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Effect sizes are the most important outcome of empirical studies. Most articles on effect
sizes highlight their importance to communicate the practical significance of results. For
scientists themselves, effect sizes are most useful because they facilitate cumulative
science. Effect sizes can be used to determine the sample size for follow-up studies,
or examining effects across studies. This article aims to provide a practical primer on
how to calculate and report effect sizes for t-tests and ANOVA’s such that effect sizes
can be used in a-priori power analyses and meta-analyses. Whereas many articles about
effect sizes focus on between-subjects designs and address within-subjects designs only
briefly, I provide a detailed overview of the similarities and differences between within-
and between-subjects designs. I suggest that some research questions in experimental
psychology examine inherently intra-individual effects, which makes effect sizes that
incorporate the correlation between measures the best summary of the results. Finally, a
supplementary spreadsheet is provided to make it as easy as possible for researchers to
incorporate effect size calculations into their workflow.
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Effect sizes are the most important outcome of empirical studies.
Researchers want to know whether an intervention or experi-
mental manipulation has an effect greater than zero, or (when
it is obvious an effect exists) how big the effect is. Researchers
are often reminded to report effect sizes, because they are use-
ful for three reasons. First, they allow researchers to present the
magnitude of the reported effects in a standardized metric which
can be understood regardless of the scale that was used to mea-
sure the dependent variable. Such standardized effect sizes allow
researchers to communicate the practical significance of their
results (what are the practical consequences of the findings for
daily life), instead of only reporting the statistical significance
(how likely is the pattern of results observed in an experiment,
given the assumption that there is no effect in the population).
Second, effect sizes allow researchers to draw meta-analytic con-
clusions by comparing standardized effect sizes across studies.
Third, effect sizes from previous studies can be used when plan-
ning a new study. An a-priori power analysis can provide an
indication of the average sample size a study needs to observe a
statistically significant result with a desired likelihood.

The aim of this article is to explain how to calculate and
report effect sizes for differences between means in between and
within-subjects designs in a way that the reported results facilitate
cumulative science. There are some reasons to assume that many
researchers can improve their understanding of effect sizes. For
example, researchers predominantly report the effect size partial
eta squared (η2

p), which is provided by statistical software pack-

ages such as SPSS. The fact that η2
p is often reported for One-Way

ANOVAs (where partial eta squared equals eta squared), indicates

that researchers are either very passionate about unnecessary sub-
script letters, or rely too much on the effect sizes as they are
provided by statistical software packages.

This practical primer should be seen as a complementary
resource for psychologists who want to learn more about effect
sizes (for excellent books that discuss this topic in more detail,
see Cohen, 1988; Maxwell and Delaney, 2004; Grissom and Kim,
2005; Thompson, 2006; Aberson, 2010; Ellis, 2010; Cumming,
2012; Murphy et al., 2012). A supplementary spreadsheet is pro-
vided to facilitate effect size calculations. Reporting standardized
effect sizes for mean differences requires that researchers make a
choice about the standardizer of the mean difference, or a choice
about how to calculate the proportion of variance explained by an
effect. In this article, these choices will be highlighted for Cohen’s
d and eta squared (η2), two of the most widely used effect sizes
in psychological research, with a special focus on the difference
between within and between-subjects designs. I point out some
caveats for researchers who want to perform power-analyses for
within-subjects designs, and provide recommendations regarding
the effect sizes that should be reported.

Knowledge about the expected size of an effect is important
information when planning a study. Researchers typically rely
on null hypothesis significance tests to draw conclusions about
observed differences between groups of observations. The prob-
ability of correctly rejecting the null hypothesis is known as the
power of a statistical test (Cohen, 1988). Statistical power depends
on the sample size of the study (through its influence on the reli-
ability of the sample values, and specifically the extent to which
sample values can be expected to be an approximation of the
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population values), the size of the effect, and the significance cri-
terion (typically α = 0.05). If three are known (or estimated), the
fourth parameter can be calculated. In an a-priori power analysis,
researchers calculate the sample size needed to observe an effect of
a specific size, with a pre-determined significance criterion, and a
desired statistical power.

A generally accepted minimum level of power is 0.80 (Cohen,
1988). This minimum is based on the idea that with a signifi-
cance criterion of 0.05 the ratio of a Type 2 error (1-power) to
a Type 1 error is 0.20/.05, so concluding there is an effect when
there is no effect in the population is considered four times as
serious as concluding there is no effect when there is an effect in
the population. Some researchers have argued that Type 2 errors
can potentially have much more serious consequences than Type
1 errors, however (Fiedler et al., 2012). Thus, although a power
of 0.80 is the recommended minimum, higher power (e.g., 0.95)
is more desirable, as long as it is practically feasible. Effect size
estimates have their own confidence intervals [for calculations
for Cohen’s d, see Cumming (2012), for F-tests, see Smithson
(2001)], which are often very large in experimental psychology.
Therefore, researchers should realize that the confidence interval
around a sample size estimate derived from a power analysis is
often also very large, and might not provide a very accurate basis
to determine the sample size of a future study. Meta-analyses can
provide more accurate effect size estimates for power analyses,
and correctly reporting effect size estimates can facilitate future
meta-analyses [although due to publication bias, meta-analyses
might still overestimate the true effect size, see Brand et al. (2008);
Bakker et al. (2012)].

