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Recent evidence suggests immune and inflammatory alterations are important in chronic fatigue syn-
drome (CFS). This study was done to explore the association of functionally important genetic variants
in inflammation and immune pathways with CFS. Peripheral blood DNA was isolated from 50 CFS and
121 non-fatigued (NF) control participants in a population-based study. Genotyping was performed with
the Affymetrix Immune and Inflammation Chip that covers 11 K single nucleotide polymorphisms (SNPs)
following the manufacturer’s protocol. Genotyping accuracy for specific genes was validated by pyrose-
quencing. Golden Helix SVS software was used for genetic analysis. SNP functional annotation was done
using SPOT and GenomePipe programs. CFS was associated with 32 functionally important SNPs: 11 mis-
sense variants, 4 synonymous variants, 11 untranslated regulatory region (UTR) variants and 6 intronic
variants. Some of these SNPs were in genes within pathways related to complement cascade
(SERPINA5, CFB, CFH, MASP1 and C6), chemokines (CXCL16, CCR4, CCL27), cytokine signaling (IL18, IL17B,
IL2RB), and toll-like receptor signaling (TIRAP, IRAK4). Of particular interest is association of CFS with
two missense variants in genes of complement activation, rs4151667 (L9H) in CFB and rs1061170
(Y402H) in CFH. A 50 UTR polymorphism (rs11214105) in IL18 also associated with physical fatigue, body
pain and score for CFS case defining symptoms. This study identified new associations of CFS with genetic
variants in pathways including complement activation providing additional support for altered innate
immune response in CFS. Additional studies are needed to validate the findings of this exploratory study.
Published by Elsevier Inc. on behalf of American Society for Histocompatibility and Immunogenetics. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Chronic fatigue syndrome (CFS) is a severely debilitating
condition characterized by multi-system symptoms including
chronic fatigue, pain, post-exertional malaise, muscle weakness,
un-refreshing sleep, and cognitive impairment. While the cause
of CFS is not known, many proposed risk factors including infec-
tion, environmental exposures, allergies, physiological and psy-
chosocial stress, act through the immune system and
inflammatory response [1–8]. Inflammatory markers have been
associated with specific symptoms common in CFS; chronic
fatigue, heart rate variability, sleep quality, cognitive problems
and post-exertional malaise [9–17]. Changes in cytokine profiles
have been suggested as biomarkers of CFS [18–22].

Polymorphisms that impact gene function, either directly or
interaction through other risk factors, may contribute to genetic
susceptibility for CFS. Only a small number of polymorphisms in
a few genes involved in immune and inflammatory response have
been studied [23–25]. The Affymetrix Human Immune and
Inflammation Chip was developed to facilitate a systematic genetic
evaluation of immune and inflammation pathways [26]. We used
this platform to explore the genetics of the immune and inflamma-
tion response in CFS.
2. Materials and methods

2.1. Subjects

This study was approved by the Centers for Disease Control &
Prevention (CDC) Human Subjects Committee and adhered to the
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human experimental guidelines of the US Department of Health
and Human Services. All participants gave written informed con-
sent for the study.

Participants in the follow-up study of a population based
surveillance of CFS in Georgia, USA (Georgia CFS surveillance
study) were clinically evaluated as described in the baseline
surveillance [27], and classified as CFS if they met the 1994 inter-
national research definition as previously described. The clinical
evaluation included physical examination, laboratory screening
and Structured Clinical Interview for DSM-IV (SCID) to identify
exclusionary conditions and completion of the Multidimensional
Fatigue Inventory (MFI), the SF-36� Health Survey (SF-36), and
the CDC Symptom Inventory (SI). Subjects meeting none of the cri-
teria for CFS were classified as non-fatigued (NF) controls. The cur-
rent analysis included all 171 Non-Hispanic White participants
with no medical/psychiatric exclusions: 121 NF controls and 50
CFS. The decision to restrict non-Hispanic Whites was based on
the limited power to detect association in other racial/ethnic
groups (only 14 CFS and 41 NF participants were non-White or
Hispanics).

2.2. Highly multiplex Affymetrix targeted genotyping

Peripheral blood was collected via venipuncture in PAXgene
blood DNA tubes (Qiagen, Valencia, CA). Specimen handling,
storage, transportation, and extraction of genomic DNA using
PAXgene blood DNA Kit (Qiagen) were done following the
manufacturer’s instructions. DNA quality and quantity were deter-
mined using agarose gel (1%) electrophoresis and Nanodrop
ND-1000 Spectrophotometer (Thermo Scientific, Wilmington, DE)
respectively.

We used the Affymetrix Human Immune and Inflammation
Chip that interrogates 11 K SNPs in 1000 genes representing 38
sub-pathways. Selection of pathways, genes and SNPs for the
inflammation chip has already been reported [26]. The assay used
the Affymetrix Targeted Genotyping system with Molecular
Inversion Probe assay (MIP) read with four color GC3000 TG scan-
ner 7G 4C, and GeneChip Targeted Genotyping Analysis Software
(GTGS) following the manufacture’s protocol [26,28,29]. Each array
was scanned four times to measure the signal from label on each of
the 4 nucleotides, and the data were stored as .cell files after grid-
ding. Genotype calls were made automatically by GTGS following
the standard criteria: SNP call rate P 80% (estimate of assays
clearly genotyped); half rate 6 10% (estimate of assays marginally
genotyped); signal noise ratio (S/N) P 20 (median ratio of assay
allele/non-allele channel signals); coefficient of variation (CV) of
control feature signals for hybridization 6 30%.

2.3. Genotyping by pyrosequencing

Pyrosequencing was used to validate and supplement
Affymetrix data for 57 SNPs of interest. Pyrosequencing assays
were designed using the Assay Design Software (Qiagen), and
SNPs were detected using the PyroMark PCR kit, PyroMark
Q96MD instrument system and other assay instructions from
Qiagen. Supplementary Table 1 provides the primer sequences, pri-
mer concentrations, annealing temperature and ‘‘sequence to ana-
lyze’’ for each of the SNPs. In brief, each 12.5 ll PCR contained 1�
PyroMark PCR Mastermix, 1� CoralLoad Concentrate, either
0.2 lM or 0.4 lM each of forward and reverse primers and 25 ng
of DNA. PCR consisted of an initial denaturation step of one cycle
for 95 �C for 15 min followed by 45 cycles of 95 �C for 30 s, the
respective annealing temperature for 30 s, and 72 �C for 30 s.
Each sequencing reaction used 5 ll of biotinylated PCR product,
0.3 lM of sequencing primer in a total annealing buffer volume
of 12 ll and sequenced using the ‘‘sequence to analyze’’ generated
for each SNP by the Assay Design Software. We used Coriell DNA
(Coriell Institute for Medical Research, Camden, NJ) with known
genotype to validate the pyrosequencing assays optimized in this
study.
2.4. Data analysis and bioinformatics

