
Journal of Computational and Applied Mathematics 161 (2003) 75–98
www.elsevier.com/locate/cam

Fast spherical Fourier algorithms
Stefan Kunis, Daniel Potts∗

Institute of Mathematics, University of L�ubeck, Wallstrasse 40, L�ubeck D-23560, Germany

Received 6 November 2002; received in revised form 20 March 2003

Abstract

Spherical Fourier series play an important role in many applications. A numerically stable fast transform
analogous to the fast Fourier transform is of great interest. For a standard grid of O(N 2) points on the sphere,
a direct calculation has computational complexity of O(N 4), but a simple separation of variables reduces
the complexity to O(N 3). Here we improve well-known fast algorithms for the discrete spherical Fourier
transform with a computational complexity of O(N 2 log2 N). Furthermore we present, for the 6rst time, a
fast algorithm for scattered data on the sphere. For arbitrary O(N 2) points on the sphere, a direct calculation
has a computational complexity of O(N 4), but we present an approximate algorithm with a computational
complexity of O(N 2 log2 N).
c© 2003 Elsevier B.V. All rights reserved.

MSC: 65T99; 33C55; 42C10; 65T50

Keywords: Spherical Fourier transform; Spherical harmonics; Associated Legendre functions; Fast discrete transforms;
Fast Fourier transform at nonequispaced knots

1. Introduction

Fourier analysis on the sphere S2 ⊂ R3 has practical relevance in tomography, geophysics, seis-
mology, meteorology and crystallography. The discrete spherical Fourier transform (DSFT) plays
an essential role in many applications. In particular, there is a growing need for the fast summa-
tion of spherical harmonic expansions (see [6,26,21,32,14]). Unfortunately, working with spherical
harmonics is computationally complex in many respects [5].

∗ Corresponding author.
E-mail addresses: kunis@informatik.uni-luebeck.de (S. Kunis), potts@math.uni-luebeck.de (D. Potts).

0377-0427/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0377-0427(03)00546-6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82737162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kunis@informatik.uni-luebeck.de
mailto:potts@math.uni-luebeck.de

76 S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98

The Fourier expansion of a function f∈L2(S2) with bandwidth M is given by

f =
∑

(k;n)∈IM

an
k(f)Y

n
k ; (1.1)

where IM := {(k; n) : k = 0; : : : ; M ; n=−k; : : : ; k} and an
k(f) are the spherical Fourier coeEcients of

f with respect to the orthogonal basis of spherical harmonics Y n
k , where n denotes the order and k

the degree.
The aim of this paper is twofold. In the 6rst part we improve a fast algorithm for computing

f on a special grid. Since the spherical harmonics Y n
k (#;) ((#;)∈ S; S := [0; �] × [0; 2�)) are

scaled products of complex exponentials ein for the longitudinal coordinate and Legendre functions
P|n|

k (cos#) for the colatitudinal coordinate, the discrete spherical Fourier transform on grids can be
split up into ordinary discrete Fourier transforms for exponentials, which can be realized by fast
Fourier transform (FFT) techniques, and discrete Legendre function transforms. We give a simple
approach to the Legendre function transform based on cascade summation using fast polynomial
transforms. Using a fast polynomial transform scheme based on discrete cosine transforms (DCT)
leads to the algorithm given in [26], whereas using the fast multipole method (FMM) leads to the
algorithm in [32]. Here we work out the commonalities and improve these known algorithms. It
is a fact that one can compute the spherical Fourier coeEcients an

k(f) of a band-limited function
by a convenient quadrature rule, for example with Clenshaw–Curtis quadrature [25] or with GauI
quadrature [32]. It is well known that in general a fast algorithm for (1.1) implies the factorization
of the transform matrix into a product of sparse matrices. Consequently, once a fast algorithm for
(1.1) is known, a fast algorithm for the transposed problem (i.e., computing the spherical Fourier
coeEcients) can also be obtained by transposing the sparse matrix product (see [6,15]).

In the second part of this paper we propose a novel fast algorithm for evaluating the band-limited
function f in (1.1) at arbitrary nodes. The main idea is to use an algorithm on a special grid and
to perform a change of basis, such that f in (1.1) can be represented in the form

f(#;) =
M∑

n=−M

M∑
k=−M

cn
ke

ik#ein

with complex coeEcients cn
k . Then, the computation on arbitrary nodes can be done using the

recently developed FFT for nonequispaced knots (NFFT) (see [27,34]). As mentioned above, we
immediately have a fast algorithm for the transposed problem from the theoretical point of view,
i.e., for computing spherical Fourier coeEcients from values of the function f at arbitrary points,
provided that a convenient quadrature rule is available (see [12,20]).

Note that double Fourier series are employed as basis function in spectral methods for the solution
of PDEs in spherical coordinates [5, p. 434].

This paper is organized as follows: In Section 2, we introduce the notation for the discrete cosine
transforms. In Section 3, we give two diJerent algorithms for fast polynomial multiplications, one
based on the discrete cosine transform and the other on the fast multipole method. The fast transform
for Legendre functions is explained in Section 4, where we also describe a stabilization method.
Finally, in Section 5 we present a method for computing the discrete spherical Fourier transform
at arbitrary nodes. Experimental results with an application to the EGM96 model are discussed in
Section 6.

S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98 77

2. Discrete cosine transforms

Let

CN+1 :=
(
cos

jk�
N

)
j;k=0;:::;N

; DN+1 := diag(�Nj)j=0; :::;N ;

C̃N :=
(
cos

(2j + 1)k�
2N

)
j;k=0;:::;N−1

; D̃N := diag(�Nj)j=0; :::;N−1

with �N0 = �NN := 1
2 and �Nk := 1 for k =1; : : : ; N − 1. The Chebyshev polynomials of the 6rst kind Tk

are given by Tk(x) := cos(k arccos(x)). The following transforms are referred to as DCT of types I,
II and III, respectively (see [33]):

DCT-I(N + 1) :RN+1 → RN+1 with

â := CN+1DN+1a;

where a := (ak)k=0; :::;N is the input vector and â := (âj)j=0; :::;N ∈RN+1 is the output vector, i.e.,

âj =
N∑

k=0

�Nk ak cos
jk�
N

=
N∑

k=0

�Nk akTk

(
cos

j�
N

)
;

DCT-II(N) :RN → RN with

b̂ := C̃Nb;

b := (bk)k=0; :::;N−1, b̂ := (b̂j)j=0; :::;N−1 ∈RN , i.e.,

b̂j =
N−1∑
k=0

bk cos
j(2k + 1)�

2N
=

N−1∑
k=0

bkTj

(
cos

(2k + 1)�
2N

)
;

DCT-III(N) :RN → RN with

b̂ := C̃T
N D̃Nb;

i.e.,

b̂j :=
N−1∑
k=0

�Nk bk cos
k(2j + 1)�

2N
=

N−1∑
k=0

�Nk bkTk

(
cos

(2j + 1)�
2N

)
:

