAH
that may contribute to vascular disease development. We have shown
that SAH hydrolase inhibition disturbs nitric oxide production and
inhibits antioxidant systems in HUVECs [1,8]. Here, we used primary
endothelial cells derived from coronary arteries (HCAECs) to examine
the mechanisms by which SAH promotes inflammatory activation. The
adhesion of leukocytes to endothelial cells, which occurs during inflam-
matory diseases such as atherosclerosis, is complex and involves multi-
ple interactions among endothelial and leukocyte surface molecules.
We monitored the expression of ICAM-1 and VCAM-1, as well as the

expression of SELE, which encodes E-selectin, an adhesion molecule
involved mainly in the early stages of the adhesion process, and
PECAM1, which is required during the transmigration stage [39]. SELE,
ICAM1, and VCAMT1 are all target genes for NFkB and were all significant-
ly increased by ADA, suggesting that NFkB may be activated by excess
SAH (Fig. 1). By contrast, PECAM1 was significantly decreased by ADA
treatment. Down-regulation of PECAMI1 expression upon cell
activation has been shown previously in various cell models, including
endothelial cells [40-43]. Notably, although its global expression may
be decreased, its redistribution to the cell surface to favor leukocyte
transmigration is likely [40-42,44]. In fact, in our previous work in
HUVECs, we found evidence for increased cell surface expression of
this adhesion molecule following cell activation by excess SAH [1].

We report a novel link between the hypomethylating agent SAH
and NFkB activation. Using an NFkB luciferase reporter construct, we
confirmed that ADA induced NFkB-dependent transcriptional activa-
tion. Our data support an activation of both the canonical and non-
canonical NFkB pathways in endothelial cells. Thus, IkBo degradation
and p65 nuclear migration were up-regulated and the expression and
processing of p100 were enhanced by ADA. The crosstalk between
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canonical and non-canonical NFkB pathways is reported to exist at
several different points in these activation cascades [45]. We found
that the increased expression of the NFKB2 gene (Fig. 3) was dependent
on the activation of the canonical pathway following ADA treatment
(Fig. 3C). The regulation of the NFKB2 gene by the canonical NFkB path-
way has been previously described; however, studies suggest that
increased expression of p100 may have a positive or negative effect on
the subsequent activation of the non-canonical pathway [45]. p100 is
the precursor of p52 and required for non-canonical pathway activation,
but its accumulation (without degradation to p52) can paradoxically
lead to the suppression of RelB nuclear translocation [45,46]. In our
cell system, excess SAH not only resulted in an NFkB-dependent
NFKB2 up-regulation, but also in increased processing of p100 to p52.
The non-canonical NFkB pathway is largely involved in lymphoid
organ development and adaptive immune responses. Its role in endo-
thelial cell function is largely unknown [46,47]. Interestingly, the
expression of CXCL2, which is a pro-inflammatory cytokine involved
in lymphocyte transendothelial migration, was reported to be depen-
dent on activation of the non-canonical NFKB pathway in endothelial
cells [48,49]. Further investigation is necessary to clarify the role of the
non-canonical NFkB pathway and CXCL2 expression in SAH-induced
endothelial cell activation.