Differences between CFS and NF with respect to demographic
characteristics and MFI, SF-36 and SI scales were assessed using
chi-square test to compare proportions or independent sample
t-test to compare means using SPSS version 19. Golden Helix SVS
software was used for comprehensive genetic analysis with cate-
gorical (subject classification) and quantitative (SF-36, MFI and SI
scores) variables, including quality control of SNP data in terms
of Hardy–Weinberg Equilibrium (HWE), population stratification
and adjustments for covariates. Based on SNP quality control crite-
ria, 2353 SNPs (representing markers with call rate < 80%,
MAF < 5%, HWE < 0.01 and 84 SNPs on X chromosome) were
removed, leaving 9146 (79.5%) autosomal SNPs for genetic associ-
ation analyses with CFS. Population stratification was not detected
by the genomic control method as applied in the SVS software.
Chi-square test was used to assess basic allele and genotypic
associations between SNP and CFS (compared with NF). SNPs
associated with CFS with a p-value of 60.05 were selected for
functional annotation. We used bioinformatics tools SPOT
(https://spot.cgsmd.isi.edu/submit.php) [30], GenomePipe (http://
snpinfo.niehs.nih.gov/snpfunc.htm) [31] FastSNP (http://fastsnp.
ibms.sinica.edu.tw/), PolymiRTS (http://compbio.uthsc.edu/
miRSNP/) and Genomatix to identify SNPs with potential func-
tional roles in affecting protein structure and functions (synony-
mous or non-synonymous SNPs), splicing regulation (enhancers
or silencers), gene expression regulation (create or abolish tran-
scription factor binding site [TFBS]), or affecting microRNA binding
sites (create/delete). Genotypic calls of SNPs with predicted func-
tional significance and proxy SNPs in high linkage disequilibrium
(LD P 0.8) were validated by pyrosequencing. These refined geno-
typing results were re-evaluated for association with CFS using
allele test (chi-square test) and specific genetic models (by logistic
regression). For analysis of genetic models, the genotypes were
coded into numeric values (additive: dd = 0, Dd = 1, DD = 2; domi-
nant: dd = 0, Dd = 1, DD = 1; recessive: dd = 0; Dd = 0, DD = 1 where
d is the major allele and D is the minor allele). Linear regression
was used to test the association of SNPs with quantitative mea-
sures of function (SF-36), fatigue (MFI) and symptoms (number
of CFS case defining symptoms and SI score for CFS case defining
symptoms [32]) in CFS subjects only using the numerically recoded
genotypes in additive model. p-values were adjusted for covariates
using SVS software. SVS software was also used for LD and haplo-
type analyses of markers in selected genes. Confidence interval (CI)
values were estimated at 95% confidence level.
3. Results

3.1. Demographics of participants included in this analysis

The major demographic characteristics and MFI, SF-36 and SI
scales of participants included in this analysis are shown in
Table 1. The median time since onset of fatigue for CFS participants
was 8.97 years (range 0.39–40.2 years) and 82.2% had gradual
onset of illness. Body mass index (BMI) and sex were both associ-
ated with CFS compared to NF. Because of their association with
CFS, BMI and sex were included as covariates in genetic models.
As expected, all MFI, SF-36 and SI scales were significantly different
between NF and CFS subjects, with higher MFI and lower SF-36
scores indicating more severe conditions respectively.
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Table 1
Major demographic characteristics and SF-36, MFI and SI scales of subjects in analysis.

Factors Classificationa

NF (N = 121) CFS (N = 50)

Age (years)
Mean ± SD (range) 48.50 ± 9.46 (24–62) 48.02 ± 10.11 (22–63)
Female (%) 64.50 92.00***

BMI ± SD
Both men and female 26.79 ± 5.13 28.84 ± 5.27*

(Men only) (29.06 ± 4.47) (27.75 ± 3.95)
(Female only) (25.45 ± 5.04) (28.93 ± 5.39)
SF-36 scales (mean ± SD)
Physical function 96.07 ± 5.67 61.60 ± 23.80***

Role physical 99.59 ± 3.20 29.50 ± 36.66***

Body pain 84.11 ± 14.55 38.62 ± 14.54***

General health 85.50 ± 12.10 44.12 ± 18.65***

Vitality 80.04 ± 12.54 22.90 ± 16.07***

Social function 98.76 ± 3.75 49.75 ± 22.66***

Role emotional 100 ± 0.00 55.33 ± 42.92***

Mental health 89.59 ± 7.87 58.64 ± 22.17***

MFI scales (mean ± SD)
General fatigue 6.41 ± 2.17 16.78 ± 2.49***

Physical fatigue 5.67 ± 1.58 13.92 ± 3.36***

Mental fatigue 6.07 ± 2.58 13.14 ± 4.02***

Reduced activity 5.30 ± 1.45 12.62 ± 4.41***

Reduced motivation 5.53 ± 1.81 12.40 ± 3.63***

SI scales (mean ± SD)
Number of symptoms 1.87 ± 1.91 10.26 ± 2.96***

Number of CFS symptoms 0.91 ± 1.05 5.32 ± 1.15***

CFS defining symptom score 3.12 ± 4.45 44.21 ± 14.17***

Non-CFS symptom score 3.10 ± 4.33 31.51 ± 14.89***

SI-summary score 6.21 ± 7.69 77.05 ± 26.72***

a Subject classification: NF, non-fatigued with no medical/psychiatric exclusion;
CFS, chronic fatigue syndrome subjects with no medical/psychiatric exclusions.

* Significantly different between NF and CFS at p < 0.05.
*** Significantly different between NF and CFS at p < 1.0 � 10�4. Higher MFI and
lower SF-36 scores indicate more severe conditions respectively.
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3.2. Potentially functional SNPs associated with CFS

Affymetrix results identified 427 SNPs associated with CFS at
allele and 405 at genotype levels. The 38 SNPs with potential func-
tional significance that were identified at both allele and genotype
levels, along with 14 of their proxy SNPs that were not on the
Affymetrix chip, were genotyped by pyrosequencing. After adjust-
ing pyrosequencing results for covariates, 32 of 38 SNPs and 10 of
14 proxy SNPs remained significantly associated with CFS
(Supplementary Table 2). The 32 functional SNPs were grouped,
either directly or through their proxy SNPs, as non-synonymous
variants (11 SNPs), synonymous variants (4 SNPs), located in the
untranslated regulatory regions (UTR) of genes (11 SNPs), or intro-
nic (6 SNPs). The genetic location, allele frequency, pathways, and
function/mechanism for SNPs are summarized by category in
Tables 2–5 and will be discussed in turn.