In the following, let N = 2t (t ∈N). There exist various fast algorithms that perform the discrete
cosine transforms de6ned above with O(N logN) instead of O(N 2) arithmetical operations (see [28]).
Fast algorithms for DCTs based on [30] can be found in [2] (see also [31]). Concerning the inverse
DCTs, it is easy to check the following relation (see [2]):

Lemma 2.1. We have

CN+1DN+1CN+1DN+1 =
N
2
IN+1;

C̃T
N D̃N C̃N = C̃N C̃T

N D̃N =
N
2
IN :

78 S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98

3. Fast polynomial multiplication

A polynomial P of degree N − 1, denoted by P ∈�N−1, is uniquely determined by values at N
diJerent points. Let us assume, however, that we are given N +1 values for a polynomial P ∈�N−1

(N = 2t ; t ∈N), and let these values be given at Chebyshev nodes cos(j�=N) (j = 0; : : : ; N), which
means that we have the N+1 values (P(cos j�=N))j=0; :::;N . Further, let Q∈�N be a 6xed polynomial
with known values (Q(cos j�=2N))j=0; :::;2N .

In the following we will describe two diJerent ways of computing the values (R(cos j�=2N))j=0; :::;2N ,
where R = PQ, in a fast way. Since the polynomial R∈�2N−1 is uniquely determined by the
values of the product P(cos j�=2N)Q(cos j�=2N) (j = 0; : : : ; 2N) we have to compute the values
(P(cos(2j + 1)�=2N))j=0; :::;N−1.

The 6rst algorithm is an exact one and is based on the computation of the Chebyshev coeEcients.
Note that P ∈�N−1 can be written with respect to the basis of Chebyshev polynomials, i.e.,

P =
N−1∑
k=0

akTk

with real coeEcients ak . From the equation(
P
(
cos

j�
N

))
j=0;:::;N

= CN+1(ak)k=0; :::;N

with aN = 0 we use Lemma 2.1 to obtain

(ak)k=0; :::;N =
2
N
DN+1CN+1DN+1

(
P
(
cos

j�
N

))
j=0;:::;N

(3.1)

and 6nally(
P
(
cos

(2j + 1)�
2N

))
j=0;:::;N−1

= C̃T
N (ak)k=0; :::;N−1: (3.2)

Now we can summarize these results in Algorithm 3.1.

Algorithm 3.1. Fast polynomial multiplication based on DCTs

Input: N = 2t (t ∈N)
(P(cos j�

N))j=0; :::;N

(Q(cos j�
2N))j=0; :::;2N

Compute the Chebyshev coeEcients (ak)k=0; :::;N−1 in (3.1) using a fast DCT-I
Evaluate the values (P(cos (2j+1)�

2N))j=0; :::;N−1 in (3.2) using a fast DCT-III (N)
for j = 0; : : : ; 2N do

R(cos j�
2N) := P(cos j�

2N)Q(cos j�
2N)

end for

Output: (R(cos j�
2N))j=0; :::;2N

S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98 79

Remark 3.1. Note that Algorithm 3.1 requires one DCT-I(N + 1) and one DCT-III(N). Algorithm
2.2 [26] requires one DCT-III(2N) and one DCT-II(2N) for a polynomial multiplication based
on computing Chebyshev coeEcients. This means that Algorithm 3.1 is faster than Algorithm 2.2
in [26].

The second algorithm we will compute the values (P(cos((2j + 1)�=2N)))j=0; :::;N−1 with the help
of a Lagrange interpolation formula and a fast approximate realization of the matrix times vector
multiplication with a Cauchy matrix. To be more precise, we rewrite P using Lagrange interpolation
in the form

P(x) =
N∑

j=0

P
(
cos

j�
N

)
!(x)

(x − cos j�=N)!′(cos j�=N)

with !(x) := 2N−1∏N
k=0 (x−cos k�=N). Let UN−1 be the Chebyshev polynomials of the second kind

given by

UN−1(x) :=
sin(N arccos(x))√

1− x2
; x∈ (−1; 1):

We see by !(x) = (1− x2)UN−1(x) that

!
(
cos

(2k + 1)�
2N

)
= (−1)k sin

(2k + 1)�
2N

;

!′
(
cos

j�
N

)
=

(−1)j+1

�N;j
N

and 6nally

P
(
cos

(2k + 1)�
2N

)
=

(−1)k

N
sin

(2k + 1)�
2N

N∑
j=0

�N;j(−1)j+1P(cos j�=N)
cos((2k + 1)�=2N)− cos(j�=N)

(3.3)

for k = 0; : : : ; N − 1. This leads to Algorithm 3.2.

Algorithm 3.2. Fast polynomial multiplication based on FMM

Input: N = 2t (t ∈N)
(P(cos j�

N))j=0; :::;N

(Q(cos j�
2N))j=0; :::;2N

Compute the values (P(cos (2k+1)�
2N))k=0; :::;N−1 in (3.3) using a FMM

(see Algorithm 3.1 in [8]) with O(N log(1=�)) arithmetical operations
for j = 0; : : : ; 2N do

R(cos j�
2N) := P(cos j�

2N)Q(cos j�
2N)

end for

Output: (R(cos j�
2N))j=0; :::;2N

80 S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98

Remark 3.2. The FMM [13] was originally designed to compute the sums
∑N

k=1 �k=(yj − xk) for
points {x1; : : : ; xN} and {y1; : : : ; yN} on the complex plane in an approximative way. Algorithm 3.2
is known as the linear-time interpolation algorithm and was introduced in [8]. This algorithm was
6rst applied to fast Legendre transforms in [32]. Concerning numerical experiments Algorithm 3.1
is faster than 3.2 for the transform lengths t = 2; 3; : : : ; 11 that were tested. However, Algorithm 3.2
is not restricted to the knots cos l�=N (l = 0; : : : ; N). This fact was exploited in [32] to stabilize
Algorithm 4.1 (see Section 4).

Remark 3.3. Note that Eqs. (3.1), (3.2) and (3.3) imply diJerent representations of the Cauchy
matrix(

1
cos((2k + 1)�=2N)− cos(j�=N)

)
k=0;:::;N−1;j=0;:::;N

:

Further representations of similar Cauchy matrices based on other trigonometric transforms are given
in [16].

4. Fast transform for Legendre functions

This section collects the basic tools for the eEcient and stable computation of the Legendre
function transform (see [5, p. 399]).

Starting with the Legendre polynomials

Pk(x) :=
1

2kk!
dk

dxk (x
2 − 1)k (x∈ [− 1; 1]; k ∈N0);

we de6ne the associated Legendre functions Pn
k (n∈N0; k = n; n + 1; : : :) as

Pn
k (x) :=

(
(k − n)!
(k + n)!