STATISTICAL SIGNIFICANCE AND GENERALIZABILITY OF
EFFECT SIZE ESTIMATES
Consider two sets of observations with M1 = 7.7, SD1 = 0.95,
and M2 = 8.7, SD2 = 0.82. Depending on whether the data were
collected in a between or within-subjects design, the effect size
partial eta squared (η2

p) for the difference between these two
observations (for details, see the illustrative example below) is
either 0.26 or 0.71, respectively. Given that the mean difference is
the same (i.e., 1) regardless of the design, which of these two effect
sizes is the “true” effect size? There are two diverging answers to
this question. One viewpoint focusses on the generalizability of
the effect size estimate across designs, while the other viewpoint
focusses on the statistical significance of the difference between
the means. I will briefly discuss these two viewpoints.

As Maxwell and Delaney (2004, p. 548) remark: “a major goal
of developing effect size measures is to provide a standard met-
ric that meta-analysts and others can interpret across studies that
vary in their dependent variables as well as types of designs.”
This first viewpoint, which I will refer to as the generalizable effect
size estimate viewpoint, assumes that it does not matter whether
you use a within-subjects design or a between-subjects design.
Although you can exclude individual variation in the statisti-
cal test if you use a pre- and post-measure, and the statistical
power of a test will often substantially increase, the effect size
(e.g., η2

p) should not differ depending on the design that was used.
Therefore, many researchers regard effect sizes in within-subjects
designs as an overestimation of the “true” effect size (e.g., Dunlap

et al., 1996; Olejnik and Algina, 2003; Maxwell and Delaney,
2004).

A second perspective, which I will refer to as the statistical
significance viewpoint, focusses on the statistical test of a pre-
dicted effect, and regards individual differences as irrelevant for
the hypothesis that is examined. The goal is to provide statis-
tical support for the hypothesis, and being able to differentiate
between variance that is due to individual differences and vari-
ance that is due to the manipulation increases the power of the
study. Researchers advocating the statistical significance view-
point regard the different effect sizes (e.g., η2

p) in a within- com-
pared to between-subjects design as a benefit of a more powerful
design. The focus on the outcome of the statistical test in this
perspective can be illustrated by the use of confidence inter-
vals. As first discussed by Loftus and Masson (1994), the use
of traditional formulas for confidence intervals (developed for
between-subjects designs) can result in a marked discrepancy
between the statistical summary of the results and the error bars
used to visualize the differences between observations. To resolve
this inconsistency, Loftus and Masson (1994, p. 481) suggest
that: “Given the irrelevance of intersubject variance in a within-
subjects design, it can legitimately be ignored for purposes of
statistical analysis.”

To summarize, researchers either focus on generalizable effect
size estimates, and try to develop effect size measures that are
independent from the research design, or researchers focus on
the statistical significance, and prefer effect sizes (and confidence
intervals) to reflect the conclusions drawn by the statistical test.
Although these two viewpoints are not mutually exclusive, they
do determine some of the practical choices researchers make
when reporting their results. Regardless of whether researchers
focus on statistical significance or generalizability of measure-
ments, cumulative science will benefit if researchers determine
their sample size a-priori, and report effect sizes when they share
their results. In the following sections, I will discuss how effect
sizes to describe the differences between means are calculated,
with a special focus on the similarities and differences in within
and between-subjects designs, followed by an illustrative example.

DIFFERENCES AND SIMILARITIES BETWEEN EFFECT SIZES
As Poincaré (1952, p. 34) has said: “mathematics is the art of
giving the same name to different things.” Unfortunately, in
the domain of effect size calculations statisticians have failed
Poincare. Effect sizes have either different names although they
are basically the same entity (such as referring to r2 as η2), or they
have received the same name, despite being calculated in different
ways (such as referring to an effect size as Cohen’s d, regardless of
the way it is calculated). Effect sizes can be grouped in two fam-
ilies (Rosenthal, 1994): The d family (consisting of standardized
mean differences) and the r family (measures of strength of asso-
ciation). Conceptually, the d family effect sizes are based on the
difference between observations, divided by the standard devia-
tion of these observations. The r family effect sizes describe the
proportion of variance that is explained by group membership
[e.g., a correlation (r) of 0.5 indicates 25% (r2) of the variance
is explained by the difference between groups]. These effect sizes
are calculated from the sum of squares (the difference between
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individual observations and the mean for the group, squared, and
summed) for the effect divided by the sums of squares for other
factors in the design.

A further differentiation between effect sizes is whether they
correct for bias or not (e.g., Thompson, 2007). Population effect
sizes are almost always estimated on the basis of samples, and all
population effect size estimates based on sample averages overes-
timate the true population effect (for a more detailed explanation,
see Thompson, 2006). Therefore, corrections for bias are used
(even though these corrections do not always lead to a completely
unbiased effect size estimate). In the d family of effect sizes, the
correction for Cohen’s d is known as Hedges’ g, and in the r fam-
ily of effect sizes, the correction for eta squared (η2) is known as
omega squared (ω2). These effects sizes will be discussed in more
detail in the following paragraphs.