The minor alleles of 6 of 11 non-synonymous SNPs were risk
alleles for CFS (Table 2). While most changes were predicted to
be benign, probable (rs6115 in serpin peptidase inhibitor clade A
member 5, SERPINA5) or possible (rs4151667 in complement factor
B, CFB; rs3803568 in lectin mannose binding 1 like, LMAN1L) damag-
ing changes were noted in three genes, two of which are in the
complement pathway. For both of these complement genes the
minor alleles were more common in CFS; G of rs6115 in
SERPINA5 (50% CFS vs 31% NF; p = 1.58 � 10�3) and A of
rs4151667 in CFB (10.0% CFS vs 2.9% NF; p = 5.94 � 10�3). In 5
genes splicing regulation was a predicted effect of SNPs in the
non-synonymous group. The minor alleles of 3 of the 4 synony-
mous SNPs were risk alleles for CFS. All four synonymous SNPs
had predicted effect in splicing regulation of 4 genes (Table 3),
two of which function in the complement cascade (rs1061147 in
complement factor H, CFH and rs3774268 in mannan-binding lectin
serine peptidase 1, MASP1). For one of the complement pathway
genes the minor allele was more common in CFS; A of rs3774268
in MASP1 (22.9% CFS vs 10.7% NF; p = 3.88 � 10�3). For the other
complement pathway gene, the minor allele was less common in
CFS; A of rs1061147 in CFH (28.0% CFS vs 43.8% NF, p =
6.47 � 10�3).

The minor alleles of 6 of the 11 UTR SNPs were risk alleles for
CFS (Table 4). Nearly all (10 of 11) were located in the 30 region
and predicted to function in microRNA binding to 10 genes, two
of which function in the complement cascade (rs9200 in C6 and
rs6108 (proxy rs9113) in SERPINA5. The minor allele T of rs9113
in SERPINA5, proxy SNP for rs6108, was more common in CFS
(49% vs 33.5% NF; p = 7.12 � 10�3) with predicted disruption of a
binding site for hsa-miR1258. The minor allele A of rs353254,
proxy SNP for CFS-associated rs372402, was predicted to create a
binding site for hsa-miR-607 in prenylcysteine oxidase 1 like
(PCYOX1L). This minor allele was more frequent in CFS (53%) than
NF (43.27%), with statistical significance only in a dominant model
adjusted for sex and BMI (p = 1.63 � 10�3). The minor allele C of
rs1051007 in the overlapping 30 UTR of mediator complex subunit
11 (MED11) and chemokine (C-X-C motif) ligand 16 (CXCL16) was
more common in CFS (20% CFS vs 6.6% NF; p = 2.43 � 10�4). One
of the 11 UTR SNPs was near the 50 end of one gene in PI3K/AKT
signaling pathway and predicted to affect transcription factor
binding.

The minor alleles of 3 of the 6 intronic SNPs were risk alleles for
CFS (Table 5), creating transcription factor binding sites (TFBS)
(matrix similarity scores 0.912–0.957). None of the intronic SNPs
were located in genes in the complement pathway. The minor
allele A of rs11257804 in intron 1-alternative promoter of
calcium/calmodulin-dependent protein kinase ID (CAMK1D) was
more common in CFS and created a binding site for the initiator
response element (INRE) (44% CFS vs 24.4% NF; p = 3.21 � 10�4).
The minor allele G of rs7616342 in intron 6 of potassium voltage
gated channel subfamily H member 8 (KCNH8) was more common
in CFS and created a binding site for STAT6 (signal transducer and
activator of transcription 6 interleukin 4 induced) (53.0% CFS vs
35.1% NF; p = 2.18 � 10�3).

3.3. C2/CFB and CFH alleles and haplotypes associated with CFS

We used pyrosequencing to genotype an additional 6 SNPs in
complement genes (rs12614 and rs641153 in CFB; rs9332739 in
C2; rs800292, rs1061170 and rs10801555 in CFH). Fig. 1 shows
the LD analysis of these SNPs with CFS and the haplotype analysis
for markers in LD. For C2/CFB, two SNPs, rs9332739 (G/C polymor-
phism) and rs4151667 (T/A polymorphism) were in high LD
(Fig. 1A). Their respective minor alleles C and A were associated
with CFS in both allele and haplotype analyses. Haplotype CA
was nearly 4 times more likely to be associated with CFS than NF
(OR = 3.73; CI = 1.38–10.10; p = 6.0 � 10�3). For CFH, four SNPs,
rs1061147 (G/T polymorphism), rs7529589 (C/T polymorphism),
rs1061170 (T/C polymorphism) and rs10801555 (G/A polymor-
phism), were in high LD (Fig. 1B). Their respective major alleles
G, C, T and G were associated with CFS in both allele (72–73%
CFS vs 56% NF; p = 4.81–6.5 � 10�3) and haplotype analyses.
Haplotype GCTG was 2 times more likely to be associated with
CFS than NF (OR = 2.07; CI = 1.24–3.45; p = 4.8 � 10�3).

Three of these CFS-associated SNPs in the complement pathway
were non-synonymous [rs1061170 (Fig. 1B); rs9332739 and
rs4151667 (Fig. 1A)]. The T/C polymorphism in rs1061170 changes
tyrosine with histidine at position 402 (Y402H) in exon 9 of CFH.
The G/C polymorphism of rs9332739 replaces glutamate with
aspartate at position 318 (E318D) in exon 7 of C2. The T/A poly-
morphism of rs4151667 replaces leucine to histidine at position



Table 2
Summary of SNPs associated with CFS: non-synonymous group.

SNP IDa Chr# Allele MAFb

(NF)
MAF
(CFS)

p-Value
(allele)

p-Value
(adjusted)c

Gene (pathway) SNP function/mechanismsd

rs6112 14 C/T 0.289 0.460 2.42E-03 8.98E-03 (A) SERPINA5 (complement cascade) Missense (S64N); probable damaging
effect by codon changers6115 A/G 0.318 0.500 1.58E-03 7.98E-03 (A)

rs9550987 13 T/A 0.178 0.330 2.06E-03 1.61E-03 (A) TNFRSF19 (TNF super family
signaling)

Missense (S31T); splicing regulation;
benign effect by codon change

rs3802814 11 G/A 0.103 0.190 2.94E-02 3.42E-02 (A) TIRAP (toll-like receptor signaling) Missense (S180L); benign effect by codon
change. May have regulatory potentialrs8177374 C/T 0.128 0.190 NS NS

rs4151667 6 T/A 0.029 0.100 5.94E-03 3.88E-02 (A) CFB (complement cascade) Missense (L9H); possible damaging effect
by codon change

rs2278831 19 A/G 0.037 0.110 9.05E-03 7.73E-03 (D) SIGLEC5 (T-cell activation) Missense (F322S); benign effect on
protein structure; splicing regulation

rs12439525 15 C/T 0.074 0.020 NS 2.78E-02 (A) LMANIL (protein processing in
endoplasmic reticulum)