)1=2
(1− x2)n=2

dn

dxn Pk(x) (x∈ [− 1; 1]): (4.1)

For any 6xed n∈N0, the functions Pn
k (k=n; n+1; : : :) form a complete orthogonal system in L2[−1; 1]

with

1
2

∫ 1

−1
Pn

k (x)P
n
l (x) dx =

1
2k + 1

!k;l (n∈N0; k; l = n; n + 1; : : :):

Moreover, the associated Legendre functions ful6ll the three-term recurrence relation

Pn
n−1(x) := 0; Pn

n(x) =
((2n)!)
2nn!

1=2

(1− x2)n=2;

Pn
k+1(x) = vn

kxP
n
k (x) + wn

kP
n
k−1(x) (k = n; n + 1; : : :) (4.2)

with

vn
k :=

2k + 1
((k − n + 1)(k + n + 1))1=2

; wn
k := − ((k − n)(k + n))1=2

((k − n + 1)(k + n + 1))1=2
:

S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98 81

A simple but powerful idea in [26] is to de6ne the functions Pn
k also for k ¡n. This was done as

follows. For even n we start with Pn−1 := 0 and Pn
0(x) :=

√
(2n)!=2nn! and for odd n let Pn

0(x) :=
Pn
1(x) :=

√
(2n)!=2nn!(1−x2)1=2. We introduce the functions Pn

k by the three-term recurrence relation

Pn
k+1(x) := (�n

kx + %n
k)P

n
k (x) + &n

kP
n
k−1(x) (4.3)

with

�n
k :=

{
(−1)k+1 for k ¡n;

vn
k otherwise;

%n
k :=

{
1 for k ¡n;

0 otherwise;

&n
k :=

{
0 for k6 n;

wn
k otherwise:

It is a fact, that Pn
k is a polynomial of degree k for even n and that (1− x2)−1=2Pn

k is a polynomial
of degree k − 1 for odd n. Furthermore, these functions coincide with (4.1) for k¿ n. The main
reason for de6ning Pn

k also for k ¡n is that this modi6cation allows a stable computation of the
Legendre function transform.

By shifting the index k in (4.3) by c∈N0 we obtain the associated Legendre polynomials Pn
k (·; c)

for Pn
k de6ned by

Pn
k+1(x; c) := (�n

k+cx + %n
k+c)P

n
k (x; c) + &n

k+cP
n
k−1(x; c) (k = 0; 1; : : :) (4.4)

with Pn−1(x; c) := 0 and Pn
0(x; c) := 1.

Induction now yields the following lemma:

Lemma 4.1. Let Pn
c (x) and Pn

k (x; c) be given by (4.3) and (4.4), respectively. We then have

Pn
c+k(x) = Pn

k (x; c)P
n
c (x) + &n

cP
n
k−1(x; c + 1)Pn

c−1(x):

Lemma 4.1 implies(
Pn

c+k

Pn
c+k+1

)
=U n

k (·; c)T
(

Pn
c−1

Pn
c

)
(4.5)

with

U n
k (x; c) :=

(
&n
cP

n
k−1(x; c + 1) &n

cP
n
k (x; c + 1)

Pn
k (x; c) Pn

k+1(x; c)

)
:

82 S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98

Let M ∈N; n∈Z with M ¿ |n| be given. We consider the polynomials

gn(x) :=
M∑

k=|n|
an
kP

|n|
k (x)∈�M (4.6)

for even n and

gn(x) :=
1√

1− x2

M∑
k=|n|

an
kP

|n|
k (x)∈�M−1 (4.7)

for odd n with real coeEcients an
k .

The concern of the fast Legendre function transform is the fast evaluation of

(gs;n)s=0; :::;N :=
(
gn

(
cos

s�
N

))
s=0;:::;N

(N := 2�log2 M�): (4.8)

Note that we generalize this result in Section 6 such that we are able to compute gn on arbitrary
knots. In the following we will restrict our attention to the case for 6xed even n. First of all we
use (4.3) to obtain

gn =
M−1∑
k=|n|

a(0)k P|n|
k =

�M=4�−1∑
k=�|n|=4�

(
3∑

l=0

a(0)4k+lP
|n|
4k+l

)

with

a(0)k (x) := an
k (k = 0; : : : ; N − 3);

a(0)N−2(x) := an
N−2 + &|n|N−1a

n
N ;

a(0)N−1(x) := an
N−1 + %|n|

N−1a
n
N + �|n|N−1a

n
Nx; (4.9)

where an
k := 0 for k ¡ |n| and for k ¿M . In order to apply Algorithm 3.1 we compute the values

(a(0)k (cos s�=2))s=0;1;2 for k = 2�|n|=2; : : : ; 2(�M=2� − 1). We mention without proof that a(*−1)
k ≡ 0

for k ¡ 2*�|n|=2* and for k ¿ 2*(�M=2*�−1) (*=1; : : : ; �log2 M�−1). Now we proceed by cascade
summation as shown in Fig. 1. From (4.5) with k = 1 and c = 4l + 1 it follows that

(a(0)4l+2; a
(0)
4l+3)

P|n|

4l+2

P|n|
4l+3

= (a(0)4l+2; a

(0)
4l+3)U1(·; 4l + 1)T

 P|n|

4l

P|n|
4l+1

for l = �|n|=4; : : : ; �M=4� − 1. Thus,

gn =
�M=4�−1∑
l=�|n|=4�

a(1)4l P|n|
4l + a(1)4l+1P

|n|
4l+1

S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98 83

Fig. 1. Cascade summation for the computation of the values (g4(cos s�=16))s=0; :::;16.

with (
a(1)4l

a(1)4l+1

)
:=

(
a(0)4l

a(0)4l

)
+U |n|

1 (·; 4l + 1)

(
a(0)4l+2

a(0)4l+3

)
: (4.10)

The degree of the polynomial products in (4.10) is at most 3 so that their computation can be
performed by Algorithm 3.1 with N = 2, i.e., we compute(

a(1)4l

(
cos

s�
4

))
s=0;:::;4

;
(
a(1)4l+1

(
cos

s�
4

))
s=0;:::;4

for l =
⌊ |n|
4

⌋
; : : : ;

⌈
M
4

⌉
− 1:

We continue in the obvious manner. In step * (16 *¡ j) we use (4.5) with k=2*−1 and c=2*+1l+1
to compute the values(

a(*)2*+1l

(
cos

s�
2*+1

))
s=0;:::;2*+1

;
(
a(*)2*+1l+1

(
cos

s�
2*+1

))
s=0;:::;2*+1

of the polynomials a(*)2*+1l; a
(*)
2*+1l+1 ∈�2*+1−1 for l= �|n|=2*+1; : : : ; �M=2*+1� − 1. The polynomials are

de6ned by(
a(*)2*+1l

a(*)2*+1l+1

)
:=

(
a(*−1)
2*+1l

a(*−1)
2*+1l+1

)
+U |n|

2*−1(·; 2*+1l + 1)

