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Fatty acids (FA) and FA-derived metabolites have long been implicated in the development of insulin
resistance and type 2 diabetes. Surprisingly, application of metabolomics technologies has revealed that
branched-chain amino acids (BCAA) and related metabolites are more strongly associated with insulin
resistance than many common lipid species. Moreover, the BCAA-related signature is predictive of incident
diabetes and intervention outcomes and uniquely responsive to therapeutic interventions. Nevertheless, in
animal feeding studies, BCAA supplementation requires the background of a high-fat diet to promote
insulin resistance. This Perspective develops a model to explain how lipids and BCAA may synergize to
promote metabolic diseases.
Introduction
The pandemic of obesity that burdens the world population is

well documented. In the United States, more than 65% of adults

are characterized as overweight or obese (Flegal et al., 2002).

This epidemic of obesity is linked to increasing incidence of

chronic diseases such as type 2 diabetes, cardiovascular

disease, and cancer. A common perception is that this constel-

lation of maladies is driven principally by increased consumption

of fat in the diet, and accordingly, other Perspectives in this

compendium are focused on the impact of excess lipids on

various cellular functions, including mitochondrial metabolism,

endoplasmic stress responses, inflammation, and generation

of reactive oxygen species. However, numerous recent reports

have described a particularly strong association of branched-

chain and aromatic amino acids with metabolic disease. There-

fore, this Perspective reviews these recent findings and then

focuses on the potential role of these metabolites in disease

pathogenesis, including a discussion of interactions between

amino acids and lipids in development of metabolic disorders.

A strong relationship between glucose and lipid metabolism

has been recognized for decades, with key features of this

regulatory dynamic unveiled by the pioneering studies of Sir

Phillip Randle and J. Denis McGarry (Randle, 1998; McGarry,

2002). Randle showed that the surge in lipolysis and resultant

increase in circulating free fatty acids in the fasted state contrib-

utes to increased reliance of tissues on fatty acid oxidation

to provide energy. Glucose oxidation is reduced under these

conditions in part via the generation of byproducts of fatty acid

oxidation that suppress key steps of glucose metabolism.

Conversely, McGarry demonstrated that increased availability

of glucose and insulin in the fed state leads to production of ma-

lonyl CoA, a potent allosteric inhibitor of fatty acid oxidation.

Overnutrition results in perturbation of these elegant reciprocal

control mechanisms, leading to a condition termed ‘‘metabolic

inflexibility’’ (Kelley and Mandarino, 2000). A subject debated in

other Perspectives in this compendium is whether the metabolic
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inflexibility and insulin resistance of obese states is due to

intrinsic mitochondrial deficiency and consequent accumulation

of bioactive lipid species that interfere with insulin signaling

(Savage et al., 2007), or is due instead to ‘‘overloading’’ of nor-

mally active mitochondria with lipid substrates, leading to mito-

chondrial dysfunction and activation of alternative pathways

for impairment of insulin action (Koves et al., 2008). The latter

model seems particularly compatible with the emergent role of

certain amino acids in development of insulin resistance and

type 2 diabetes and will therefore be a focus here.

Comprehensive metabolic profiling, also known as ‘‘metabo-

lomics,’’ has recently provided unique insights into mechanisms

underlying development of insulin resistance (Bain et al., 2009).

For example, metabolic profiling of muscle samples from normal

rats fed on a high-fat (HF) compared to a standard chow diet, or

from obese and insulin-resistant Zucker diabetic fatty (fa/fa)

compared to lean Zucker rats, reveals accumulation of a broad

array of acylcarnitine species, which report on the pool of mito-

chondrial acyl CoA metabolites and the b-oxidative pathway

(Koves et al., 2005, 2008). Several studies demonstrate that

feeding of a HF diet to humans or rodents and culture of muscle

cells in the presence of high levels of fatty acids cause clear

induction of genes of b-oxidation, but with either no effect or

a decrease in expression of enzymes involved in the tricarboxylic

acid (TCA) cycle or oxidative phosphorylation (Koves et al., 2005;

