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This paper describes the measurement of contact pressure in the context of wheel–terrain

interaction as affected by wheel load and tire inflation pressure when fusion of the wavelet

transform with the back-propagation (BP) neural network is applied to construct the wave-

let neural network contact pressure prediction model. To this aim, a controlled soil bin test-

ing facility equipped with single-wheel tester was utilized while three levels of velocity,

three levels of slippage and three levels of wheel load were applied. Using image processing

technique, contact area values were determined which were subsequently used for quan-

tification of contact pressure. Performances of the different predictor models incorporated

of various mother wavelets were evaluated using standard statistical evaluation criteria.

Root mean square error and coefficient of determination values of 0.1382 and 0.9864

achieved by the optimal wavelet neural network are better than that of BP neural network.

The proposed tool typifies a high learning speed, enhanced predicting accuracy, and strong

robustness.

� 2014 China Agricultural University. Production and hosting by Elsevier B.V. All rights

reserved.
1. Introduction

The increasing global demand for food owing to the growing

population rate makes the adoption of mechanized agricul-

ture an unavoidable step in farming procedures. Multiple tra-

versing of agricultural wheeled vehicles in order to perform
various processes along with the augmented size of the perti-

nent vehicles has put added stresses on the soil beneath the

traversing tire. The interaction between the wheel and soil

drastically influences the soil physical characteristics

thorough contact pressure which forms the unwanted soil

compaction. The disadvantages of the soil compaction have

already been covered in the literature frequently [1,2]. Contact

area plays a strong role in the determination of the contact

pressure and thus in the formation of soil compaction [2]. In

Ref. [3], the effect of soil structure and physical properties

was reported to be effective on determination of contact pres-

sure, however, on non-compacted soil, peak pressures are

equal to that of the inflation pressure. In [4], dynamic load

and inflation pressure effects on contact pressures of a tire

were evaluated on a firm clay soil. As an index of induced

pressure at soil–tire interface, vertical stress propagation in

a soil profile was performed as affected by tire size, inflation

pressure and wheel load [5]. For instance, soil stress at topsoil
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Table 1 – Summary of experiment conducted.
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part, as a direct function of contact pressure, was assessed

under the effect of wheel load and tire inflation pressure with

the wheel loads of 11, 15 and 33 kN at inflation pressures of

70, 100 and 150 kPa [6]. Although the attempts on determina-

tion of contact pressure have both been performed experi-

mentally and analytically, the resultant data should be

processed for developing a model that has the considerable

capability to be applied with satisfactory accuracy. Due to

the stochastic nature of machine dynamics and nonlinear

behavior of soil, the soil–wheel interaction is considered a

highly complex and sophisticated problem to be modeled

and therefore, diverse methodologies of artificial intelligence

are advised [7–9].

As far as our literature review is concerned, there is no

study dedicated to the prognostication of the wheel–soil con-

tact pressure by employing wavelet neural network. Further-

more, the experimental dataset are obtained from series of

tests in controlled soil bin facility environment. The hypothe-

ses below are outlined in the present study as following.

i. Wheel load, velocity and slippage, as tire parameters,

affect the contact area and thus contact pressure.

ii. Artificial neural network and wavelet neural network,

as stochastic modeling tools, are suitable candidates

to perform the modeling of contact pressure of driven

wheel under the effect of input parameters.

2. Materials and methods

A soil bin facility was used due to provision of a controlled

condition for carrying out the experiments. A single-wheel

tester was used in the soil bin facility. The holistic system

consists of the bin frame which accommodates the other

components added with the soil mass. A 220/65R21 driven tire

is situated in a U-shaped chassis that is connected to the

L-shaped frame through four horizontal arms. This configura-

tion improves the dynamic stability of the wheel while

traversing. The wheel tester is attached to the carriage as a

significant part in the soil bin facilities. The carriage is

powered for pulling the single-wheel by an electromotor with
Fig. 1 – The general soil bin facility used for the

experiments.
the power of 22 kW at the nominal rotational speed of

1457 rpm was applied. Furthermore, a SV 220IS5-2 NO, 380 V

model of LG inverter (brand LS) for rotational speed of the

engine was applied that gave speed control for the carriage

with application of chain system. An induction motor of

5 kW, 3-phase, 1430 sync rev/min was applied to provide driv-

ing power for the wheel. The difference between the velocity

imposed to the single-wheel tester and the carriage velocity

denoted various and desired slippage levels. The load cell

was vertically positioned between the wheel U-shaped chas-

sis and L-shaped frame in a series with a power bolt. Rotation

of the power bolt applied the desired wheel load and the load

cell transmitted data to a separated Bongshin digital indicator

BS722 model connected to a data logger thorough a RS232

port where data were simultaneously stored in a laptop com-

puter. In this study, a clay loam soil texture was selected as

the predominant soil type of test location, Urmia city, Iran.