(
a(*−1)
2*+1l+2*

a(*−1)
2*+1l+2*+1

)
(4.11)

84 S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98

and we apply Algorithm 3.1 (with N =2*) to compute the polynomial products. Note that the values(
a(*−1)
2*+1l

(
cos

(2s + 1)�
2*

))
s=0;:::;2*−1

;
(
a(*−1)
2*+1l+1

(
cos

(2s + 1)�
2*

))
s=0;:::;2*−1

(4.12)

are not known—they have to be computed from the values(
a(*−1)
2*+1l

(
cos

s�
2*

))
s=0;:::;2*

;
(
a(*−1)
2*+1l+1

(
cos

s�
2*

))
s=0;:::;2*

:

But since a(*−1)
2*+1l ; a(*−1)

2*+1l+1 ∈�2*−1 this can be done by DCT-I(2*+1)s and DCT-III(2*)s as mentioned
in (3.1) and (3.2). After step j − 1 our cascade summation arrives at

gn = a(j−1)
0 P|n|

0 + a(j−1)
1 P|n|

1 :

Now we compute

gn

(
cos

s�
N

)
= a(j−1)

0

(
cos

s�
N

)
Pn
0

(
cos

s�
N

)
+ a(j−1)

1

(
cos

s�
N

)
Pn
1

(
cos

s�
N

)
(4.13)

for s = 0; : : : ; N . Note that a(j−1)
0 ; a(j−1)

1 ∈�N−1, but we know the values(
a(j−1)
0

(
cos

s�
N

))
s=0;:::;N

;
(
a(j−1)
1

(
cos

s�
N

))
s=0;:::;N

and hence the polynomial product (4.13) is exact.

4.1. Stabilization issues

Unfortunately, an implementation of the algorithm presented in the preceding section demonstrates
numerical instability for n¿ 16 (n¡−16 as well). The reason for this is that some of the associated
Legendre polynomials Pn

k (x; c) involved in the algorithm become very large for |x| ≈ 1 while the
values of the polynomials a(*−1)

2*+1l+2* and a(*−1)
2*+1l+2*+1 may be arbitrary small for these values of x.

In [18, Theorem 3.1] it is proved that

max{|Pn
k (x; c)| : x∈ [− 1; 1]}= Pn

k (1; c):

Using an integral representation

Pn
k (x) =

2nn!
(2n)!

(
(k + n)!
(k − n)!

)1=2 (1− x2)n=2

�

∫ �

0
(x + (x2 − 1)1=2 cos +)k−n sin2n + d+

as given in [23, p. 185] we can use Lemma 4.1 to obtain(
(k + c + n)!
(k + c − n)!

)1=2
= Pn

k (1; c)
(
(c + n)!
(c − n)!

)1=2
+ wn

cP
n
k−1(1; c + 1)

(
(c − 1 + n)!
(c − 1− n)!

)1=2
(4.14)

S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98 85

 −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

 −1 -0.5 0 0.5 1
 −1.5

−1

−0.5

0

0.5

1

1.5
x 10

16

−1 −0.5 0 0.5 1
−2

0

2

4

6

8

10
x 10

10

Fig. 2. Polynomial a(*−1)
2*+1l+2* , associated Legendre polynomial Pn

2*−1(·; 2*+1l+1) and the product Pn
2*−1(·; 2*+1l+1)a(*−1)

2*+1l+2*

for values * = 5; n = 64 and l = 1.

for c¿n. With Pn
0(1; c) = 1 and Z(n;k; c) := ((k + c + n)!(c − n)!=(k + c − n)!(c + n)!)1=2 induction

yields

Pn
k (1; c) = Z(n;k; c)

k∑
i=0

(
(c − n − 1 + i)!(c + n)!
(c − n − 1)!(c + n + i)!

)

=
(n + c)Z2

(n;k; c) + n − c

2nZ(n;k; c)
; (4.15)

which becomes larger for c → n; k → ∞ (for 6xed n). The multiplication of these large and small
values results in very large and small function values for the polynomials a(*)2*+1l (see
Fig. 2).
The numerical problems result from the computation of the intermediate values of the polynomials

a(*−1)
2*+1l+2* . Global interpolation methods like FFT-based or DCT-based algorithms (see [6,26,14] resp.
Algorithm 3.1) or FMM-based algorithms (see [32] resp. Algorithm 3.2) uniformly cause an error
in a(*−1)

2*+1l+2* , i.e., a small relative error in max|x|61 |a(*−1)
2*+1l+2*(x)| is added uniformly to a(*−1)

2*+1l+2* . Thus,

computing the product Pn
2*−1(·; 2*+1l + 1)a(*−1)

2*+1l+2* leads to a huge relative error.
We illustrate the error propagation by a simple example. Fig. 3 (left) shows the relative error

in the perturbed polynomial ã(*−1)
2*+1l+2* which is ampli6ed in the product by orders of magnitude, see

Fig. 3 (right). The increase of the relative error is caused by the huge values of Pn
2*−1(·; 2*+1l + 1)

for |x| ≈ 1.
Consequently, the simplest idea consists of replacing the ordinary cascade summation step by

“special” stabilization steps whenever the values |Pn
k (1; c)| involved in the algorithm cross some

threshold. This straightforward idea was 6rst formulated in [26]. To avoid the multiplications with
large values, the multiplications with U n

2*−1(·; 2*+1l + 1) were originally replaced by multiplications
with U n

2*(2l+1)−1(·; 1), which ful6lls

U n
2*(2l+1)−1(·; 1) =U n

2*+1l−1(·; 1)U n
2*−1(·; 2*+1l + 1):

86 S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98

 −1 −0.5 0 0.5 1

10
−15

10
−10

10
−15

10
−10

10
−5

 −1 −0.5 0 0.5 1

10
 −5

Fig. 3. Error propagation for computation of intermediate values based on a global interpolation method, the maximum
allowable error is 10−8 (dashed lines), as above *=5; n=64 and l=1; the relative error ‖a(*−1)

2*+1l+2*‖−1
∞ |ã(*−1)

2*+1l+2* −a(*−1)
2*+1l+2* |

(left) and the relative error ‖Pn
2*−1(·; 2*+1l+ 1)a(*−1)

2*+1l+2*‖−1
∞ |Pn

2*−1(·; 2*+1l+ 1)ã(*−1)
2*+1l+2* − Pn

2*−1(·; 2*+1l+ 1)a(*−1)
2*+1l+2* | of the

product (right).