Sparks et al., 2005). Fatty acid culture or feeding of a HF diet also

causes a decrease in expression of peroxisome proliferator-acti-

vated receptor gamma coactivator 1a (PGC-1a) and an increase

in acylcarnitine levels in muscle cells. Two weeks of exercise

intervention in HF-fed mice results in increased PGC-1a expres-

sion, lowering of acylcarnitines in muscle, and normalization

of insulin sensitivity (Koves et al., 2005). Finally, overexpression

of PGC-1a in muscle cells also causes increased expression of

TCA cycle enzymes. Taken together, these findings have led

Muoio and associates to suggest that HF feeding leads to the

appropriate adaptive response of an increase in enzymes of fatty
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acid disposal (oxidation) in muscle, a response that is not

matched in sedentary animals or humans by a parallel increase

in enzymes of the TCA cycle. This disconnect results in accumu-

lation of incompletely oxidized lipid species inmitochondria (rep-

resented by the acylcarnitines) and a decrease in multiple TCA

cycle intermediates. The model further holds that accumulation

of incompletely oxidized substrates causes mitochondrial

stress, leading to impaired insulin action (Koves et al., 2005,

2008; Muoio and Newgard, 2008).

Emergence of Novel Associations of Branched-Chain
Amino Acids with the Incidence, Progression,
and Therapy of Human Metabolic Diseases
Metabolomics has also been applied to human disease studies.

Using targeted gas chromatography/mass spectrometry and

tandem mass spectrometry coupled with biochemical methods,

>100 analytes were measured in plasma samples from obese

(BMI 37) and insulin-resistant versus lean (BMI 23) and insulin-

sensitive subjects, and data were analyzed by principal compo-

nents analysis (Newgard et al., 2009). Five principal components

were found to describemost of the variance in the data, including

several lipid-related components (e.g., long-chain fatty acids

and ketone metabolites, medium-chain acylcarnitines), but

surprisingly, the component most strongly associated with

insulin sensitivity (HOMA score) was not lipid related, but rather

comprised of the branched-chain amino acids (BCAA; Val,

Leu/Ile), the aromatic amino acids (Phe, Tyr), C3 and C5 acylcar-

nitines, as well as Glx (mostly Glu with some Gln) and Ala. The

preferential association of this BCAA-related metabolite cluster

with insulin resistance was confirmed in a cross-sectional study

of sedentary, metabolic syndrome subjects, using the frequently

sampled glucose tolerance test to measure insulin sensitivity

(Huffman et al., 2009), and in cohorts of Chinese and Asian-

Indian men in Singapore in which BMI was matched at around

24 (Tai et al., 2010). These studies demonstrate the strong and

preferential association of the BCAA-related metabolite cluster

and insulin resistance in studies of different design (case-control

or cross-sectional) and across multiple ethnic groups and

geographical locales. A subsequent study also demonstrated

a strong association of a similar BCAA-related metabolite cluster

with coronary artery disease in both a reference and validation

cohort, with this association persisting even after correction for

type 2 diabetes and other clinical variables (Shah et al., 2010).

In addition to the strong correlation of BCAA and related

metabolites with metabolic disease, recent studies have

demonstrated that these analytes can be predictive of disease

progression and intervention outcomes. For example, we

recently studied 500 obese subjects from the weight loss main-

tenance (WLM) trial (Svetkey et al., 2008), in which blood

samples were taken at baseline, followed by a 6 month behav-

ioral/dietary (DASH diet) intervention. The amount of weight

lost over the 6 months of intervention was very poorly correlated

with improvement in homeostatic model assessment (HOMA)

score. In contrast, targeted metabolic profiling of plasma

samples collected at baseline revealed that the BCAA-related

principal component factor score was a strong predictor of

improvement in insulin sensitivity with intervention, whereas

lipid-related factors had no predictive association (Shah et al.,

2012). Metabolomics has also been applied to baseline plasma
samples from 189 subjects in the Framingham longitudinal