General soil bin system is depicted in Fig. 1 where the exper-

iment framework and soil constituent properties are detailed

in Table 1 and Table 2, respectively.

A new method was performed to calculate contact pres-

sure in this study by application of image processing method.

A white color powder was used at soil–tire interface for each

treatment and the images were taken simultaneously. A Pan-

asonic LUMIX DMC TZ25 camera was used for this purpose at

a constant distance while a 4 · 4 cm index was used for cali-

bration. The images were taken in RGB environment where

illumination is combined with color that a small change in

color space could change the color of image remarkably.

Therefore, it is necessary to use a space that color and illumi-

nation are separated. Using s (saturation) component in HSV

color space and b component in LAB space, a preferred sepa-

ration of tire track and background was achieved. First, the

components were normalized in the range between 0 and 1.

For improving the separation, the Gamma transform was

applied as following.

x1 ¼ ðsþ vÞ ð1Þ
Table 2 – Soil constituents and its measured
properties.

Item Value

Sand (%) 34.3
Silt (%) 22.2
Clay (%) 43.5
Bulk density (kg/m3) 2360
Frictional angle (�) 32
Cone index (kPa) 700

Independent parameters Dependent
ParameterWheel load

(kN)
Slippage
(%)

Velocity
(m/s)

2 8 0.8
3 12 1
4 15 1.2 Contact pressure (kPa)



Fig. 2 – The taken to processed images during the various steps from RGB space to binary image.
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x2 ¼ xa
1 ð2Þ

where a = 2 was found as an optimal degree for separations.

Furthermore, dilation was performed with structural ele-

ments equivalent to ball. Otsu method was applied to achieve

the desired thresholding level and the binary images were

obtained. Structural element closing was also used for dele-

tion of noise effects on the images. Subsequently, connected

components which had pixels lower than a definite level were

removed and the connected region was filled. A sample of the

taken and processed images is shown in Fig. 2. Wheel load at

each treatment divided by contact area, yielded the corre-

sponding contact pressure value.

3. Modeling phase

3.1. Artificial neural network

Artificial neural network (ANN) has been encouraged from the

inception that human brain computes similar to a highly

complex and nonlinear computer [10]. ANN is a technology

that is rooted in diverse contexts of pattern recognition, sig-

nal processing, machine learning, and data clustering that

has recently found attractiveness in soil–wheel interaction

domain [11–13]. An ANN operates by making interconnec-

tions between processing elements, each of which are

demonstrative of a single neuron in a biological nervous sys-

tem. The procedure is that a typical neuron accommodates as

various input signals and subsequently forms an individual

output that is transmitted as input to another neuron. The

neurons are tightly interconnected and organized into differ-

ent layers. In the input layer, neurons as many as input

parameters are formed and the output layer is formed by neu-

rons as many as output parameters. Depending on the size of
data and requirement of ANN implementation, one or more

hidden layers with varying neurons are sandwiched between

the input and output layers. Where neurons receive random

weights at initiation of ANN development, back-propagation

works as an optimization tool and data are subsequently feed

forward again. This would recur to reach the adjusted value of

error goal or predefined number of iterations (epochs). This

type is normally used for cognitive exploration and for sto-

chastic-problem-solving applications.

A total of 27 dataset were obtained from three levels of

wheel load, three levels of velocity and three levels of slip-

page. Data were split into three shares of training, validation

and testing with 60%, 10% and 30%, respectively. Data were

normalized and scaled in the range of between �1 and 1 to

make sure that each input variable has the equal impact on

the ANN model. Number of hidden layers and neurons in

each hidden layer of ANN is structured based on the size of

data and complexity of the problem. Hence, one hidden layer

with varying number of neurons in the hidden layer was

employed. Among transfer functions, sigmoid transfer func-

tion was applied in the hidden layer to be in compliance with

the normalization range. This results in the certainty that

each input variable provides an equal contribution in the

ANN. Levenberg–Marquardt training algorithm as the first

choice in ANN implementations was selected in the modeling

trials.
3.2. Wavelet neural network

Wavelets are a category of functions used to localize a definite

function in both position and scaling. Wavelet is also a signif-

icant step of the Fourier Transform. Wavelet neural network

(WNN) combines the concepts of wavelet and neural network



Fig. 3 – An example of a Mexican hat wavelet function.
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theories. A WNN is a feed-forward neural network with a sin-

gle hidden layer with orthonormal wavelet type transfer func-

tions. For a function estimation purpose, WNN is trained to

learn the composition of the objective function. Wavelet func-

tions for the transfer function are selected from the mother

wavelet functions. While there are J wavelet neurons in the

hidden layer, the output as a weighted sum of the wavelet

neuron outputs is presented as following.