Missense (R105Q); possible damaging by
codon change; splicing regulationrs3803568 C/T 0.062 0.010 3.84E-02 4.10E-02 (A)

rs2277680 17 A/G 0.504 0.390 NS 3.20E-02 (A) CXCL16 (chemokines) Missense (I142T; A200V); benign effect by
both codon changesrs1050998 T/C 0.500 0.390 NS 4.71E-02 (A)

rs4251545 12 G/A 0.112 0.040 3.60E-02 1.28E-02 (A) IRAK4 (toll-like receptor signaling) Missense (A428T); benign effect by codon
change; splicing regulation

rs1801058 4 C/T 0.424 0.276 1.07E-02 2.60E-03 (A) GRK4 (G-protein coupled receptor
signaling)

Missense (V486A); benign effect on
protein structure; splicing regulation

rs17500510 6 G/A 0.074 0.150 3.12E-02 2.47E-02 (A) HLA-DQA2 (phagocytosis-Ag
presentation)

Missense (G247D); benign effect on
protein structurers2071800 C/T 0.054 0.092 NS NS

rs11575584 9 G/A 0.058 0.100 NS 2.73E-02 (D) CCL27 (chemokines) Missense (L96F); benign effect on protein
structure

a Bold font indicates non-synonymous variant; bold-italics font indicates non-synonymous proxy SNPs; other SNPs in non-synonymous group because of proxy SNP.
b MAF = minor allele frequency.
c p-Values after adjusting for sex and BMI. NS = non-significant. (A) = additive and (D) = dominant genetic models.
d Based on SPOT/GenomePipe annotations.

Table 3
Summary of SNPs associated with CFS: synonymous group.

SNP IDa Chr# Allele MAFb

(NF)
MAF
(CFS)

p-Value
(allele)

p-Value
(adjusted)c

Gene
(pathway)

SNP function/mechanismsd

rs2228428 3 C/T 0.273 0.430 4.52E-03 4.21E-04 (R) CCR4
(chemokines)

Codon-synonymous (Y338Y); splicing regulation

rs11214105 11 G/A 0.198 0.320 1.56E-02 3.31E-02 (D) IL18/TEX12
(cytokines)

rs11214105 near gene-5’ with potential transcription factor binding.
rs549908 results in codon synonymous change (S35S); splicing regulationrs549908 T/G 0.231 0.320 NS NS

rs7529589 1 C/T 0.446 0.280 4.26E-03 7.79E-03 (A) CFH
(complement
cascade)

Codon-synonymous (A307A); splicing regulation
rs1061147 C/A 0.438 0.280 6.47E-03 1.49E-02 (A)

rs3774268 3 G/A 0.107 0.229 3.88E-03 1.26E-03 (A) MASP1
(complement
cascade)

Codon-synonymous (S445S); splicing regulation

a Bold font indicates synonymous variant; bold-italics font indicates synonymous proxy SNPs; other SNPs in synonymous group because of proxy SNP.
b MAF = minor allele frequency.
c p-Values after adjusting for sex and BMI. NS = non-significant. (A) = additive; (D) = dominant; (R) = recessive genetic models.
d Based on GenomePipe and FastSNP annotations.
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9 (L9H) in the signal peptide of CFB. C2 and CFB are paralogous
genes separated only by 500 bp. Therefore for a two-locus com-
bined genotype analysis of C2/CFB and CFH only rs9332739 in C2
(genotypes, GG/GC/CC) was used with rs1061170 (genotypes,
TT/TC/CC) in CFH. Fig. 2 shows the distribution of CFS and NF sub-
jects in 5 genotype combinations (GG-CC, GG-CT, GG-TT, GC-CT
and GC-TT) of these SNPs. No instances of C2 genotype CC were
identified. The distribution of CFS and NF subjects was significantly
different for all genotype combinations except GC-CT. Since the CFS
risk alleles were the minor allele C of rs9332739 in C2 and the
major allele T of rs1061170 in CFH, the least likely genotype com-
binations in CFS were GG-CC (CFS, 13.7% [4/29]; NF, 86.2% [25/29];
p = <1.0 � 10�4) and GG-CT (CFS, 22.7% [15/66]; NF, 77.2% [51/66];
p = <1.0 � 10�4). CFS patients were significantly less likely to have
these two genotype combinations compared to the rest of the
genotype combinations (adjusted odds ratio 0.410 (CI = 0.198–
0.849; p = 1.5 � 10�2).
3.4. SNPs associated with quantitative measures of CFS

The 32 SNPs associated with CFS (Tables 2–5) were tested for
association in additive models with measures of function (SF-36),
fatigue (MFI) and symptoms (SI). Age, sex and BMI were examined
as co-variates with each measure, and those with significant asso-
ciation were used to adjust the association. Four SNPs each associ-
ated with a different SF-36 subscale (rs11214105 in interleukin
18/testis expressed 12 (IL18/TEX12) with body pain, p = 8.0 � 10�3

adjusted for age; rs6112 in SERPINA5 with physical function,
p = 1.8 � 10�2 adjusted for age; rs227680 in CXCL16 with general
health, p = 2.0 � 10�3 adjusted for age; and rs1801058 in G
protein-coupled receptor kinase 4 (GRK4) with social function,
p = 1.2 � 10�2). Two of these same SNPs were associated with
MFI physical fatigue score (rs11214105 in IL18/TEX12 and rs6112
in SERPINA5; p = 3.0–6.0 � 10�3). The IL18/TEX12 SNP
(rs11214105) was also associated with CDC SI score for CFS case



Table 4
Summary of SNPs associated with CFS: UTR group.