cohort that developed type 2 diabetes over as much as 12 years

of follow-up, compared to 189 control subjects that did not

develop diabetes despite being matched for weight, lipid profile,

and other clinical variables (Wang et al., 2011). The five metab-

olites with the strongest association with incident diabetes were

Leu, Ile, Val, Phe, and Tyr, remarkably similar to the composition

of the metabolite principal component found to associate with

metabolic diseases and conditions in our studies. The ability of

these metabolites to predict incident diabetes was confirmed

in a second group of subjects available from the Malmo cohort

(Wang et al., 2011).

Finally, there is evidence that changes in BCAA levels may

correlate with the efficacy of interventions for affecting improve-

ment inmetabolic control. Thus, our group has shown that obese

subjects undergoing gastric bypass (GBP) surgery have a much

more dramatic decline in circulating BCAA, C3 and C5 acylcarni-

tines, Phe, and Tyr than found in response to dietary intervention,

despite equal weight loss in the two study groups (Laferrère

et al., 2011). This is significant because GBP causes greater

improvement in glucose homeostasis than dietary intervention

(Laferrère et al., 2011; Clifton, 2010). Moreover, the efficacy

of a set of thiazolidinedione (TZD) drugs for controlling glucose

homeostasis in Zucker-obese rats has been correlated with their

unique ability to enhance expression of the BCAA catabolic

pathway in adipose tissue (Hsiao et al., 2011), as discussed

further below.

It is important to note that associations of BCAA and other

amino acids with insulin resistance and type 2 diabetes have

been noted over more than 30 years by Cahill, Felig, Marliss,

and others (Felig et al., 1969, 1974; Gougeon et al., 2008).

However, by taking a more broad-based metabolomics

approach, the newer findings provide several insights that

move the field beyond these important historical observations.

First, principal components analysis demonstrates that BCAA

and aromatic amino acids form an independent clustered vari-

able that also includes byproducts of BCAA catabolism such

as Glu, Ala, and C3 and C5 acylcarnitines, suggesting that the

meaningful association is not with BCAA per se, but rather with

altered flux through the BCAA catabolic pathway. Second, the

global analysis conducted by several groups demonstrates

a stronger association of BCAA and related metabolites with

insulin resistance and type 2 diabetes than with other metabolite

clusters, including lipid-related clusters. Third, the newer studies

demonstrate the potential prognostic power of this group of

analytes. Taken together, the combined historical and newer

studies show that BCAA and related metabolites are associated

with insulin resistance, diabetes, and CAD, predictive of dia-

betes development, predictive of intervention outcomes, and

highly and uniquely responsive to therapeutic interventions.

The metabolites embodied in the BCAA-related principal

components that so consistently associate with insulin resis-

tance and metabolic disease have a biochemical as well as

statistical connection (Figure 1). Thus, Glu is produced in the

first step of BCAA catabolism, transamination by the mitochon-

drial form of BCAA transaminase (BCATm). C5 acylcarnitines

are comprised of a-methylbutyryl and isovalerylcarnitine

species, intermediates in mitochondrial Ile and Leu catabolism,

respectively. C3 acylcarnitine reflects the propionyl CoA pool,
Cell Metabolism 15, May 2, 2012 ª2012 Elsevier Inc. 607



Figure 1. Pathways of Branched-Chain Amino Acid Catabolism
Shown in blue are the reactions that produce metabolites found in the BCAA-related principal component that associates with insulin resistance and other
metabolic diseases.
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which is a byproduct of both Ile and Val catabolism. BCAA are

not the only metabolic fuels that can generate C3 and C5

acylcarnitines (for example, methionine is also degraded to

propionyl CoA), but a direct link of BCAA to C3 and C5 acylcar-

nitines is demonstrated by a rise in circulating and tissue levels

of these metabolites in response to BCAA supplementation

(Newgard et al., 2009). Accumulation of Glu may increase trans-

amination of pyruvate to Ala. Finally, the elevation in the

aromatic amino acids Phe and Tyr may be explained by the

fact that Trp, Phe, Tyr, Leu, Ile, and Val compete for transport

into mammalian cells by the large neutral amino acid transporter

(LAT1) (Fernstrom, 2005).
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Potential Cause-Effect Relationships between BCAA
and Metabolic Diseases
Recent studies demonstrating strong associations of BCAA and