COHEN’S d IN BETWEEN-SUBJECTS DESIGNS
Cohen’s d is used to describe the standardized mean difference of
an effect. This value can be used to compare effects across stud-
ies, even when the dependent variables are measured in different
ways, for example when one study uses 7-point scales to measure
dependent variables, while the other study uses 9-point scales,
or even when completely different measures are used, such as
when one study uses self-report measures, and another study used
physiological measurements. It ranges from 0 to infinity. Cohen
(1988) uses subscripts to distinguish between different versions
of Cohen’s d, a practice I will follow because it prevents confu-
sion (without any subscript, Cohen’s d denotes the entire family
of effect sizes). Cohen refers to the standardized mean difference
between two groups of independent observations for the sample
as ds which is given by:

ds = X1 − X2√
(n1 − 1)SD2

1 + (n2 − 1)SD2
2

n1 + n2 − 2

(1)

In this formula, the numerator is the difference between means of
the two groups of observations. The denominator is the pooled
standard deviation. Remember that the standard deviation is cal-
culated from the differences between each individual observation
and the mean for the group. These differences are squared to pre-
vent the positive and negative values from cancelling each other
out, and summed (also referred to as the sum of squares). This
value is divided by the number of observations minus one, which
is Bessel’s correction for bias in the estimation of the population
variance, and finally the square root is taken. This correction for
bias in the sample estimate of the population variance is based on
the least squares estimator (see McGrath and Meyer, 2006). Note
that Cohen’s ds is sometimes referred to as Cohen’s g, which can
be confusing. Cohen’s ds for between-subjects designs is directly
related to a t-test, and can be calculated by:

ds = t

√
1

n1
+ 1

n2
(2)

If only the total sample size is known, Cohen’s ds ≈ 2 × t/
√

N.
Statistical significance is typically expressed in terms of the height

of t-values for specific sample sizes (but could also be expressed
in terms of whether the 95% confidence interval around Cohen’s
ds includes 0 or not), whereas Cohen’s ds is typically used in an a-
priori power analysis for between-subjects designs (even though a
power analysis could also be based on the t-value and n per condi-
tion). Formula 2 underlines the direct relation between the effect
size and the statistical significance.

The standardized mean difference can also be calculated with-
out Bessel’s correction, in which case it provides the maximum
likelihood estimate for a sample, as noted by Hedges and Olkin
(1985). The difference between Cohen’s ds and Cohen’s dpop (for
the population) is important to keep in mind when converting
Cohen’s ds to the point biserial correlation rpb (which will simply
be referred to as r in the remainder of this text). Many text-
books provide the formula to convert Cohen’s dpop to r, while
the formula to convert Cohen’s ds to r (which can only be used
for between-subjects designs) is provided by McGrath and Meyer
(2006):

r = ds√
d2

s
+ N2 − 2N

n1n2

(3)

As mentioned earlier, the formula for Cohen’s ds, which is based
on sample averages gives a biased estimate of the population
effect size (Hedges and Olkin, 1985), especially for small sam-
ples (n < 20). Therefore, Cohen’s ds is sometimes referred to as
the uncorrected effect size. The corrected effect size, or Hedges’s g
(which is unbiased, see Cumming, 2012), is:

Hedges′s gs = Cohen′s ds ×
(

1 − 3

4 (n1 + n2) − 9

)
(4)

I use the same subscript letter in Hedges’s g to distinguish dif-
ferent calculations of Cohen’s d. Although the difference between
Hedges’s gs and Cohen’s ds is very small, especially in sample sizes
above 20 (Kline, 2004), it is preferable (and just as easy) to report
Hedges’s gs. There are also bootstrapping procedures to calculate
Cohen’s ds when the data are not normally distributed, which can
provide a less biased point estimate (Kelley, 2005). As long as
researchers report the number of participants in each condition
for a between-subjects comparison and the t-value, Cohen’s d and
Hedges’ g can be calculated. Whenever standard deviations dif-
fer substantially between conditions, Glass’s � should be reported
(see below).

INTERPRETING COHEN’S d
How should researchers interpret this effect size? A commonly
used interpretation is to refer to effect sizes as small (d = 0.2),
medium (d = 0.5), and large (d = 0.8) based on benchmarks
suggested by Cohen (1988). However, these values are arbitrary
and should not be interpreted rigidly (Thompson, 2007). Small
effect sizes can have large consequences, such as an intervention
that leads to a reliable reduction in suicide rates with an effect size
of d = 0.1. The only reason to use these benchmarks is because
findings are extremely novel, and cannot be compared to related
findings in the literature (Cohen, 1988). Cohen’s d in between-
subject designs can be readily interpreted as a percentage of the
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standard deviation, such that a Cohen’s d of 0.5 means the differ-
ence equals half a standard deviation. However, the best way to
interpret Cohen’s d is to relate it to other effects in the literature,
and if possible, explain the practical consequences of the effect.
Regrettably, there are no clear recommendation of how to do so
(Fidler, 2002).