SNP IDa Chr# Allele MAFb

(NF)
MAF
(CFS)

p-Value
(allele)

p-Value
(adjusted)c

Gene (pathway) SNP function/mechanismsd

rs1051007 17 T/C 0.066 0.200 2.43E-04 2.64E-05 (A) MED11/CXCL16 (chemokines) UTR-3; miRNA binding
rs11658971 G/A 0.075 0.190 1.92E-03 2.02E-04 (A)
rs13010656 2 G/T 0.397 0.560 5.70E-03 5.92E-03 (A) BMPR2 (NF-& kappa; B signaling) UTR-3; miRNA bindingf

rs1048829 G/T 0.397 0.560 5.70E-03 4.35E-03 (A)
rs3020729 2 T/C 0.157 0.040 2.71E-03 1.88E-03 (A) CD8A (lymphocyte signaling) UTR-3; miRNA binding
rs9200 5 G/A 0.517 0.340 2.92E-03 6.41E-03 (A) C6 (complement cascade) UTR-3; miRNA bindinge

rs228945 22 A/G 0.310 0.170 7.95E-03 5.88E-03 (A) IL2RB (cytokines) UTR-3; miRNA binding
rs228941 C/G 0.298 0.190 4.07E-02 3.65E-02 (A)
rs6108 14 T/A 0.331 0.490 5.66E-03 1.27E-02 (A) SERPINA5 (complement cascade) UTR-3; miRNA bindinge,f

rs9113 C/T 0.335 0.490 7.12E-03 1.41E-02 (A)
rs3751488 14 G/A 0.298 0.146 4.16E-03 3.47E-03 (D) MRPL52 (migration) UTR-3; miRNA bindingf

rs733590 6 T/C 0.364 0.500 1.94E-02 2.36E-02 (A) CDKN1A (P13K/AKT signaling) Near gene 5’; transcription factor binding site
rs2395655 A/G 0.397 0.550 9.40E-03 3.61E-02 (A)
rs2016483 4 T/A 0.376 0.510 2.22E-02 3.75E-02 (A) SMARCAD1 (helicase protein) UTR-3; miRNA bindinge

rs8336 G/A 0.360 0.440 NS NS
rs4819388 21 C/T 0.314 0.200 3.28E-02 3.44E-03 (D) ICOSLG (B7 family) UTR-3; miRNA bindingf

rs372402 5 C/T 0.413 0.530 4.82E-02 4.45E-04 (D) IL17B/PCYOX1L (cytokines) UTR-3; miRNA bindinge,f

rs353254 G/A 0.433 0.530 NS 1.63E-03 (D)

a Bold font indicates UTR variant; bold-italics font indicates UTR proxy SNPs; other SNPs in UTR group because of proxy SNP.
b MAF = minor allele frequency.
c p-Values after adjusting for sex and BMI. NS = non-significant. (A) = additive and (D) = dominant genetic models.
d Based on GenomePipe and PolyMir annotations.
e Score difference due to allele change is P16 (by GenomePipe), suggesting an SNP effect on miRNA binding.
f Supported also by the PolyMir database.

Table 5
Summary of SNPs associated with CFS: intronic group.

SNP ID Chr# Allele MAFa

(NF)
MAF
(CFS)

p-Value
(allele)

p-Value
(adjusted)b

Pathway Gene/SNP location Associated
allele

Created TFBSc

(scored)

rs2014012 5 A/T 0.355 0.160 2.22E-02 2.27E-03 (A) G-protein coupled receptor
signaling

PDE4D/intron 7 A (major) FOXQ1 (0.877)

rs11257804 10 G/A 0.244 0.440 3.21E-04 1.62E-03 (A) Calcium signaling CAMK1D/intron 1-alternative
promoter

A (minor) INRE (0.957)

rs829370 1 T/C 0.033 0.120 1.83E-03 3.07E-04 (A) ERK/MAPK signaling RAP1GAP/intron 8 C (minor) FOXH1 (0.912)
rs7616342 3 A/G 0.351 0.530 2.18E-03 1.98E-05 (D) P38 MAPK signaling KCNH8/intron 6 G (minor) STAT6 (0.921)
rs17591814 1 C/T 0.450 0.300 9.99E-03 1.87E-03 (D) ERK/MAPK signaling PLA2G4A/intron 3 C (major) ZEB1 (0.994)
rs10498445 14 C/G 0.306 0.160 5.35E-03 5.59E-04 (D) Eicosanoid signaling PTGDR/intron 1 C (major) PAX (0.854)

a MAF = minor allele frequency.
b p-Values after adjusting for sex and BMI. (A) = additive, and (D) = dominant genetic models.
c FOXQ1, forkhead box Q1; INRE, initiation response element in the promoter; FOXH1, forkhead box H1; STAT6, signal transducer and activator of transcription 6; ZEB1,

zinc finger E-box binding homeobox 1; PAX6, paired box 6.
d Matrix similarity score by Genomatix.

M.S. Rajeevan et al. / Human Immunology 76 (2015) 553–560 557
defining symptoms (p = 6.06 � 10�5) and the number of CFS symp-
toms (p = 4.1 � 10�4). In each instance, homozyogisty for the minor
allele A of rs11214105 in IL18/TEX12 was associated with more
severity for each of the measures. rs6112 in SERPINA5 was also
associated with the number of CFS symptoms (p = 8.1 � 10�4).
The non-synonymous variant, rs2278831 in sialic acid binding
Ig-like lectin 5 (SIGLEC5), was also associated with CDC SI score
for CFS case defining symptoms (p = 4.7 � 10�3).
4. Discussion

This study identified several previously unrecognized genetic
associations with CFS that are worthy of further study for valida-
tion. If validated, these associations support the hypothesis that
immune and inflammatory mechanism may be involved in CFS.
Many of the SNPs associated with CFS were located in genes
involving complement activation, chemokines and cytokines and
toll-like receptor (TLR) signaling. The findings in the complement
system are of a particular interest, as a role for complement activa-
tion in CFS has been suggested by a recent case report and prior
gene expression and proteomic studies. In the case report, the
patient remained chronically fatigued while the levels of comple-
ment split products were elevated but CFS symptoms resolved
within two months of normalization of split products [33]. Gene
expression studies indicated differential expression of complement
protein MASP2 contributing to the C4a split product in CFS follow-
ing exercise [14,15]. Complement proteins in the cerebrospinal
fluid of subjects with CFS were elevated compared with healthy
controls [34].

The complement system plays major roles in defending
host against infection, coordinating events during inflammation
and bridging innate and adaptive immune responses [35].
Complement activation is initiated by three sub-pathways (classi-
cal, alternate and lectin pathways), all of which lead to the forma-
tion of C3 convertase required for the cleavage of C3 [36]. Both CFH
and CFB play pivotal but opposing roles in the alternate pathway.
CFB activates the complement cascade by contributing to the for-
mation C3 convertase and CFH inhibits the same pathway by accel-
erating the decay of C3 convertase [37]. C2 is similar to CFB, but
contributes to the formation of C3 convertase through the classical
pathway. Interestingly two CFS-associated missense variants in
genes of complement activation, [rs4151667 (L9H) in CFB and
rs1061170 (Y402H) in CFH] have previously been associated with