relatedmetabolites with disease, disease progression, and inter-

vention outcomes suggest a possible cause/effect relationship

between these metabolites and disease development. More-

over, the large body of extant literature implicating fatty acids

and other lipids in development of tissue dysfunction and meta-

bolic disease raises the possibility that these abnormalitiesmight

be driven by combined effects of lipids and BCAA. To begin to

test these ideas, we fed Wistar rats on HF, HF + BCAA, or stan-

dard chow (SC) diets (Newgard et al., 2009). Interestingly,



Figure 2. Acylcarnitines in Skeletal Muscle in Rats Fed on Various Diets for 12 Weeks
SC, standard chow; SC/BCAA, standard chow supplemented with branched-chain amino acids (Val, Leu, Ile); HF, high-fat diet (35% calories from fat); HF/BCAA,
HF diet supplemented with branched-chain amino acids. Inset: C3 and C5 acylcarnitines in rats fed on various diets. Data adapted from Newgard et al., 2009.
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animals fed on the HF + BCAA diet consumed less food than the

HF group, consistent with reports of reduced food intake in

response to intracerebroventricular injection of Leu in mice

(Cota et al., 2006). Despite a lower rate of food intake and

body weight gain equivalent to the SC group, HF + BCAA rats

were equally insulin resistant as HF rats, as demonstrated by

glucose and insulin tolerance tests and by impaired insulin

signaling in liver and muscle (Newgard et al., 2009). Pair-feeding

of HF diet to match the food intake of HF + BCAA animals or

feeding of SC + BCAA did not cause insulin resistance. Insulin

resistance induced by HF + BCAA was accompanied by chronic

activation of mammalian target of rapamycin (mTOR), P70-S6

kinase 1 (S6K-1), c-Jun N-terminal kinase (JNK), and phosphor-

ylation of insulin receptor substrate-1 (IRS1(Ser307)) and was

reversed by the mTOR inhibitor rapamycin. These data suggest

an interaction between excess fat and BCAA in development of

insulin resistance and demonstrate a contribution of BCAA to

impaired glucose homeostasis that can occur independently of

body weight. Although our studies with rapamycin suggest

a role for mTOR and its downstream targets in BCAA-mediated

insulin resistance, full consideration of the extant literature

presents a more confusing picture (reviewed in Um et al.,

2006; Avruch et al., 2009). For example, one study shows that

depletion of Leu in the diet results in reduced mTOR activity in

concert with an improvement in hepatic insulin sensitivity (Xiao

et al., 2011), whereas another shows that Leu supplementation

activates mTOR without impairing insulin action (Macotela

et al., 2011). Given the need for further investigation in this

area, the remainder of this Perspective focuses on a metabolic
model for explaining the interaction of fatty acids and BCAA in

promoting insulin resistance.