An interesting, though not often used, interpretation of differ-
ences between groups can be provided by the common language
effect size (McGraw and Wong, 1992), also known as the proba-
bility of superiority (Grissom and Kim, 2005), which is a more
intuitively understandable statistic than Cohen’s d or r. It can
be calculated directly from Cohen’s d, converts the effect size
into a percentage, and expresses the probability that a randomly
sampled person from one group will have a higher observed
measurement than a randomly sampled person from the other
group (for between designs) or (for within-designs) the proba-
bility that an individual has a higher value on one measurement
than the other. It is based on the distribution of the difference
scores, with a mean that is estimated from the mean differ-
ences between the samples, and a standard deviation that is the
square root of the sum of the sample variances divided by two.
Mathematically, the common language effect size is the proba-
bility of a Z-score greater than the value that corresponds to a
difference between groups of 0 in a normal distribution curve. Z
can be calculated by:

Z = |X1 − X2|√
SD2

1 + SD2
2

2

(5)

after which the common language effect size is the percentage
associated with the upper tail probability of this value. The sup-
plementary spreadsheet provides an easy way to calculate the
common language effect size.

COHEN’S d IN ONE-SAMPLE OR CORRELATED SAMPLES
COMPARISONS
Conceptually, calculating Cohen’s d for correlated measurements
is the same as calculating Cohen’s d for independent groups,
where the differences between two measurements are divided
by the standard deviation of both groups of measurements.
However, in the case of correlated measurements the dependent
t-test uses the standard deviation of the difference scores. Testing
whether observations from two correlated measurements are sig-
nificantly different from each other using a paired samples t-test is
mathematically identical to testing whether the difference scores
of the correlated measurements is significantly different from 0
using a one-sample t-test. Similarly, calculating the effect size for
the difference between two correlated measurements is similar to
the effect size that is calculated for a one sample t-test. The stan-
dardized mean difference effect size for within-subjects designs is
referred to as Cohen’s dz, where the Z alludes to the fact that the
unit of analysis is no longer X or Y, but their difference, Z, and
can be calculated with:

Cohen′s dz = Mdiff√∑
(Xdiff − Mdiff)

2

N − 1

(6)

where the numerator is the difference between the mean (M) of
the difference scores and the comparison value μ (e.g., 0), and
the denominator is the standard deviation of the difference scores
(Sdiff ). The effect size estimate Cohen’s dz can also be calculated
directly from the t-value and the number of participants using the
formula provided by Rosenthal (1991):

Cohen′s dz = t√
n

(7)

Given the direct relationship between the t-value of a paired-
samples t-test and Cohen’s dz, it will not be surprising that
software that performs power analyses for within-subjects designs
(e.g., G∗Power, (Faul et al., 2009)) relies on Cohen’s dz as input.
To allow researchers to perform an a-priori power analysis, it is
therefore enough to report the t-value and the number of pairs
of observations (or the degrees of freedom, n − 1). Cohen’s dz is
only rarely used in meta-analyses, because researchers often want
to be able to compare effects across within and between-subject
designs. One solution (which is not generally recommended) is
to use Cohen’s drm, where the subscript is used by Morris and
DeShon (2002) to indicate this is the equivalent of Cohen’s d
for repeated measures. Cohen’s drm controls for the correlation
between the two sets of measurements, as explained below.

An alternative formula to calculate the standard deviation of
the difference scores from the standard deviations of both groups
and their correlation is given by Cohen (1988) as:

Sdiff =
√

SD2
1 + SD2

2 − 2 × r × SD1 × SD2 (8)

where r is the correlation between measures, and S is the standard
deviation within each of the two sets of observations. As the cor-
relation between measures increases, the standard deviation of the
difference scores decreases. In experimental psychology, correla-
tions between measures are typically a positive non-zero value.
This has two consequences. First, within-subjects designs typi-
cally have more statistical power than between-subjects designs,
because the standard deviation of the difference scores is smaller
than the standard deviations of the two groups of observations.
Second, under the assumption of equal variances (for unequal
variances, Glass’s � should be calculated, see below), the mean
standardized difference between the two correlated measure-
ments is standardized by a value which is

√
2(1 − r) larger than

the standard deviation for independent observations (see Cohen,
1988), and thus:

Cohen′s drm = Mdiff√
SD2

1 + SD2
2 − 2 × r × SD1 × SD2

× √
2(1 − r)

(9)
When r = 0.5 and the standard deviations in both groups of
measurements are the same, Cohen’s ds from a between-subjects
design and Cohen’s drm from a within-subjects design are identi-
cal, but differences in the standard deviations between the two
groups will introduce differences between the two effect sizes,
which become more pronounced when r approaches 0 or 1.

Another solution to calculate Cohen’s d for within-subjects
designs is to simply use the average standard deviation of both
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repeated measures as a standardizer (which ignores the corre-
lation between the measures). Cumming (2012) refers to this
approach as Cohen’s dav, which is simply:

Cohen′s dav = Mdiff
SD1 + SD2

2

(10)

When the standard deviations of both groups of observations
are equal, Cohen’s dav, and Cohen’s drm are identical, and the
effect size equals Cohen’s ds for the same means and standard
deviations in a between subject design. In general, Cohen’s dav

will be more similar to Cohen’s ds (compared to Cohen’s drm),
except when correlations between measures are low, and the dif-
ference between the standard deviations is large. Cohen’s drm is
always more conservative, but with high correlations between
observations, sometimes unreasonably conservative.