The entries of U n
2*(2l+1)−1(·; 1) are signi6cantly smaller than those of U n

2*−1(·; 2*+1l+ 1) for |x| ≈ 1.
Of course, the high-order zeros of U n

2*+1l−1(·; 1) for |x|=1 are the reason for this fact. Furthermore,
Lemma 4.1 implies

(
Pn
2*+1l+2*

Pn
2*+1l+2*+1

)
=U n

2*(2l+1)(·; 1)T
(

Pn
0

Pn
1

)
:

Therefore, the stabilization step is equivalent to

gstab (new)
n = gstab (old)

n + a(*−1)
2*+1l+2*P

|n|
2*+1l+2* + a(*−1)

2*+1l+2*+1P
|n|
2*+1l+2*+1:

In other words, instead of using (4.11), we evaluate the polynomials which would cause numerical
problems in O(M logM) Soating point operations. As usual we also have to compute the values
(4.12) in O(2**) operations and set

(
a(*)2*+1l

a(*)2*+1l+1

)
:=

(
a(*−1)
2*+1l

a(*−1)
2*+1l+1

)
:

For the purpose of performing a complexity analysis it would be necessary to know an upper bound
for

s := #{(c; k; n) :Pn
k (1; c) is used in Algorithm 4:1 and Pn

k (1; c) exceeds the threshold}:

If s = O(logM) our stabilization technique would still lead to an O(M log2 M) algorithm.
We summarize the results including the stabilization, in Algorithm 4.1.

S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98 87

Algorithm 4.1. Fast Legendre function transform

Input: M ∈N0; n∈Z (|n|6M); (an
k)k=|n|; :::;M

Precompute: j := �log2 M�; N := 2j and U |n|
2*−1(cos

s�
2*+1 ; 2*+1l + 1)

for * = 1; : : : ; j − 1; l = � |n|
2*+1 ; : : : ; � M

2*+1 � − 1 and s = 0; : : : ; 2*+1

(P|n|
2*(2l+1)(cos

s�
2j))s=0; :::;N and (P|n|

2*(2l+1)(cos
s�
2j))s=0; :::;N

for the stabilization steps

Compute (a(0)k)k=0; :::;N−1 using (4.9)
for * = 1; : : : ; j − 1 do

for l = � |n|
2*+1 ; : : : ; � M

2*+1 � − 1 do
Compute intermediate values of a(*−1)

2*+1l ; a(*−1)
2*+1l+1 using DCTs, see (4.12)

if multiplication with U |n|
2*−1(·; 2*+1l + 1) is stable then

Compute the values of a(*)2*+1l; a(*)2*+1l+1 in (4.11) with Algorithm 3.1
else

Compute gstab (new)
n = gstab (old)

n + a*−1
2*(2l+1)P

|n|
2*(2l+1) + a*−1

2*(2l+1)+1P
|n|
2*(2l+1)+1 using

a method similar to Algorithm 3.1 (DCT-Is and zero-padding)
Update a(*)2*+1l = a(*−1)

2*+1l and a(*)2*+1l+1 = a(*−1)
2*+1l+1

end if
end for

end for
Compute (gs;n)s=0; :::;N = (gn(cos s�

N))s=0; :::;N using (4.13)
Compute (gs;n)s=0; :::;N = (gs;n)s=0; :::;N + (gstabs;n)s=0; :::;N

Output: (gs;n)s=0; :::;N

Remark 4.2. If we replace the fast polynomial multiplication in Algorithm 4.1 by Algorithm 3.2 we
end up with an approximate algorithm similar to the one given in [32]. Note that in Algorithm 3.2
the polynomial multiplication is not restricted to the points cos s�=(2*+1). Hence, one can improve
the numerical stability by choosing diJerent sampling points (see [32]).

Remark 4.3. If we realize the polynomial multiplication in Section 3 by the FFT, we obtain the
transposted version of the Driscoll–Healy algorithm [6]. In [7] the authors also used the DCT. To
see how these algorithms are related, see [25].

5. Discrete spherical Fourier transform

In this section, we propose an algorithm to evaluate band-limited functions on the sphere, given by
their spherical Fourier coeEcients, at arbitrary nodes. More precisely, given the spherical Fourier co-
eEcients (an

k)(k;n)∈IM ∈C(M+1)2 (M ∈N) and nodes (#d; d)d=0; :::;D−1 ∈ SD (D∈N), we are interested

88 S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98

in the fast computation of

(f(#d; ’d))d=0; :::;D−1 =

 ∑

(k;n)∈IM

an
k(f)Y

n
k (#d; ’d)

d=0;:::;D−1

=

(
M∑

k=0

k∑
n=−k

an
kY

n
k (#d; ’d)

)
d=0;:::;D−1

=

(
M∑

n=−M

hn(cos#d)ein’d

)
d=0;:::;D−1

(5.1)

with

hn(cos#) :=

{
gn(cos#) for even n;

(sin #)gn(cos#) otherwise;
(5.2)

where we consider the gn given in Eqs. (4.6) and (4.7) with complex coeEcients.

5.1. DSFT on special grids

We start with the problem of evaluating f for given spherical Fourier coeEcients (an
k)(k;n)∈IM

on the grid (#s; ’t)s=0; :::;N; t=0; :::;2N−1 ∈ S2N (N+1) with #s := s�=N , ’t := t�=2N and N := 2�log2 M�.
By separation of the variables and evaluation of

(hs;n)s=0; :::;N := (hn(#s))s=0; :::;N (5.3)

for n =−M; : : : ; M , followed by Fourier transformations

(f(#s; ’t))t=0; :::;2N−1 :=

(
M∑

n=−M

hs;nein’t

)
t=0;:::;2N−1

(5.4)

for s=0; : : : ; N , we obtain an O(M 2N) algorithm. By using the fact that P|n|
k is an even (odd) function

when n− k is even (odd) and that cos#s =−cos#N−s, we save half the arithmetical operations. We
use two modi6ed Clenshaw algorithms to compute

(hevens;n)s=0; :::;N=2 :=

M∑
k=|n|;

k−n even

an
kP

|n|
k (cos#s)

s=0;:::;N=2

; (5.5)

(hodds;n)s=0; :::;N=2 :=

M∑
k=|n|;

k−n odd

an
kP

|n|
k (cos#s)

s=0;:::;N=2

(5.6)

S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98 89

and 6nally set

hs;n =

 hevens;n + hodds;n for s = 0; : : : ;

N
2
;

hevenN−s;n − hoddN−s;n otherwise;
(5.7)

instead of performing the direct computation in (5.3).

Remark 5.1. This technique is known as the parity–exploiting matrix multiplication (PMMT) and
is used in the T639 code of the European Center for Medium-Range Weather Forecasting, see [24].

However, we can obtain an asymptotically faster transform for (5.3) by using the fast associated
Legendre transforms to compute (gs;n)s=0; :::;N (see de6nition (4.8)) for n=−M; : : : ; M and applying
(5.2). The longitudinal steps (5.4) are just conventional FFTs for s=0; : : : ; N . Because (5.3) can be
computed more quickly for small M using the modi6ed Clenshaw algorithm, we implemented this
DSFT as follows:

• Algorithm 3.1 makes use of direct cosine transforms up to a length of 64 (see [29]) and of an
implementation following [1] otherwise.