Despite the lower rate of food intake of HF + BCAA-fed

animals, they accumulate acylcarnitine species in muscle to

the same extent as HF-fed rats (Figure 2). As described earlier,

accumulation of acylcarnitines has been interpreted by Muoio

and associates as an index of incomplete fatty acid oxidation

in mitochondria (Koves et al., 2005, 2008; Muoio and Newgard,

2008). We suggest that when BCAA accumulate in plasma as

a consequence of dietary supplementation or via other potential

mechanisms as discussed below, flux of these amino acids into

skeletal muscle and through the BCAA catabolic pathway is

increased, as also implied by the increase in C3 and C5 acylcar-

nitines in blood of obese and insulin-resistant subjects. Metabo-

lism of BCAA and/or their cognate a-ketoacids may also

increase in liver. Increased BCAA catabolism in muscle and liver

would result in increased production of propionyl CoA and

succinyl CoA. The mechanism by which accumulation of these

intermediates could contribute to incomplete oxidation of fatty

acids (as evidenced by accumulation of long, even-chained

acylcarnitines in HF + BCAA-fed animals [Figure 2]) remains to

be defined. One possibility is that in the background of a HF

diet, these substrates act to ‘‘fill’’ the TCA cycle (a process

known as anaplerosis), contributing to the accumulation of

incompletely oxidized intermediates of fatty acid and BCAA

oxidation. Under these conditions, glucose is rendered super-

fluous as an energy substrate, resulting in decreased glucose

utilization and glucose intolerance. It should be noted that

such a model is not consistent with findings of reduced levels
Cell Metabolism 15, May 2, 2012 ª2012 Elsevier Inc. 609
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of TCA cycle intermediates in muscle of ZDF compared to lean

rats (Koves et al., 2008) as described earlier, but direct measures

of TCA cycle intermediates in muscle of rats fed on HF or HF +

BCAA diets have yet to be reported. Alternatively, propionyl

CoA and succinyl CoA are allosteric inhibitors of citrate synthase

(Lee et al., 1997a), and recent studies have also indicated that

mitochondrial proteins can be reversibly posttranslationally

modified and regulated by succinylation and malonylation in

addition to the more familiar mechanism of acetylation (Peng

et al., 2011; Hirschey, 2011), providing other possible mecha-

nisms for crosstalk between BCAA, fatty acid, and glucose

oxidative pathways. Also, in liver, excess carbon from BCAA

catabolism may contribute to elevated rates of lipogenesis and

gluconeogenesis. Overall, the data shown in Figure 2 suggest

that BCAA can ‘‘clog’’ the b-oxidative machinery in a manner

analogous to the effect of excess fat, even when less HF +

BCAA food is ingested compared to the HF group. Importantly,

this effect seems to require the presence of high fat in the diet,

as supplementation of standard chow diet with BCAA does not

induce insulin resistance or cause acylcarnitine accumulation

in skeletal muscle (Figure 2 and Newgard et al., 2009).

The foregoing model seems counter to traditional thinking

about pathways of BCAA catabolism, in that BCAA catabolic

flux is expected to be low in muscle, consistent with that tissue’s

abundant expression of BCATm, but much lower expression of

the branched-chain ketoacid dehydrogenase complex

(BCKDH), with an opposite ratio of expression of these enzymes

in liver (Shimomura et al., 2006). This gives rise to the commonly

held view that a large fraction of the ketoacid pool produced from

transamination of BCAA in muscle is metabolized in liver. It is

important to emphasize that this does notmean that the ketoacid

skeletons of BCAA cannot be oxidized in muscle or that

increased rates of their catabolism in muscle tissue cannot

contribute to mitochondrial overload. Our finding of increased

levels of C3 and C5 acylcarnitine species (byproducts of

BCAA, but not fatty acid catabolism) in muscle and plasma of

HF + BCAA fed rats (Figure 2, inset) and in plasma of insulin-

resistant humans (Newgard et al., 2009; Huffman et al., 2009;

Tai et al., 2010; Laferrère et al., 2011) is consistent with this view.

How do the levels of BCAA and related metabolites rise in

obese and insulin-resistant humans? The answers are not

clearly known, but several possibilities exist. One route is

through increased protein consumption, since both the BCAA

and aromatic amino acids are essential (not synthesized de

novo in mammalian tissues). However, in both the studies of

Asian-Indian and Chinese subjects in Singapore (Tai et al.,

2010) and the longitudinal study of the Framingham cohort

(Wang et al., 2011), associations of BCAA and aromatic amino

acids with insulin resistance and risk for diabetes were not influ-

enced by protein consumption, as estimated by feeding ques-

tionnaires, suggesting that other factors are likely to contribute.