When r is larger than 0.5, Cohen’s dz will be larger than
Cohen’s drm and Cohen’s dav, and when r is smaller than 0.5,
Cohen’s dz will be smaller than Cohen’s drm and Cohen’s dav

(Morris and DeShon, 2002). Dunlap et al. (1996) argue against
reporting Cohen’s dz based on the idea that the correlation
between measures does not change the size of the effect, but
merely makes it more noticeable by reducing the standard error,
and therefore refer to Cohen’s dz as an overestimation of the effect
size. Although Cohen’s dz is rarely reported as an effect size, there
are some situations when I believe it to be perfectly defensible
(see the General Discussion). However, I would in general rec-
ommend to report effect sizes that cannot be calculated from
other information in the article, and that are widely used so that
most readers should understand them. Because Cohen’s dz can
be calculated from the t-value and the n, and is not commonly
used, my general recommendation is to report Cohen’s drm or
Cohen’s dav.

Because Cohen’s drm and Cohen’s dav are based on sample esti-
mates, and these are positively biased, we should apply Hedges’
correction. However, unlike Hedges’s gs, Hedges’s gav Hedges’s grm

are not completely unbiased (Cumming, 2012). After entering the
required information in the supplementary spreadsheet, it recom-
mends either Hedges’s gav or Hedges’s grm based on which of these
two values is most similar to Cohen’s ds in a between subjects
design (in line with the goal to report an effect size estimate that
is comparable across within and between participant designs).

In some designs there are good reasons to believe the manip-
ulation did not only influence the mean between observations,
but also influenced the standard deviation. For example, pre-
and post-measurements in a study that examines an interven-
tion might differ in their standard deviation as a consequence of
the intervention. In such designs, Glass et al. (1981) recommends
to use either the standard deviation of the pre-measurement
as a standardizer (often recommended, and used in the sup-
plementary spreadsheet) or the standard deviation of the post-
measurement. This is referred to as Glass’s � (and subscripts can
be used to indicate whether the pre- or post-measurement stan-
dard deviation was used). These options highlight the importance
of specifying which version of the effect size d is calculated, and
the use of subscript letters might be an efficient way to com-
municate the choices made. Researchers have to choose which

effect size is the best representation of the effect they are inter-
ested in. Table 1 summarizes when different versions of effect size
measures in the d family are used. The common language effect
size can be reported in addition to Cohen’s d to facilitate the
interpretation of the effect size.

ETA-SQUARED IN BETWEEN AND WITHIN-SUBJECTS COMPARISONS
Eta squared η2 (part of the r family of effect sizes, and an exten-
sion of r2 that can be used for more than two sets of observations)
measures the proportion of the variation in Y that is associated
with membership of the different groups defined by X, or the sum
of squares of the effect divided by the total sum of squares:

η2 = SSeffect

SStotal
(11)

An η2 of 0.13 means that 13% of the total variance can be
accounted for by group membership. Although η2 is an efficient
way to compare the sizes of effects within a study (given that every
effect is interpreted in relation to the total variance, all η2 from a
single study sum to 100%), eta squared cannot easily be compared
between studies, because the total variability in a study (SStotal)
depends on the design of a study, and increases when additional
variables are manipulated. Keppel (1991) has recommended par-
tial eta squared (η2

p) to improve the comparability of effect sizes
between studies, which expresses the sum of squares of the effect
in relation to the sum of squares of the effect and the sum of
squares of the error associated with the effect. Partial eta squared
is calculated as:

η2
p = SSeffect

SSeffect + SSerror
(12)

Table 1 | Summary of d family effect sizes, standardizers, and their

recommended use.

ES Standardizer Use

Cohen’s dpop σ (population) Independent groups, use in power
analyses when population σ is
known, σ calculated with n

Cohen’s ds Pooled SD Independent groups, use in power
analyses when population σ is
unknown, σ calculated with n-1

Hedges’ g Pooled SD Independent groups, corrects for
bias in small samples, report for
use in meta-analyses

Glass’s � SD pre
measurement or
control condition

Independent groups, use when
experimental manipulation might
affect the SD

Hedges’ gav (SD1 + SD2)/2 Correlated groups, report for use in
meta-analyses (generally
recommended over Hedges’ grm)

Hedges’ grm SD difference
scores corrected
for correlation

Correlated groups, report for use in
meta-analyses (more conservative
then Hedges’ gav )

Cohen’s dz SD difference
scores

Correlated groups, use in power
analyses
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For designs with fixed factors (manipulated factors, or factors
that exhaust all levels of the independent variable, such as alive
vs. dead), but not for designs with measured factors or covari-
ates, partial eta squared can be computed from the F-value and
its degrees of freedom (e.g., Cohen, 1965):

η2
p = F × df effect

F × df effect + df error
(13)