Fig. 1. LD plot and haplotype association results with selected markers in C2/CFB (A) and CFH (B). Selected markers are shown at the top of each LD plot. LD was measured by
pair-wise R2 values indicated by colors ranging from blue (no LD) to red (high LD). Haplotype association was restricted to markers (denoted with asterisk) in LD. Haplotypes
significantly different between CFS and NF are given under the LD plots. Haplotype GT comprises major alleles G and T and haplotype CA comprises minor alleles C and A of
rs9332739 in C2 and rs415667 in CFB respectively. Haplotype GCTG consists of the major alleles G, C, T and G and haplotype TTCA consists of the minor alleles T, T, C and A of
rs1061147, rs7529589, rs1061170 and rs10801555 respectively in CFH.
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age-related macular degeneration (AMD) [38,39]. The haplotype
analysis that included the rs9332739 (E318D) in C2, a SNP that is
in high LD with rs4151667 in CFB, reported to be associated with
AMD, was also associated with CFS in our study; however, the risk
and protective variants were switched (i.e. alleles protective for
AMD were associated with risk for CFS). A recent report indicates
that protective alleles of CFH and CFB for AMD associate with lower
levels of complement activation [40]. Since the same alleles are
associated with risk for CFS in this study, we hypothesize lower
levels of complement activation may be associated with at least
a subset of CFS subjects.

To our knowledge, this is the first study that associates CFS with
polymorphisms in chemokine ligands/receptors, molecules that
regulate leukocyte trafficking. One of the strongest associations
was with a synonymous risk variant rs2228428 (Y338Y) poten-
tially regulating splicing in CCR4, a CC chemokine receptor
reported to be expressed in Th2 and Treg cells [41]. Associations
with variants in CXCL16, a member of the CXC family of chemoki-
nes were also found. rs1051007 in the 30 UTR of CXCL16, reported
to impact its gene expression, was associated with risk for CFS
[42] whereas a missense polymorphism (rs2277680) in CXCL16
was associated with protection. These results suggest that further
studies of CCR4 and CXCL16 in CFS are warranted.

Prior studies have reported a few polymorphisms in cytokines
to be associated with CFS [23,25]. These previously reported
SNPs were not included in the Affymetrix Human Immune
and Inflammation Chip we used, however we identified additional
cytokine polymorphisms, particularly rs11214105 in IL18, a
pleotropic cytokine that enhances perforin mediated T-cell
and NK-cell cytotoxicity. IL18 has been reported to contribute to
the development and pathogenesis of infectious and
neuro-inflammatory diseases with immune and cognitive dyfunc-
tions [43,44]. Animal studies linked IL18 to diseases with
sex-specific prevalence and complex, regional and sex-specific par-
ental effects in the brain [45]. We found this IL18 polymorphism to
be associated with CFS and quantitative measures of CFS symp-
toms: body pain, physical fatigue, symptom summary scores and
number of CFS symptoms. Our results suggest additional study of
IL18 as a candidate gene in CFS pathophysiology.

Several CFS associated 30 UTR polymorphisms merit further
analyses since they may impact binding sites for microRNAs that
have not yet been examined in CFS. While the impact of these
SNPs on microRNA binding remains to be verified experimentally,
our results suggest a mechanism for microRNA regulation of genes
associated with CFS. Some of the microRNAs impacted by CFS asso-
ciated SNPs include hsa-miR-580 by rs9200 in C6, hsa-miR-607 by
rs353254 in IL17B, and hsa-miR-1258 by rs9113 in SERPINA5. A
missense variant in SERPINA5 (rs6115) was also associated with
CFS. Since these SERPINA5 variants are not in LD, they may confer
independent risk for CFS. SERPINA5, an inhibitor of activated



Fig. 2. Two-locus combined genotype analysis of C2/CFB and CFH. CFS and NF
subjects were stratified by genotype combinations of rs9332739 (G/C) in C2 and
rs1061170 (T/C) in CFH. CFS risk alleles of rs9332739 and rs1061170 are C and T
respectively. X-axis shows the five genotype combinations between these two
markers in the CFS/NF subjects and Y-axis represent the proportion of CFS/NF
subjects within each genotype combinations. Numbers on the top of each bar are
observed numbers of CFS/NF in each genotype combinations. The distributions of
CFS/NF were significantly different in all genotype combinations except for GC-CT.
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protein C, is located in chromosome 4 with other members of the
serpent protease family including corticosteroid binding globulin
(SERPINA6) which has been reported to be associated with CFS [46].

The CFS associated intronic variant rs11257804 in CAMK1D is of
interest. CAMK1D is a protein kinase in the calcium signaling path-
way. It plays a major role in granulocyte function and has little or
no expression in monocytes and lymphocytes [47]. This result sug-
gests further exploration of granulocyte function and host defense
in CFS is warranted.

The small sample size along with the lack of correction for mul-
tiple tests is the major limitation of this exploratory study. To mit-
igate these limitations we used a focused selection of genes and
gene-centric SNPs in immune and inflammation pathways [26],
supplemented with functional annotation using bioinformatics
tools like SPOT and Genome Pipe [30,31], and validation of geno-
typing accuracy of SNP results by pyrosequencing. Because we
did not correct for multiple testing, we used SNP prioritization
tools to identify functionally significant associations. This approach
has been successful in identifying replicated associations that
would have been considered false positive after correction for mul-
tiple testing [30,31]. The power of study to detect associations is
dependent on sample size as well as the genetic model, minor
allele frequencies and effect size of the SNP [48]. With the sample
size used in this study, some of the functionally annotated SNPs
with high statistical significance in dominant model (rs372402 in
Table 4 and rs7616342 in Table 5) provide 76–99% power to detect
association with CFS at a pooled disease prevalence of 0.31% and
controls screened for not having the disease (based on the
Genetic Power Calculator [48]). In addition, based on genotyping
of a selected set of 52 SNPs by pyrosequencing, the association of
two SNPs with CFS (rs1051007 in Table 4 and rs11257804 in
Table 5) met the threshold (p 6 9.62 � 10�4) for multiple testing
by Bonferroni correction. Our study identified 11 missense vari-
ants, 4 synonymous variants, 11 30 UTR and 6 intronic variants
with potential regulatory functions by incorporating the predictive
power of biological information in the SNP prioritization process.
In addition, the specificity of the associations for CFS cannot be
determined in this study since the comparison was only made to
non-fatigued controls. Identifying CFS-associated abnormalities in
a case control study design is an important first step in identifying
candidate genes and pathways that may be implicated in the
pathogenesis of CFS.