• During precomputation, test for every n=−M; : : : ; M whether (hs;n)s=0; :::;N can be evaluated more
quickly using Algorithm 4.1 or using the modi6ed Clenshaw algorithm.

We obtain an exact DSFT algorithm (Algorithm 5.1) for the grids (#s; ’t)s=0; :::;N; t=0; :::;2N−1. Over-
sampling can be carried out by using zero-padding techniques for the latitudinal as well as for the
longitudinal direction.

5.2. Slow spherical Fourier transform on arbitrary nodes

We obtained a direct O(M 2N) algorithm instead of O(M 2N 2) in the last section by a separation
of variables over the grid. For arbitrary nodes, we only have an O(M 2D) algorithm, where D is the
number of nodes (see Algorithm 5.2 and see [5, p. 402]).

5.3. Fast spherical Fourier transform on arbitrary nodes

Given problem (5.1) we 6rst use Algorithm 4.1 to change the basis, a step which is independent of
the nodes. After this, we use the fast Fourier transform for nonequispaced data (NFFT) to compute
the values of the function at arbitrary nodes. Note that the FFT requires sampling on an equally
spaced grid, which represents a signi6cant limitation for many applications. The aim of the NFFT
is to overcome this drawback. The NFFT can be realized in an eEcient way by approximating
trigonometric polynomials by the sum of translates of a 1-periodic function ’ with good localization
in time and frequency. Beylkin et al. [3,4] prefer B-splines and Rokhlin et al. [9] Gaussians. By the
results in [11,22,10] we prefer to apply the NFFT with Kaiser–Bessel functions. Details concerning
NFFT algorithms can be found for example in [27] and a software package can be found in [17].

90 S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98

Algorithm 5.1. DSFT on equispaced grids in S

Input: M ∈N; (an
k)(k;n)∈IM ∈C(M+1)2

Precompute: j := �log2 M�; N := 2j,
+s := s�

N (s = 0; : : : ; N), ’t := t�
2N (t = 0; : : : ; 2N − 1),

see additional precomputation of Algorithm 4.1

Set hs;n := 0 for s = 0; : : : ; N and n =−N; : : : ; N
for n =−M; : : : ; M do

if direct computation using (5.7) is faster then
Compute (hs;n)s=0; :::;N using the modi6ed Clenshaw algorithm

else
Compute (gs;n)s=0; :::;N using Algorithm 4.1
if n odd then

Compute (hs;n)s=0; :::;N = ((sin s�
N)gs;n)s=0; :::;N

else
Set (hs;n)s=0; :::;N = (gs;n)s=0; :::;N

end if
end if

end for
for s = 0; : : : ; N do

Compute (f(#s; ’t))t=0; :::;2N−1 using a FFT((hs;n)n=−N; :::;N−1) of length 2N
Compute (f(#s; ’t))t=0; :::;2N−1 = (f(#s; ’t))t=0; :::;2N−1 + (hs;NeiN’t)t=0; :::;2N−1

end for

Output: (f(#s; ’t))s=0; :::;N; t=0; :::;2N−1

Algorithm 5.2. Direct computation of (5.1)

Input: M ∈N; (an
k)(k;n)∈IM ∈C(M+1)2 ; D∈N; (#d; ’d)d=0; :::;D−1 ∈ SD

for d = 0; : : : ; D − 1 do
for n =−M : : :M do

Compute hd;n =
M∑

k=|n|
an
kP

|n|
k (cos#d) using the Clenshaw algorithm

end for

Compute f(#d; ’d) =
M∑

n=−M
hd;nein’d

end for

Output: (f(#d; ’d))d=0; :::;D−1

Details concerning the NFFT algorithms can be found in [27] for example.

S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98 91

For arbitrary (#; ’)∈ S we have

f(#; ’) =
M∑

n=−M

hn(cos#)ein’;

where the hn are as given by (5.2). By using Algorithm 4.1 we compute the values

(gs;n)s=0; :::;N (N = 2�log2 M�)

(the polynomial part of hn) for n = −M; : : : ; M as given by (4.8). Furthermore, we obtain the
Chebyshev coeEcients (ãn

k)k=0; :::;N ∈CN+1 in

gn(cos#) =
M∑

k=0

ãn
kTk(cos#)

for even n and

gn(cos#) =
M−1∑
k=0

ãn
kTk(cos#)

for odd n by using Eq. (3.1). Note that gn are polynomials of degree M or M − 1 for even or odd
n, respectively. Rewriting gn by using

Tk(cos#) = cos(k#) = 1
2 (e

ik# + e−ik#)

leads to a truncated Fourier series

gn(cos#) =
M−1∑

k=−(M−1)

bn
ke

ik#

with

bn
k :=

ãn
|k| for k = 0;

ãn
|k|
2

otherwise:
(5.8)

For odd n, we have

sin(#)
M−1∑

k=−(M−1)

bn
ke

ik# =
1
2i

(ei# − e−i#)
M−1∑

k=−(M−1)

bn
ke

ik#

=
M∑

k=−M

b̃n
ke

ik#

with

b̃n
k :=

−bn
k+1

2i
for k =−M;−M + 1;

bn
k−1

2i
for k = M − 1; M;

bn
k−1 − bn

k+1

2i
otherwise:

(5.9)

92 S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98

Fig. 4. Topography of the earth on the sphere (left) and as ‘outer half’ of a torus (right).

We obtain

hn(cos#) =
M∑

k=−M

cn
ke

ik#

with

cn
k :=

{
bn
k for even n;

b̃n
k for odd n:

(5.10)

Thus, we have

f(#; ’) =
M∑

n=−M

M∑
k=−M

cn
ke

ik#ein’: (5.11)

The given spherical Fourier coeEcients in (5.1) are transformed to the (ordinary) Fourier coeEcients
in (5.11) by an exact O(M 2 log2 M) algorithm (independent of the nodes (#d; ’d)). The geometrical
interpretation is that the sphere is mapped to the “outer half” of the torus while the inner half is
continued smoothly (see Fig. 4). First we divide f into an even and an odd part (relative to the
poles) and construct an even and odd continuation on the torus, respectively. Fig. 5 illustrates this
fact. In a 6nal step we evaluate f for arbitrary nodes using the bivariate Fourier transform for
nonequispaced data (NFFT, see [27]). The arithmetical complexity of Algorithm 5.3 is given by
O(M 2 log2 M +m2D), where m is a cut-oJ parameter, see Algorithm 12.1 in [27, p. 251] for details.

6. Numerical results

We implemented the presented algorithms in C and tested them in two systems:

(I) Intel-Celeron 64MB RAM, SuSe-Linux and
(II) Sun-SPARC 768MB RAM, SunOS 5.6.