For example, for an F(1, 38) = 7.21, η2
p = 7.21 × 1/(7.21 × 1 +

38) = 0.16. This relationship between η2
p and F illustrates how η2

p
can be used in power analyses to estimate the desired sample size
for a future experiment, and software programs such as G∗Power
require η2

p as input for this reason. If researchers want to facili-

tate power analyses, they should report η2
p, especially for designs

where not all factors are manipulated.
Users of G∗Power should be aware that the default η2

p for
within designs as used by G∗Power does not correspond to the
η2

p as provided by SPSS. When using η2
p as provided by SPSS to

perform power calculations in G∗Power, one cannot simply use
the default settings of the program. Where SPSS provides a η2

p
that already incorporates the correlation between paired measures
(hence the difference in η2

p for the same two means and standard
deviations depending on whether they come from a between or
within-subjects designs), G∗Power defines η2

p for within-subjects
designs in exactly the same way as for between-subjects designs
(and incorporates the correlations between dependent measures
during the power calculations). A more formal description of
these differences, as well as an explanation how to convert SPSS
η2

p to G∗Power η2
p is provided in the Appendix. The most recent

version of G∗Power (3.1) allows researchers to indicate that they
are directly using an SPSS η2

p in their calculations by selecting a
radio button in an options menu. This option is not the default,
and it is likely that researchers will calculate a wrong sample esti-
mate if they are not aware of the difference between SPSS η2

p and

G∗Power η2
p. When η2

p is used in the remainder of this docu-
ment, the SPSS equivalent that includes the correlation between
dependent measures is meant.

Although η2
p is more useful when the goal is to compare effect

sizes across studies, it is not perfect, because η2
p differs when

the same two means are compared in a within-subjects design
or a between-subjects design. In a within-subjects ANOVA, the
error sum of squares can be calculated around the mean of
each measurement, but also around the mean of each individ-
ual when the measurements are averaged across individuals. This
allows researchers to distinguish variability due to individual dif-
ferences from variability due to the effect in a within-subjects
design, whereas this differentiation is not possible in a between-
subjects design. As a consequence, whenever the two groups
of observations are positively correlated, η2

p will be larger in a
within-subjects design than in a between-subjects design. This is
also the reason a within-subjects ANOVA typically has a higher
statistical power than a between-subjects ANOVA.

Olejnik and Algina (2003) provide further reasons why η2
p

can only be used to compare effects between studies with similar
experimental designs. Differences in the inclusion of covariates

or blocking factors between experimental designs (for exam-
ple, including the gender of participants in the analysis as a
between-subjects factor, which will account for some of the vari-
ance) can influence the size of η2

p. They propose generalized eta

squared (η2
G), which excludes variation from other factors from

the effect size calculation (to make the effect size comparable
with designs in which these factors were not manipulated), but
includes variance due to individual differences (to make the effect
size comparable with between-subjects designs where this indi-
vidual variance cannot be controlled for). When all factors are
manipulated between participants η2

G and η2
p are identical. In

other experimental designs, η2
G can be computed from the out-

put of an ANOVA, and the supplementary spreadsheet allows
researchers to easily calculate η2

G for the most commonly used
experimental designs.

As mentioned before, eta squared is an uncorrected effect size
estimate that estimates the amount of variance explained based
on the sample, and not based on the entire population. Omega
squared (ω2) has been suggested to correct for this bias (Hayes,
1963), even though it is at best a less biased estimate (Winkler and
Hays, 1975). As with Hedges’ correction for Cohen’s d, providing
ω2 instead of η2 is formally correct. However, the difference is
typically small, and the bias decreases as the sample size increases.
In between-subjects designs with fixed factors ω2 and ω2

p can be
calculated through the formulas provided by Olejnik and Algina
(2000) and Bakeman (2005):

ω2 = df effect × (MSeffect − MSerror)

SStotal + MSerror
(14)

ω2
p = df effect × (MSeffect − MSerror)

df effect × MSeffect + (N − df effect) × MSerror
(15)

For within-subjects designs, ω2
p is calculated in the same way as

for between-subjects designs (see above), but ω2 is calculated by:

ω2 = df effect × (MSeffect − MSerror)

SStotal + MSsubjects
(16)

Calculating generalized omega squared (ω2
G) can become rather

complex, depending on the design (see the lists of formulas
provided by Olejnik and Algina, 2003). Given this complexity,
and the relatively small difference between the bias and less biased
estimate, I recommend researchers report η2

G and/or η2
p, at least

until generalized omega-squared is automatically provided by
statistical software packages. For designs where all factors are
manipulated between participants, η2

p and η2
G are identical, so

either effect size can be reported. For within-subjects designs and
mixed designs where all factors are manipulated, η2

p can always
be calculated from the F-value and the degrees of freedom using
formula 13, but η2

G cannot be calculated from the reported results,
and therefore I recommend reporting η2

G for these designs (but
providing η2

p in addition to η2
G would be a courtesy to readers).

The supplementary spreadsheet provides a relatively easy way to
calculateη2

G forcommonlyuseddesigns.Fordesignswithmeasured
factors or covariates, neither η2

p nor η2
G can be calculated from the
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reported results, and thus I recommend reporting both η2
p as η2

G,
where the first can be used in power analyses, and the second can
be used in meta-analyses or interpreted against the benchmarks
provided by Cohen (1988). Table 2 summarizes when different
versions of effect size measures in the r family are used.