In conclusion, this study identified several new genetic associa-
tions of CFS with variants in the complement activation, chemo-
kine’s, cytokines and toll-like receptor signaling. Associations in
these pathways provide additional support for a role of altered
innate immune response in CFS. Additional studies in larger
patient cohorts are needed to validate the findings of this explora-
tory study.
Author contribution

M.S.R. conceived, designed and participated in all phases of the
study including analysis and the first draft of the manuscript.
M.S.R. and E.R.U. participated in manuscript writing, interpretation
and discussion of the results. I.D. and J.M. conducted the genotyp-
ing experiments using the Affymetrix platform and pyrosequenc-
ing. V.R.F. provided bioinformatics support on the identification
of SNP dependent transcription factor binding sites. All authors
read and approved the manuscript for publication.
Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

Support for J. Murray was provided by the research participa-
tion program at the Centers for Disease Control and Prevention
(CDC), Division of High-Consequence Pathogens & Pathology,
administered by the Oak Ridge Institute for Science and
Education through an interagency agreement between the U.S.
Department of Energy and the CDC.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.humimm.2015.
06.014.

References

[1] Arnett SV, Alleva LM, Korossy-Horwood R, Clark IA. Chronic fatigue syndrome
– a neuroimmunological model. Med. Hypotheses 2011;77:77–83.

[2] Arnett SV, Clark IA. Inflammatory fatigue and sickness behaviour – lessons for
the diagnosis and management of chronic fatigue syndrome. J. Affect. Disord.
2012;14:130–42.

[3] Bansal AS, Bradley AS, Bishop KN, Kiani-Alikhan S, Ford B. Chronic fatigue
syndrome, the immune system and viral infection. Brain Behav. Immun.
2012;26:24–31.

[4] Bower JE. Fatigue, brain, behavior, and immunity: summary of the 2012
Named Series on fatigue. Brain Behav. Immun. 2012;26:1220–3.

[5] Brenu EW, Huth TK, Hardcastle SL, Fuller K, Kaur M, Johnston S, et al. Role of
adaptive and innate immune cells in chronic fatigue syndrome/myalgic
encephalomyelitis. Int. Immunol. 2014;26:233–42.

[6] Devanur LD, Kerr JR. Chronic fatigue syndrome. J. Clin. Virol. 2006;37:139–50.
[7] Lorusso L, Mikhaylova SV, Capelli E, Ferrari D, Ngonga GK, Ricevuti G.

Immunological aspects of chronic fatigue syndrome. Autoimmun. Rev.
2009;8:287–91.

[8] Maes M. Inflammatory and oxidative and nitrosative stress pathways
underpinning chronic fatigue, somatization and psychosomatic symptoms.
Curr. Opin. Psychiatry 2009;22:75–83.

[9] Broderick G, Ben-Hamo R, Vashishtha S, Efroni S, Nathanson L, Barnes Z, et al.
Altered immune pathway activity under exercise challenge in Gulf War Illness:
an exploratory analysis. Brain Behav. Immun. 2013;28:159–69.

[10] Gorelick PB. Role of inflammation in cognitive impairment: results of
observational epidemiological studies and clinical trials. Ann. N. Y. Acad. Sci.
2010;1207:155–62.

[11] Jackson ML, Bruck D. Sleep abnormalities in chronic fatigue syndrome/myalgic
encephalomyelitis: a review. J. Clin. Sleep Med. 2012;8:719–28.

http://dx.doi.org/10.1016/j.humimm.2015.06.014
http://dx.doi.org/10.1016/j.humimm.2015.06.014
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0005
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0005
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0010
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0010
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0010
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0015
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0015
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0015
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0020
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0020
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0025
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0025
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0025
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0030
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0035
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0035
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0035
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0040
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0040
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0040
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0045
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0045
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0045
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0050
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0050
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0050
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0055
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0055


560 M.S. Rajeevan et al. / Human Immunology 76 (2015) 553–560
[12] Papaioannou V, Pneumatikos I, Maglaveras N. Association of heart rate
variability and inflammatory response in patients with cardiovascular
diseases: current strengths and limitations. Front. Physiol. 2013;4:174.

[13] Raison CL, Lin JM, Reeves WC. Association of peripheral inflammatory markers
with chronic fatigue in a population-based sample. Brain Behav. Immun.
2009;23:327–37.

[14] Sorensen B, Streib JE, Strand M, Make B, Giclas PC, Fleshner M, et al.
Complement activation in a model of chronic fatigue syndrome. J. Allergy Clin.
Immunol. 2003;112:397–403.

[15] Sorensen B, Jones JF, Vernon SD, Rajeevan MS. Transcriptional control of
complement activation in an exercise model of chronic fatigue syndrome. Mol.
Med. 2009;15:34–42.

[16] Thomas KS, Motivala S, Olmstead R, Irwin MR. Sleep depth and fatigue: role of
cellular inflammatory activation. Brain Behav. Immun. 2011;25:53–8.

[17] van de Weert-van Leeuwen PB, Arets HG, van der Ent CK, Beekman JM.
Infection, inflammation and exercise in cystic fibrosis. Respir. Res. 2013;14:32.

[18] Brenu EW, van Driel ML, Staines DR, Ashton KJ, Ramos SB, Keane J, et al.
Immunological abnormalities as potential biomarkers in Chronic Fatigue
Syndrome/Myalgic Encephalomyelitis. J. Transl. Med. 2011;9:81.

[19] Broderick G, Fuite J, Kreitz A, Vernon SD, Klimas N, Fletcher MA. A formal
analysis of cytokine networks in chronic fatigue syndrome. Brain Behav.
Immun. 2010;24:1209–17.

[20] Fletcher MA, Zeng XR, Barnes Z, Levis S, Klimas NG. Plasma cytokines in
women with chronic fatigue syndrome. J. Transl. Med. 2009;7:96.

[21] Klimas NG, Broderick G, Fletcher MA. Biomarkers for chronic fatigue. Brain
Behav. Immun. 2012;26:1202–10.

[22] Stringer EA, Baker KS, Carroll IR, Montoya JG, Chu L, Maecker HT, et al. Daily
cytokine fluctuations, driven by leptin, are associated with fatigue severity in
chronic fatigue syndrome: evidence of inflammatory pathology. J. Transl. Med.
2013;11:93.

[23] Carlo-Stella N, Badulli C, De SA, Bazzichi L, Martinetti M, Lorusso L, et al.
A first study of cytokine genomic polymorphisms in CFS: positive association
of TNF-857 and IFNgamma 874 rare alleles. Clin. Exp. Rheumatol.
2006;24:179–82.

[24] Landmark-Hoyvik H, Reinertsen KV, Loge JH, Kristensen VN, Dumeaux V, Fossa
SD, et al. The genetics and epigenetics of fatigue. PM R 2010;2:456–65.

[25] Metzger K, Fremont M, Roelant C, De MK. Lower frequency of IL-17F sequence
variant (His161Arg) in chronic fatigue syndrome patients. Biochem. Biophys.
Res. Commun. 2008;376:231–3.