We chose the threshold for stabilization in Algorithm 4.1 as 100000. The 6rst tests evaluate
time complexity and accuracy of the new algorithms in comparison to the direct computation while

S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98 93

Fig. 5. Plots of the normalized spherical harmonic Y−2
3 := 1

4

√
105=2� sin2 + cos +e−2i, top: real part (left) and imaginary

part (right), bottom: mapping to the torus, the “inner half” is an even continuation with respect to the north/south pole.

the second test demonstrates an application to the EGM96 data. This is a global model of the
earth’s gravitational potential that includes orthogonal coeEcients up to a degree and order of 360
(see [19]).

Algorithm 5.3. DSFT for arbitrary nodes

Input: M ∈N; (an
k)(k;n)∈IM ∈C(M+1)2 ; m; D∈N; �∈R; (#d; ’d)d=0; :::;D−1 ∈ SD

Precompute: N := 2�log2 M�,
see additional precomputation of Algorithm 4.1

for n =−M; : : : ; M do
Compute (gs;n)s=0; :::;N using Algorithm 4.1
Compute (ãn

k)k=0; :::;N using equation (3.1)
Compute (cn

k)k=−M; :::;M using equation (5.8),(5.9) and (5.10)
end for
Compute (f(#d; ’d))d=0; :::;D−1 from the Fourier coeEcients (cn

k)k;n=−M; :::;M using a bivariate
NFFT at the nodes (#d; ’d)d=0; :::;D−1 (see [27])

Output: (f(#d; ’d))d=0; :::;D−1

94 S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98

Table 1
CPU time in seconds on system (I)

M 64 128 256

D Direct New Direct New Direct New

1 0.01 0.37 0.01 1.80 0.01 8.61
10 0.01 0.38 0.05 1.82 0.20 8.61
100 0.13 0.42 0.49 1.84 1.82 8.67
1000 1.27 0.43 4.82 1.88 18.24 8.71
10000 12.61 0.53 49.04 1.96 176.41 8.81
20000 25.44 0.65 98.20 2.09 352.75 8.95

Table 2
Relative error � on system (I) (M = 128, � = 2 and D = 100)

m 1 2 3 4 5 6 7 8

� 5.0e-02 7.7e-03 3.0e-04 1.9e-05 7.1e-06 5.8e-07 5.1e-08 2.3e-08

First we chose random data an
k ∈ [0; 1] and random nodes (#d; ’d)∈ S. Table 1 compares the

elapsed CPU time for Algorithm 5.2 (direct) and Algorithm 5.3 (new) for diJerent bandwidths and
diJerent numbers of nodes (oversampling factor � = 2, cut-oJ parameter m = 4 with a Gaussian
kernel, see in [27, Algorithm 12.1, p. 251] for details). Furthermore, we determined the relationship
between the cut-oJ parameter m and the relative error

� :=
‖(fapprox(#d; ’d)− fexact(#d; ’d))d=1; :::;D‖∞

‖(fexact(#d; ’d))d=1; :::;D‖∞ ;

where fapprox(#d; ’d) denotes the value computed by Algorithm 5.3 and fexact(#d; ’d) denotes the
one computed by Algorithm 5.2. We have an exponential decay as shown in Table 2 and proved
in [27]. The third test concerns the time complexity with respect to a given bandwidth and an
approximate number of nodes. We chose the number of nodes as D = M 2; note that for M ¿ 200,
the direct computation was run using a 6xed number of nodes (D=100), and the required CPU-time
was estimated as t = M 2tused=100. Fig. 6 shows a log-plot of elapsed CPU time. Note that for a
bandwidth of M =500 our fast algorithm requires 92 s but the direct computation takes almost 7 h.

Further tests concern an application of Algorithm 5.3 to the earth’s geopotential model (EGM96).
Figs. 7 and 8 show a reconstruction on the whole sphere while Fig. 9 shows the so-called “zoom-in”
property. Given a global model we are able to zoom-in to an arbitrary region for arbitrary combi-
nations of spherical frequencies.

7. Conclusion

While a direct computation of (1.1) for arbitrary nodes has a computational complexity of O(DM 2)
we were able to show that O(M 2 log2 M + log2(1=�)D) arithmetical operations are suEcient. Given

S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98 95

50 100 150 200 250 300 350 400 450 500

10
0

10
1

10
2

10
3

10
4

bandwidth M

C
P

U
−t

im
e

(s
ec

s.
)

approx.
direct

Fig. 6. CPU-time on system (II) (� = 2, m = 4).

Fig. 7. Reconstruction of EGM96 data for k¿ 4, normalization to orthonormal spherical harmonics.

a band-limited function on the sphere and remembering its “equiareal resolution” provided by the
addition theorem for spherical harmonics (see e.g., [5, p. 400]) it does not seem suitable to use the
standard grid. Especially in time-stepping algorithms where one has to deal with the so-called pole
problem an “almost equiareal” grid together with a convenient quadrature rule and the suggested
Algorithm 5.3 would enable fast versions of these algorithms. Note that the choice of nodes in the
algorithm in [32] is arbitrary only within an individual coordinate.

Furthermore we were able to show which algorithms are the essential parts of the spherical Fourier
transform (also for the generalized setting of arbitrary nodes) and that they are independent of each

96 S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98

Fig. 8. Reconstruction of EGM96 data for k¿ 8, normalization to orthonormal spherical harmonics.

 3

 2

 1

0

1

2

x 10
 −6

Fig. 9. Zoom in (eastern part of South America, Fig. 7).

other. Almost certainly, any fast spherical Fourier algorithm will use a decomposition like the one
in Fig. 1, fast polynomial transforms and (standard) FFTs. Therefore, it seems worth to investigate
the associated Legendre polynomials P|n|

k (x; c) and their numerical behavior more deeply.

S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98 97

 −1 −0.5 0 0.5 1

10
 −15

10
 −10

10
 −5

 −1 −0.5 0 0.5 1

10
 −15

10
 −10

10
 −5

Fig. 10. Expected error propagation for computation of intermediate values based on local methods, the max-
imum allowable error is 10−8 (dashed lines), as above * = 5; n = 64 and l = 1, the perturbed polyno-
mial is denoted by ˜̃a(*−1)

2*+1l+2* ; the relative error ‖a(*−1)
2*+1l+2*‖−1

∞ | ˜̃a(*−1)
2*+1l+2* − a(*−1)

2*+1l+2* | (left) and the relative error

‖Pn
2*−1(·; 2*+1l + 1)a(*−1)

2*+1l+2*‖−1
∞ |Pn

2*−1(·; 2*+1l + 1) ˜̃a(*−1)
2*+1l+2* − Pn

2*−1(·; 2*+1l + 1)a(*−1)
2*+1l+2* | of the product (right).