Cohen (1988) has provided benchmarks to define small (η2 =
0.01), medium (η2 = 0.06), and large (η2 = 0.14) effects. As
Olejnik and Algina (2003) explain, these benchmarks were devel-
oped for comparisons between unrestricted populations (e.g.,
men vs. women), and using these benchmarks when interpret-
ing the η2

p effect size in designs that include covariates or repeated
measures is not consistent with the considerations upon which
the benchmarks were based. Although η2

G can be compared
against the benchmarks provided by Cohen (1988), this should
only be done as a last resort, and it is preferable to relate the
effect size to other effects in the literature (Thompson, 2007). The
common language effect size can be calculated for contrasts from
the means and standard deviations of the two measurements as
explained for the dependent and independent t-tests above. This
concludes the general summary of how to calculate and report
effect sizes. To highlight some more practical considerations, I
will provide an example in which the same two sets of observa-
tions are analyzed using paired and independent t-tests, as well as
One-way and repeated measures ANOVAs.

AN ILLUSTRATIVE EXAMPLE
In this example, I will address some practical considerations by
analyzing the dataset in Table 3, which contains two sets of obser-
vations. This data will be analyzed in two ways, either as a between
design or as a within design. We will assume that Movie 1 and
Movie 2 are movie evaluations for two different movies on a scale
from 1 (very bad) to 10 (very good). First, let’s consider a situation
where these movie evaluations are collected from two different
groups. An independent t-test would provide t(18) = 2.52, p =
0.022 (note that the supplementary spreadsheet also provides the
outcome of the statistical test). We can calculate Cohen’s ds using:

ds = 8.7 − 7.7√
(10 − 1)0.822 + (10 − 1)0.952

10 + 10 − 2

= 1.13 (17)

We can insert this value in G∗Power to retrieve the estimated
sample size needed to find a statistically significant effect in a

Table 2 | Summary of r family effect sizes and their recommended

use.

ES (Biased) ES (Less Biased) Use

eta squared (μ2) omega squared
(ω2)

Use for comparisons of
effects within a single study

eta squared (μ2
p) omega squared

(ω2
p)

Use in power analyses, and
for comparisons of effect
sizes across studies with the
same experimental design.

Generalized eta
squared (μ2

G )
Generalized
omega squared
(ω2

G )

Use in meta-analyses to
compare across experimental
designs

replication study with α = 0.05, power = 0.95, and an allocation
ratio of participants of 1 between conditions. For a two sided test,
a power analysis indicates that the estimated sample size would
be 44 participants. Finally, remember that a Cohen’s ds of 1.13 is
a point estimate. The 95% confidence interval around this effect
size estimate can be calculated using a bootstrapping procedure
in ESCI (Cumming and Finch, 2005)1, which gives 95% CI [0.16,
2.06]. This indicates that although it might be unlikely that people
like both movies equally well, we hardly have any idea of how large
the difference is. This level of uncertainty should be taken into
account when planning the sample size for a study (for alternative
approaches to power analysis, see Maxwell et al., 2008).

To report the effect size for a future meta-analysis, we should
calculate Hedges’s g = 1.08, which differs slightly from Cohen’s
ds due to the small sample size. To report this study, researchers
could state in the procedure section that: “Twenty partici-
pants evaluated either Movie 1 (n = 10) or Movie 2 (n = 10).
Participants reported higher evaluations of Movie 1 (M = 8.7,
SD = 0.82) than Movie 2 (M = 7.7, SD = 0.95), t(18) = 2.52,
p = 0.022, 95% CI [0.17, 1.83], Hedges’s gs = 1.08.” Note that
we provide all the necessary statistical information (means, stan-
dard deviations, and number of participants in each between-
subjects condition). The 95% confidence interval of the difference
between the means is provided by default by statistical software
packages such as SPSS, but also calculated in the supplementary
spreadsheet. Alternatively, you could communicate the uncer-
tainty in the data by providing the 95% confidence interval
around the effect size estimate which can be calculated with ESCI
(Cumming, 2012). To interpret this effect, we can calculate the
common language effect size, for example by using the supple-
mentary spreadsheet, which indicates the effect size is 0.79. We
can therefore add the following interpretation of the effect size:
“The chance that for a randomly selected pair of individuals the
evaluation of Movie 1 is higher than the evaluation of Movie
2 is 79%.”

Table 3 | Artificial movie evaluations.

Movie 1 Movie 2 Difference

9.00 9.00 0.00

7.00 6.00 1.00

8.00 7.00 1.00

9.00 8.00 1.00

8.00 7.00 1.00

9.00 9.00 0.00

9.00 8.00 1.00

10.00 8.00 2.00

9.00 8.00 1.00

9.00 7.00 2.00

M 8.70 7.70 1.00

SD 0.82 0.95 0.67

1ESCI can be downloaded from http://www.latrobe.edu.au/psy/research/
projects/esci
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Now, let’s consider a situation where the movie evaluations
in Table 3 are collected from the same group of individuals, and
each participant has evaluated both movies. Both observations are
strongly correlated, with r = 0.726. As a consequence, the stan-
dard deviation of the difference scores is much smaller than the
standard deviations of the evaluations of either movie indepen-
dently. A dependent t-test would provide t(9) = 4.74, p = 0.001.
We can calculate Cohen’s dz using formula 6, but here we calculate
the denominator (Sdiff) using formula 8:

Cohen′s dz = 1 − 0√
0.822 + 0.952 − 2 × 0.726 × 0.82 × 0.95

= 1.50 (18)

This is a markedly higher effect size than Cohen’s ds from the
independent t-test. Some research questions can only be exam-
ined within subjects (see the general discussion), but in this
example you might want to be able to compare movie ratings
across movies, irrespective of whether all the people who eval-
uate the movies saw all different movies. Therefore, Hedges’s
grm or Hedges’s gav would provide a more relevant effect size to
describe the effect you are interested in. Hedges’s gav is generally
recommended (and as the supplementary spreadsheet indicates,
also in this specific case), which is 1.08 (note that Hedges’s gav

rounds to the same value as Hedges’s gs in the independent
t-test above).