Genetic variation in expression of genes encoding key BCAA

catabolic enzymes or proteins that control protein synthesis

and turnover may be another contributor. A third possibility is

the gut microbiome, since many bacterial species are capable

of de novo synthesis of BCAA (Park and Lee, 2010) and could

contribute to alterations in circulating BCAA in the host, although

such an effect of the microbiome has yet to be demonstrated

directly.
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Yet a fourth possibility is suggested from several recent

studies of the interplay between adipose tissue, BCAA metabo-

lism, and glucose homeostasis. An important finding is that

subtle alterations in expression of the genes in the BCAA cata-

bolic pathway in adipose tissue can have a very significant

impact on circulating BCAA levels. This was uncovered in part

via studies of mice with adipose-specific overexpression of

GLUT-4, which resulted in modest but concerted decreases in

expression of multiple BCAA catabolic enzymes in fat tissue,

coupled with a significant increase in circulating BCAA (Herman

et al., 2010). The activity of key BCAA catabolic enzymes in

adipose tissue is also strongly influenced by obesity. For

example, BCKDH complex enzymatic activity is decreased and

phosphorylation of the E1 component of the complex is

increased in adipose tissue of Zucker-obese rats and ob/ob

mice relative to lean controls. BCATm and BCKDH gene expres-

sion is also decreased, accompanied by increased levels of

circulating BCAA in these models (She et al., 2007a). Interest-

ingly, no deficits in expression or activity of these enzymes

were reported in skeletal muscle in the same animals. In addition,

the large decrease in BCAA in response to bariatric surgery in

humans that has been described by several groups (Laferrère

et al., 2011; She et al., 2007a) is accompanied in one study by

increased expression of BCATm and BCKDH in omental and

subcutaneous fat after surgery (She et al., 2007a), suggesting

a possible contribution of the adipose depot to re-establishment

of BCAA homeostasis with weight loss. A similar mechanism

may also be at work with application of pharmaceutical thera-

pies, as suggested in a recent study of insulin-resistant

Zucker-obese rats treated with four different thiazolidinedione

drugs with varying efficacy for control of glucose homeostasis.

Microarray analysis of multiple tissues in the treated rats re-

vealed a striking and unique correlation between the efficacy

of the drugs for glycemic control and their ability to upregulate

multiple enzymes of the BCAA catabolic pathway in adipose

tissue (Hsiao et al., 2011). Microarray studies in humans also

revealed a strong correlation between expression of BCAA

catabolic genes in adipose tissue and insulin sensitivity (Sears

et al., 2009). These data suggest that decreased catabolism of

BCAA in adipose tissue may contribute to increases in BCAA

levels in insulin-resistant states, although such an interpretation

fails to explain how C3 and C5 acylcarnitines are consistently

increased in our multiple cohorts of insulin-resistant humans

(Newgard et al., 2009; Huffman et al., 2009; Tai et al., 2010;

Laferrère et al., 2011). We suggest that flux through BCAA cata-

bolic pathways is not universally restricted in obesity and may in

fact be enhanced in a subset of tissues, including skeletal

muscle. Flux through protein biosynthetic pathways may also

be reduced in obesity and type 2 diabetes (Pereira et al.,

2008), although it remains to be determined if such changes

are primary drivers of elevations of circulating BCAA or are

a secondary consequence of impaired insulin action on protein

metabolism.

Working Model of the Interplay of Lipids and BCAA
in Development of Insulin Resistance and Metabolic
Disease
Based on our own data and that of others in the field, we propose

that BCAA synergize with hyperlipidemia to make a contribution



Figure 3. Schematic Working Model of
Potential Crosstalk between Lipids and
BCAA in Development of Obesity-Related
Insulin Resistance
See text for details. ‘‘Anaplerosis’’ refers to reple-
tion or filling up of TCA cycle intermediates via
entry points other than acetyl CoA. TG, triglyc-
eride; IMTG, intramyocellular triglyceride; IR,
insulin receptor.
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to the development of insulin resistance via the model shown in