yðuÞ ¼
XJ

i¼1

xiwki ti
ðuÞ þ �y ð3Þ

where the parameters t and k are translation and dilation of

the mother wavelet w, respectively, and J is the number of

wavelet neurons in the hidden layer. Furthermore, x is the

corresponding weight of the wavelet neuron, while �y is a sub-

stitution for the scaling function. In WNN hidden layer, the

neurons are with transfer functions from mother wavelet

functions. Hence, Mexican hat, Battle–Lémaire Scaling, and

Haar wavelet functions were replaced instead of the sigmoid
Fig. 4 – The variations of RMSE with respect to number of neu
transfer functions of ANN to conjunct WNN. As an example, a

Mexican hat wavelet function is defined in Eq. (4) and

depicted in Fig. 3.

wðtÞ ¼ ð1� t2Þe�1
2t2
; t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð4Þ

In modeling disciplines, it is essential to assess the quality

of the trained model. Among diversity of statistical perfor-

mance parameters, the root mean square error (RMSE) and

coefficient of determination (R2) were selected as the perfor-

mance criteria to evaluate the accuracy of the developed

models as following.

RMSE ¼ 1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðYpredicted � YactualÞ2

q
: ð5Þ

R2 ¼
Pn

i¼1ðYpredicted � YactualÞ2Pn
i¼1ðYpredicted � YmeanÞ2

ð6Þ

where Yactual and Ypredicted are measured and predicted values

by the developed models, respectively, and n is the number

of dataset.
rons in the hidden layer for two cases of ANN and WNN.



Fig. 5 – The scatterplots for (a) training and (b) testing shares

of WNN at optimal configuration.
Fig. 6 – The scatterplots for (a) training and (b) testing shares

of ANN at optimal configuration.

Fig. 7 – The mapping of experimental and simulated values

for (a) WNN algorithm and (b) ANN.
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4. Results and discussion

The initial tests were performed to determine the best mother

wavelet function among Mexican hat, Battle–Lémaire Scaling,

and Haar wavelet functions. For a feed-forward with back

propagation algorithm neural network with one hidden layer,

the wavelons (wavelet neurons) were used where the above-

mentioned wavelet functions were replaced by sigmoid acti-

vation functions. Due to superior performance of Mexican

hat wavelet function when compared to the other tested

functions, Mexican hat wavelet function was applied in the

implementations. The milestone, however, was to assess

the accuracy potential of WNN over ANN technique. Hence,

in one hidden layer, number of neurons varied between 1

and 10 for both WNN and ANN algorithms (Fig. 4). It is appre-

ciated from Fig. 4 that increased number on neurons in the

hidden layer caused the reduction of modeling error for both

WNN and ANN, although further reduction is observed for

WNN than that of ANN. The lowest RMSE value was observed

for WNN at 9 neurons with 0.1382. The scatterplots for

training and testing shares of WNN at optimal configuration

are illustrated in Fig. 5. Similarly, the scatterplots for training

and testing shares of ANN with feed-forward BP algorithm at

optimal configuration are illustrated in Fig. 6. The closeness of

scattered data around unity slope line is the indication of

higher accuracy. Therefore, it can be seen that WNN has

further capability in prognosticating the contact pressure

than that of ANN. The closer mapping of experimental and
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simulated values for WNN algorithm in comparison with

ANN also approves the aforementioned aspects in concern

with the supremacy of WNN (Fig. 7).

5. Concluding remarks

Wavelet concept was hybridized with artificial neural network

theory to predict contact pressure of driven wheel at soil–tire

interface. Experimental data were obtained from series of

tests in a soil bin facility utilizing a single-wheel tester device.

Data were under the effect of wheel load at three levels of 2, 3

and 4 kN, slippage at three levels of 8%, 10% and 15%, and

velocity at three levels of 0.8, 1 and 1.2 m/s. Image processing

technique was also employed to determine contact area as

affected by the combination of input parameters forming a

total of 21 experiments. Ordinary ANNs with varying number

of neurons in the hidden layer were developed and compared

to WNN with Mexican hat, Battle–Lémaire Scaling, and Haar

wavelet functions. It was found that root mean square error

and coefficient of determination values of 0.1382 and 0.9864

achieved by the optimal wavelet neural network are better

than that of BP neural network. The proposed model typifies

a high learning speed, enhanced predicting accuracy, and

strong robustness.
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