[26] Loza MJ, McCall CE, Li L, Isaacs WB, Xu J, Chang BL. Assembly of inflammation-
related genes for pathway-focused genetic analysis. PLoS ONE
2007;2(10):e1035.

[27] Reeves WC, Jones JF, Maloney E, Heim C, Hoaglin DC, Boneva RS, et al.
Prevalence of chronic fatigue syndrome in metropolitan, urban, and rural
Georgia. Popul. Health Metr. 2007;5:5.

[28] Hardenbol P, Yu F, Belmont J, Mackenzie J, Bruckner C, Brundage T, et al. Highly
multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs
genotyped in a single tube assay. Genome Res. 2005;15:269–75.

[29] Karlin-Neumann G, Sedova M, Falkowski M, Wang Z, Lin S, Jain M. Application
of quantum dots to multicolor microarray experiments: four-color genotyping.
Methods Mol. Biol. 2007;374:239–51.
[30] Saccone SF, Bolze R, Thomas P, Quan J, Mehta G, Deelman E, et al. SPOT: a web-
based tool for using biological databases to prioritize SNPs after a genome-
wide association study, Nucleic Acids Res. 38 (Web Server issue) (2010)
W201–W209.

[31] Xu Z, Taylor JA. SNPinfo: integrating GWAS and candidate gene information
into functional SNP selection for genetic association studies, Nucleic Acids Res.
37 (Web Server issue) (2009) W600–W605.

[32] Wagner D, Nisenbaum R, Heim C, Jones JF, Unger ER, Reeves WC. Psychometric
properties of the CDC Symptom Inventory for assessment of chronic fatigue
syndrome. Popul. Health Metr. 2005;3:8.

[33] Geller RD, Giclas PC. Chronic fatigue syndrome and complement activation.
BMJ Case Rep. 2009;2009. bcr08.2008.0819.

[34] Schutzer SE, Angel TE, Liu T, Schepmoes AA, Clauss TR, Adkins JN, et al. Distinct
cerebrospinal fluid proteomes differentiate post-treatment lyme disease from
chronic fatigue syndrome. PLoS ONE 2011;6:e17287.

[35] Markiewski MM, Lambris JD. The role of complement in inflammatory diseases
from behind the scenes into the spotlight. Am. J. Pathol. 2007;171:715–27.

[36] Lolis E, Bucala R. Therapeutic approaches to innate immunity: severe sepsis
and septic shock. Nat. Rev. Drug Discov. 2003;2:635–45.

[37] Ding X, Patel M, Chan CC. Molecular pathology of age-related macular
degeneration. Prog. Retin. Eye Res. 2009;28:1–18.

[38] Despriet DD, Klaver CC, Witteman JC, Bergen AA, Kardys I, de Maat MP, et al.
Complement factor H polymorphism, complement activators, and risk of age-
related macular degeneration. JAMA 2006;296:301–9.

[39] Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, et al. Variation in
factor B (BF) and complement component 2 (C2) genes is associated with age-
related macular degeneration. Nat. Genet. 2006;38:458–62.

[40] Smailhodzic D, Klaver CC, Klevering BJ, Boon CJ, Groenewoud JM, Kirchhof B,
et al. Risk alleles in CFH and ARMS2 are independently associated with
systemic complement activation in age-related macular degeneration.
Ophthalmology 2012;119:339–46.

[41] Ishida T, Ueda R. Immunopathogenesis of lymphoma: focus on CCR4. Cancer
Sci. 2011;102:44–50.

[42] Ge B, Gurd S, Gaudin T, Dore C, Lepage P, Harmsen E, et al. Survey of allelic
expression using EST mining. Genome Res. 2005;15:1584–91.

[43] Bossu P, Ciaramella A, Salani F, Vanni D, Palladino I, Caltagirone C, et al.
Interleukin-18, from neuroinflammation to Alzheimer’s disease. Curr. Pharm.
Des. 2010;16:4213–24.

[44] Chattergoon MA, Levine JS, Latanich R, Osburn WO, Thomas DL, Cox AL. High
plasma interleukin-18 levels mark the acute phase of hepatitis C virus
infection. J. Infect. Dis. 2011;204:1730–40.

[45] Gregg C, Zhang J, Butler JE, Haig D, Dulac C. Sex-specific parent-of-origin allelic
expression in the mouse brain. Science 2010;329:682–5.

[46] Torpy DJ, Bachmann AW, Gartside M, Grice JE, Harris JM, Clifton P, et al.
Association between chronic fatigue syndrome and the corticosteroid-binding
globulin gene ALA SER224 polymorphism. Endocr. Res. 2004;30:417–29.

[47] Verploegen S, Ulfman L, van Deutekom HW, van AC, Honing H, Lammers JW,
et al. Characterization of the role of CaMKI-like kinase (CKLiK) in human
granulocyte function. Blood 2005;106:1076–83.

[48] Hong EP, Park JW. Sample size and statistical power calculation in genetic
association studies. Genomics Inform 2012;10:117–22.

http://refhub.elsevier.com/S0198-8859(15)00180-9/h0060
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0060
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0060
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0065
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0065
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0065
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0070
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0070
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0070
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0075
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0075
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0075
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0080
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0080
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0085
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0085
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0090
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0090
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0090
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0095
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0095
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0095
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0100
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0100
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0105
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0105
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0110
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0110
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0110
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0110
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0115
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0115
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0115
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0115
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0120
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0120
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0125
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0125
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0125
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0130
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0130
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0130
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0135
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0135
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0135
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0140
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0140
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0140
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0145
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0145
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0145
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0160
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0160
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0160
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0165
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0165
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0170
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0170
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0170
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0175
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0175
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0180
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0180
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0185
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0185
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0190
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0190
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0190
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0195
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0195
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0195
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0200
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0200
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0200
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0200
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0205
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0205
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0210
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0210
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0215
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0215
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0215
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0220
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0220
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0220
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0225
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0225
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0230
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0230
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0230
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0235
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0235
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0235
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0240
http://refhub.elsevier.com/S0198-8859(15)00180-9/h0240

	Pathway-focused genetic evaluation of immune and inflammation related genes with chronic fatigue syndrome
	1 Introduction
	2 Materials and methods
	2.1 Subjects
	2.2 Highly multiplex Affymetrix targeted genotyping
	2.3 Genotyping by pyrosequencing
	2.4 Data analysis and bioinformatics

	3 Results
	3.1 Demographics of participants included in this analysis
	3.2 Potentially functional SNPs associated with CFS
	3.3 C2/CFB and CFH alleles and haplotypes associated with CFS
	3.4 SNPs associated with quantitative measures of CFS

	4 Discussion
	Author contribution
	Conflict of interest
	Acknowledgements
	Appendix A Supplementary data
	References