Figure 3. In this model, the rise in circulating BCAA is driven in

part by an obesity-related decline in their catabolism in adipose

tissue. In obesity and overnutrition, readily usable glucose and

lipid substrates may obviate the need for amino acid catabolism

in adipose tissue, but the mechanism by which increased supply

of these substrates causes downregulation of the BCAA cata-

bolic enzymes remains to be explored. The fact that TZD drugs

can restore expression of the BCAA catabolic genes to normal

(Hsiao et al., 2011) may suggest a role of suppressed peroxi-

some proliferator-activated receptor g (PPARg) signaling in this

metabolic adaptation. The resultant increase in circulating

BCAA, possibly supplemented by contributions from the diet,

intrinsic genetic differences in BCAA or protein turnover, and/

or the gut microbiome, leads to an expanded pool of BCAA

and related metabolites in obese and insulin resistant subjects.

Themodel further holds that this expanded pool of BCAA ‘‘spills’’

into catabolic pathways in skeletal muscle and liver, explaining

our highly consistent observation of an increase in circulating

C3 andC5 acylcarnitines in humanswith insulin resistance (New-

gard et al., 2009; Huffman et al., 2009; Tai et al., 2010; Laferrère

et al., 2011). As explained earlier, the further consequence of this

enhanced flux and the generation of the catabolic intermediates

propionyl CoA and succinyl CoA is to reduce the efficiency of

oxidation of fatty acids and glucose, leading to accumulation

of incompletely oxidized substrates, mitochondrial stress,

impaired insulin action, and ultimately to perturbation of glucose

homeostasis.

It is important to note that while there are a number of studies

consistent with our findings that BCAA contribute to develop-

ment of insulin resistance, there are also some that seem to

refute this conclusion. Findings consistent with ours include

the induction of insulin resistance in response to infusion of

amino acids in humans or animals, accompanied by chronic
Cell Metabolism
activation of mTOR, S6K1, and serine

phosphorylation of IRS1 (Krebs et al.,

2002; Tremblay et al., 2005). Moreover,

feeding of ob/ob mice with Leu-depleted

diets increases insulin sensitivity (Xiao

et al., 2011). Finally, addition of BCAA or

aromatic amino acids to cultured muscle

cells results in activation of mTOR,

impairment in insulin-stimulated phos-

phorylation of Akt/protein kinase B, and

reduced insulin-stimulated glucose up-

take (Tremblay and Marette, 2001; Saha

et al., 2010).

In contrast, other studies in mice report

either improvement in insulin sensitivity
(Macotela et al., 2011; Zhang et al., 2007) or no effect (Nairizi

et al., 2009) in response to Leu supplementation. Also, global

knockout of BCATm in mice results in severe elevations of

BCAA (14- to 37-fold), coupled with resistance to diet-induced

obesity and improved glucose tolerance (She et al., 2007b).

We feel that these studies are less faithful models of human

obesity and related conditions for the following reasons. First,

Leu supplementation causes Leu to rise in the circulation, but

causes a decline in the other BCAA (Nairizi et al., 2009), thereby

failing tomimic conditions in human insulin resistance and type 2

diabetes, where all three BCAA and several other amino acids

are elevated (Newgard et al., 2009; Huffman et al., 2009; Tai

et al., 2010; Wang et al., 2011; Laferrère et al., 2011). Second,

not all of the studies on Leu supplementation were conducted

in the context of high-fat feeding, which we have shown is

necessary to unveil effects of BCAA on insulin sensitivity in

rats. Third, mice with BCATm knockout have high rates of

protein futile cycling and increased energy expenditure (She

et al., 2007b); HF + BCAA-fed rats or obese humans do not

exhibit these changes (Newgard et al., 2009). Finally, if BCAA

were protective against metabolic disease, one would not

expect them to be elevated early in disease progression, as in

Asian subjects with insulin resistance but relatively normal

body weight (Tai et al., 2010) or in prediabetic subjects from

the Framingham and Malmo cohorts (Wang et al., 2011). Never-

theless, further studies on the mechanisms by which excess

BCAA may interfere (or not) with insulin action are warranted,

as are studies focused on deeper understanding of the crosstalk

between lipids and amino acids in development of metabolic

dysfunction.