NFkB pathways can be triggered by several factors, including patho-
gen exposure, inflammatory cytokines, radiation, and other stress sig-
nals [14,50]. Interestingly, pro-inflammatory cytokines, such as IL-1p
and TNF-q, are not only NFkB targets, but also NFkB activators via
their receptor-mediated actions. We found that SAH accumulation
caused a significant increase in the expression of IL1IB and TNFA
(Fig. 4). IL-1p3 is synthesized as a precursor 33 kDa protein, which is
cleaved by caspase-1, inducing the extracellular release of the processed
17 kDa form [51]. Only the precursor form was detectable by Western
blot following ADA treatment (Fig. 4B). [The mature form of IL-1> was
below the detection limit of the Western blot, possibly owing to its
release from the cell and/or its low levels of production.] In order
to understand whether increased cytokine production is a conse-
quence of NFkB activation, we used the recombinant IKBDN. Our
results show that IKBDN completely suppressed the ADA-induced
increase of TNFA. IKBDN also significantly reduced, but did not elim-
inate, ADA-induced up-regulation of IL1B, as it remained elevated in
comparison to untreated samples (Fig. 4C). These findings suggest
that intracellular accumulation of SAH leads to cytokine production in
response to NFkB activation, which may continue to augment and
prolong cellular activation by promoting cytokine receptor-mediated
activation of NFKB.
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It is unclear why IKBDN failed to completely block the up-regulation
of IL1B by ADA; however, the IL1B promoter may be additionally regu-
lated by other pathways, independent of NFkB. Our previous studies
showed that ADA induced oxidant stress in endothelial cells [1]. Specif-
ically, hypomethylation led to the suppression of GPx1 and other
selenocysteine containing enzymes, which play an important role in
the maintenance of cell redox balance [1,52]. Other studies, including
our own in microvascular endothelial cells, indicate that decreased
GPx1 expression can enhance inflammatory signaling in response to
cytokines and endotoxins by increasing oxidants [53,54]. In HCAECs,
the use of antioxidants confirmed that oxidative stress also contributes
to SAH-induced inflammatory activation; however, antioxidants were
unable to eliminate ADA's effects on adhesion molecule up-regulation
and failed to block ADA-induced IkB degradation in HCAECs (data not
shown).

To understand better the effects of excess SAH on endothelial cell
activation, we considered other pathways that might contribute to
endothelial activation. Recently, decreased levels of H3K27me3 were
positively correlated with the progression of atherosclerosis [55].
Here, we report that SAH accumulation can induce H3K27 hypomethy-
lation (Fig. 5). The H3K27me3 repressive mark is maintained by EZH2
and can be removed by JMJD3. We investigated the endothelial changes
in EZH2 and KDM6B expression under SAH accumulation promoted by

ADA. EZH2 is a possible target for SAH-directed inhibition, and our find-
ings show that its gene expression is also decreased by excess SAH via
an as-yet unknown mechanism. Furthermore, KDM6B gene expression
was down-regulated with excess SAH, suggesting that a feedback mech-
anism may be triggered due to lack of substrate. Interestingly, it was
recently reported in cancer cell lines that JMJD3 suppression can be
mediated by miR-941, which is up-regulated with DNA hypomethyla-
tion [56]. Similarly, EZH2 expression has been shown to be suppressed
by microRNAs that may normally be transcriptionally repressed by
DNA methylation [57]. Thus, similar mechanisms could contribute to
JMJD3 or EZH2 suppression by excess SAH.

EZH2 is known to mediate transcriptional repression of the cyclin-
dependent kinase inhibitor CDKN1A and CDKN2A genes. CDKN1A and
CDKN2A inhibit different cyclin-dependent kinases, contributing to a
senescent phenotype by blocking cell cycle progression [28]. Expression
of CDKN1A, but not CDKN2A, was significantly increased with SAH accu-
mulation, most likely due to EZH2 inhibition, and suggesting that a
senescent phenotype might be activated. Endothelial cell senescence
has been associated with atherogenesis and could be another mecha-
nism by which SAH contributes to vascular disease [58]. Previous
studies have shown that under conditions that favor intracellular accu-
mulation of SAH, homocysteine inhibits the growth of endothelial cells
[34,35]. Specifically, the hypomethylation of p21™° was proposed to
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Fig. 7. Potential mechanism(s) by which SAH causes endothelial activation. SAH can inhibit EZH2 activity, decreasing the repressive histone mark H3K27me3. H3K27me3 suppresses the
expression of a number of genes, including CDKN1A and IL1B. By stimulating its receptor, IL-13 can contribute to NFkB activation. Exposure to excess SAH activates both the canonical and
non-canonical NFkB pathways. The canonical pathway involves IkB kinase complex (IKK) activation to induce IkB phosphorylation, triggering its ubiquitination-mediated degradation by
the proteasome. Following IkB degradation, NFkB complexes (p65/p50) are free to migrate to the nucleus, activating transcription of its target genes. SAH induces NFkB-mediated tran-
scription of cytokines (such as IL-1(3, which can sustain further NFkB activation), adhesion molecules, and NFkB2. The non-canonical pathway relies on the activation of NFkB-interacting
kinase (NIK) and IKKo which mediates the phosphorylation of the NFkB2 gene product, p100, leading to its processing to p52, and subsequent migration of RelB/p52 to the nucleus. SAH