In [21] the author uses a local approximative method for computing the fast spherical harmonic
transform. We will investigate local interpolation methods in combination with our simple cas-
cade summation in a forthcoming paper. Most likely, local interpolation methods will add an error
weighted by the actual value a(*−1)

2*+1l+2*(x), illustrated by Fig. 10 (left). Thus, computing the product

Pn
2*−1(·; 2*+1l + 1)a(*−1)

2*+1l+2* leads only to a small relative error, see Fig. 10 (right).

Acknowledgements

We would also like to thank the referees for their valuable suggestions.

References

[1] G. Baszenski, Programmpaket zur Berechnung diskreter trigonometrischer transformationen, 1995,
http://www.iuk.fh-dortmund.de/∼baszenski/.

[2] G. Baszenski, M. Tasche, Fast polynomial multiplication and convolution related to the discrete cosine transform,
Linear Algebra Appl. 252 (1997) 1–25.

[3] G. Beylkin, On the fast Fourier transform of functions with singularities, Appl. Comput. Harmon. Anal. 2 (1995)
363–381.

[4] G. Beylkin, R. Cramer, A multiresolution approach to regularization of singular operators and fast summation, SIAM
J. Sci. Comput. 24 (2002) 81–117.

[5] J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd Edition, Dover Press, New York, 2000.
[6] J. Driscoll, D. Healy, Computing Fourier transforms and convolutions on the 2-sphere, Adv. Appl. Math. 15 (1994)

202–250.
[7] J. Driscoll, D. Healy, D. Rockmore, Fast discrete polynomial transforms with applications to data analysis for distance

transitive graphs, SIAM J. Comput. 26 (1996) 1066–1099.
[8] A. Dutt, M. Gu, V. Rokhlin, Fast algorithms for polynomial interpolation, integration and diJerentiation, SIAM J.

Numer. Anal. 33 (1996) 1689–1711.

http://www.iuk.fh-dortmund.de/~baszenski/

98 S. Kunis, D. Potts / Journal of Computational and Applied Mathematics 161 (2003) 75–98

[9] A. Dutt, V. Rokhlin, Fast Fourier transforms for nonequispaced data, SIAM J. Sci. Statist. Comput. 14 (1993)
1368–1393.

[10] J.A. Fessler, B.P. Sutton, Nonuniform fast Fourier transforms using min-max interpolation, IEEE Trans. Signal
Process. 51 (2003) 560–574.

[11] K. Fourmont, Schnelle Fourier-transformation bei nichtZaquidistanten Gittern und tomographische anwendungen,
Dissertation, UniversitZat MZunster, 1999.

[12] W. Freeden, T. Gervens, M. Schreiner, Constructive Approximation on the Sphere, Oxford University Press, Oxford,
1998.

[13] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (1987) 325–348.
[14] D. Healy, P. Kostelec, S.S.B. Moore, D. Rockmore, FFTs for the 2-sphere—Improvements and variations, J. Fourier

Anal. Appl. 9 (2003).
[15] D. Healy, S.S.B. Moore, D. Rockmore, EEciency and stability issues in the numerical computation of Fourier

transforms and convolutions on the 2-sphere, Technical Report, Dartmouth College, Hanover, 1994.
[16] G. Heinig, K. Rost, Representations of Cauchy matrices with Chebyshev nodes using trigonometric transformations,

in: D. Bini, E. Tyrtyshnikov, P. Yalamov (Eds.), Structured Matrices: Recent Developments in Theory and
Computation, Advances in Computation: Theory and Practice, Vol. 4, Nova Science, New York, 2001,
pp. 135–148.

[17] S. Kunis, D. Potts, NFFT, Softwarepackage, C subroutine library, http://www.math.uni-luebeck.de/potts/nJt, 2002.
[18] R. Lasser, Orthogonal polynomials hypergroups ii—the symmetric case, Trans. Amer. Math. Soc. 341 (1994)

749–770.
[19] F.G. Lemoine, E.C. Pavlis, et al., The development of the joint NASA GSFC and NIMA geopotential model EGM96,

Technical Report, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA, 1998.
[20] H. Mhaskar, F. Narcowich, J. Ward, Quadrature formulas on spheres using scattered data, Math. Comp., to appear.
[21] M.J. Mohlenkamp, A fast transform for spherical harmonics, J. Fourier Anal. Appl. 5 (1999) 159–184.
[22] A. Nieslony, G. Steidl, Sparse approximate factorization of nonuniform Fourier matrices with nonequispaced knots,

Linear Algebra Appl. 366 (2003) 337–351.
[23] F.W.J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.
[24] A. Persson, User guide to ecmwf forecast products, Technical Report, European Center for Medium-Range Weather

Forecast, 2000.
[25] D. Potts, G. Steidl, M. Tasche, Fast algorithms for discrete polynomial transforms, Math. Comp. 67 (1998)

1577–1590.
[26] D. Potts, G. Steidl, M. Tasche, Fast and stable algorithms for discrete spherical Fourier transforms, Linear Algebra

Appl. 275 (1998) 433–450.
[27] D. Potts, G. Steidl, M. Tasche, Fast Fourier transforms for nonequispaced data: a tutorial, in: J.J. Benedetto, P.J.S.G.

Ferreira (Eds.), Modern Sampling Theory: Mathematics and Applications, BirkhZauser, Boston, 2001, pp. 247–270.
[28] K. Rao, P. Yip, Discrete Cosine Transforms, Academic Press, Boston, 1990.
[29] http://www.ece.cmu.edu/∼spiral/.
[30] G. Steidl, Fast radix-p discrete cosine transform, Appl. Algebra Eng. Comm. Comput. 3 (1992) 39–46.
[31] G. Steidl, M. Tasche, A polynomial approach to fast algorithms for discrete Fourier-cosine and Fourier-sine

transforms, Math. Comp. 56 (1991) 281–296.
[32] R. Suda, M. Takami, A fast spherical harmonics transform algorithm, Math. Comp. 71 (2001) 703–715.
[33] Z. Wang, Fast algorithms for the discrete W transform and for the discrete Fourier transform, IEEE Trans. Acoust.

Speech Signal Process. 32 (1984) 803–816.
[34] A.F. Ware, Fast approximate Fourier transforms for irregularly spaced data, SIAM Rev. 40 (1998) 838–856.

http://www.math.uni-luebeck.de/potts/nfft
http://www.ece.cmu.edu/~spiral/

	Fast spherical Fourier algorithms
	Introduction
	Discrete cosine transforms
	Fast polynomial multiplication
	Fast transform for Legendre functions
	Stabilization issues

	Discrete spherical Fourier transform
	DSFT on special grids
	Slow spherical Fourier transform on arbitrary nodes
	Fast spherical Fourier transform on arbitrary nodes

	Numerical results
	Conclusion
	Acknowledgements
	References