Lipids, BCAA, and the b Cell
There may also be interactions of excess BCAA and lipids in the

development of b cell dysfunction, which drives the transition
15, May 2, 2012 ª2012 Elsevier Inc. 611
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from the obese, insulin-resistant state to type 2 diabetes. The

metabolic basis for the gradual dysregulation of glucose-

stimulated insulin secretion (GSIS) in type 2 diabetes is not

completely understood, in part because fatty acids and amino

acids have complex effects on the b cell. Fatty acids can serve

as secretagogues that potentiate GSIS, apparently via a combi-

nation of messengers produced during metabolism and via acti-

vation of cell-surface G protein-coupled receptors (Stein et al.,

1997; Latour et al., 2007). Islets must also maintain a minimal

supply of cellular lipids to allow stimulus/secretion coupling.

Thus, total depletion of islet triglyceride stores in rats by exper-

imental hyperleptinemia (Koyama et al., 1997) or by treatment

with the antilipolytic agent nicotinic acid (Stein et al., 1996)

results in loss of insulin secretion in response to a range of

secretagogues; this loss of function can be rescued by reprovi-

sion of fatty acids. Conversely, the dysfunctional islets in animal

models of obesity and type 2 diabetes exhibit accumulation of

stored lipids (triglyceride) and other potentially harmful lipid-

derived products (ceramides) preceding the onset of b cell

dysfunction (Lee et al., 1997b; Shimabukuro et al., 1998). Finally,

chronic exposure of islets to elevated concentrations of fatty

acids causes impairment of GSIS (Segall et al., 1999; Boucher

et al., 2004).

Amino acids have similarly complex effects on b cells. Two

of the analytes found in the principal component associated

with insulin resistance, Glu and Leu, are potent insulin secreta-

gogues, and the two analytes interact in regulating insulin secre-

tion. Glu-stimulated insulin secretion is enhanced by allosteric

activation of Glu dehydrogenase by Leu as well as metabolism

of Leu to create anaplerotic substrates (Li et al., 2003), and acti-

vating mutations in GDH cause a form of familial hyperinsulinism

(Stanley, 2009). Obese, insulin-resistant but nondiabetic humans

have elevated levels of BCAA and Glu and also exhibit an

increase in the acute insulin secretion response to glucose

(over 10 min) during a glucose tolerance test (Newgard et al.,

2009). Moreover, these analytes as well as others in the BCAA-

related principal component discussed earlier are strongly

associated with fasting insulin levels, HOMA, and C-peptide

secretion during a glucose challenge following bariatric surgery

(Laferrère et al., 2011). Taken together, these findings suggest

that chronic elevations in BCAA and related metabolites may

synergize with a similar slow rise in circulating fatty acids to drive

a state of chronic hyperinsulinemia. This constant secretory

pressure on the b cell may ultimately contribute to b cell dysfunc-

tion by causing endoplasmic reticulum stress (see Muoio and

Newgard, 2008 for review). The same amino acids may con-

tribute to the rapid improvement in glycemic control in response

to bariatric surgery, in part by tempering the chronic hyperinsu-

linemia.

Concluding Remarks
In summary, recent studies from several laboratories have re-

kindled interest in the potential role of protein and amino acid

metabolism in development of metabolic disease. In particular,

the multiple new examples of strong associations between

BCAA and related metabolites with incidence, progression,

and remission of insulin resistance, type 2 diabetes, and car-

diovascular disease provide the impetus for gaining better

understanding of the potential synergies between this group
612 Cell Metabolism 15, May 2, 2012 ª2012 Elsevier Inc.
of metabolites and lipids in development of metabolic dysfunc-

tion in multiple tissues. It is hoped that the working models

advanced here will help in the design of experiments to further

pursue the mechanistic underpinnings of such crosstalk in the

future.
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