augments the accumulation of p52, which may contribute to endothelial cell activation.
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decrease endothelial cell growth as it alters the membrane localization
of this protein [34]. Similarly, hypomethylation of the cyclin A gene cor-
related with its reduced transcription in endothelial cells, most likely
due to the effects of a transcriptional inhibitor that can bind to the
unmethylated DNA [35]; the resulting deficiency of cyclin A arrested
cell cycle transition at the G1/S phase. We also observed decreased
cell growth in cells treated with ADA (data not shown); however, addi-
tional studies are necessary to determine whether loss of EZH2 methyl-
transferase activity and increased expression of CDKN1A contribute to
SAH-mediated growth suppression in endothelial cells.

Little is known about the interaction of EZH2 with the NFkB
pathway, especially in endothelial cells. In breast cancer cells, the
EZH2 protein caused an activation or repression of NFkB pathways
depending on the estrogen receptor (ER) status of the cancer cells
[59]. In ER-negative cancer cells, EZH2 physically interacted with NFkB
heterodimers to promote the expression of a subset of NFkB target
genes; whereas in ER-positive cells, ER recruited EZH2-containing com-
plexes to NFKB target genes to epigenetically silence them via histone
methylation. A different interaction was found between NFkB and
EZH2 in endothelial cells infected with Kaposi sarcoma-associated
herpesvirus in which latent viral genes were found to activate NFkB,
leading to increased expression of EZH2 [60]. In primary endothelial
cells, we found a different association between EZH2 and NFkB that
was caused by a loss of functional EZH2. In fact, NFkB had no effect on
EZH2 expression in HCAECs; rather, the loss of EZH2 promoted NFkB
activation, with a concomitant increase of NFkB2 mRNA levels.

In support of a role for EZH2 suppression in ADA-induced activation
of NFkB, knockdown of EZH2 (Fig. 6) recapitulated the effects of
ADA, activating NFkB and increasing the expression of adhesion
molecules and the pro-inflammatory cytokine IL1B. Although the pro-
inflammatory effects of EZH2 knockdown are less robust than those
induced by SAH hydrolase inhibition, the knockdown caused many of
the same inflammatory responses. It is likely that the magnitude of
these responses is lower with EZH2 knockdown as additional pathways
(such as oxidative stress) that also contribute to endothelial cell dys-
function may be activated by SAH-accumulation. Nonetheless, our
results support a role for EZH2 suppression in the effects of excess
SAH, and suggest that EZH2 suppression may contribute to NFKB activa-
tion in endothelial cells.

In conclusion, our studies implicate homocysteine's precursor, SAH,
in the activation of the canonical and non-canonical NFkB pathways.
Furthermore, excess SAH suppresses EZH2, decreasing the global levels
of the repressive H3K27me3 mark. Based on these results, we believe
that EZH2 suppression promotes the expression of inflammatory
cytokines, such as IL-1p, due to a decrease of the epigenetic mark
H3K27me3 at the IL1B promoter [16,26]. Up-regulation of IL-13 may
promote the continued stimulation of the NFkB pathway via activation
of the IL-1(3 receptor. Thus, we suggest that SAH-induced EZH2 sup-
pression can contribute to pro-inflammatory changes favoring ath-
erogenesis. Our results reveal an important link between NFkB and
PRC2 epigenetic regulation, which may be relevant to vascular disease
(Fig. 7).
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