We can insert Cohen’s dz in G∗Power to perform an a-priori
power analysis to find a statistically significant effect with α =
0.05 and a power of 0.95. For a two sided test the power anal-
ysis would indicate a sample size estimate of 8 participants.
This clearly demonstrates the dramatic increase in power that a
repeated measures design provides if the observations are strongly
correlated. This is also reflected in a smaller 95% confidence
interval for Cohen’s dz [0.42, 1.80] (for calculations, see ESCI,
Cumming and Finch, 2005). To report this study, researchers
could write “Ten participants evaluated both Movie 1 and Movie
2. Participants reported higher evaluations of Movie 1 (M = 8.7,
SD = 0.82) than Movie 2 (M = 7.7, SD = 0.95), t(9) = 4.74, p =
0.001, 95% CI [0.52, 1.48], Hedges’s gav = 1.08.” The 95% con-
fidence interval of the difference is again by default provided by
statistical software packages such as SPSS, as well as provided by
the supplementary spreadsheet. Note that we clearly distinguish
the way Hedges’s g is calculated in this study from the way it was
calculated in the between-subjects analysis by the subscript. To
interpret this result, we can again calculate the common language
effect size. For correlated samples, Z = Mdiff/Sdiff (McGraw and
Wong, 1992), and the percentage associated with the upper tail
probability of this value is 0.93 (see the supplementary spread-
sheet). We can therefore add the interpretation “Controlling
for individual differences in movie evaluations, the likelihood
that people who watch both movies prefer Movie 1 over Movie
2 is 93%.”

Instead of using t-tests, we could have analyzed the data using
an analysis of variance (ANOVA). A One-Way ANOVA that mir-
rors the independent samples t-test will provide F(1, 18) = 6.34,
p = 0.022, and statistical software such as SPSS will provide the

effect size η2
p = 0.26 (which is identical to η2

G in a between sub-
jects ANOVA). This effect size is identical to the Cohen’s ds of 1.13,
as can be seen when we convert Cohen’s ds to r using formula 3:

rpb = 1.13√
1.132+ 202 − 2 × 20

10 × 10

= 0.51 (19)

and since in a One-Way ANOVA r2 = η2
p, 0.512 = 0.26. Inserting

η2
p = 0.26 into G∗Power to perform an a-priori power analysis

for two groups, an α = 0.05, and a power of 0.95 will yield a total
sample size of 40. This sample size estimate differs from the sam-
ple size of 44 that we found for a Cohen’s ds of 1.13. If we would
have used Cohen’s dpop (which is 1.19) the two power analyses
would have provided the same sample size estimate of 40. This
example highlights a curious state of affairs where researchers
(often implicitly) correct for bias in the effect size estimate when
they use Cohen’s dsin power analyses, but they do not correct for
this bias when they use η2

p. To correct for bias ω2
p can be calcu-

lated, and although I recommend reporting η2
p or η2

G for practical

reasons, calculating ω2
p for simple designs is straightforward. In a

One-Way ANOVA with equal sample sizes in each cell, ω2
p can be

calculated through the formula:

ω2
p = 1 × (5 − 0.789)

1 × 5 + (20 − 1) × 0.789
(20)

For the current difference, ω2
p = 0.21, but as explained above,

calculating ω2
p can become quite complex in more elaborate

designs, and therefore I recommend to report η2
p. To report

this analysis, researchers could write in the procedure section
that: “Twenty participants evaluated either Movie 1 (n = 10) or
Movie 2 (n = 10). Participants reported higher evaluations of
Movie 1 (M = 8.7, SD = 0.82) than Movie 2 (M = 7.7, SD =
0.95), F(1, 18) = 6.34, p = 0.022, η2

p = 0.26, 90% CI [0.02, 0.48].”
Whereas in a t-test, we compare two groups, and can there-
fore calculate a confidence interval for the mean difference, we
can perform F-tests for comparisons between more than two
groups. To be able to communicate the uncertainty in the data,
we should still report a confidence interval, but now we report
the confidence interval around the effect size. An excellent expla-
nation of confidence intervals around effect size estimates for
F-tests, which is accompanied by easy to use syntax files for a
range of statistical software packages (including SPSS) is pro-
vided by Smithson (2001) 2. The 90% confidence interval is
reported due to the fact that an F-test is always a one-sided test,
and the 90% confidence interval always excludes 0 when the F-
test is statistically significant, while the 95% confidence interval
does not.

Finally, let’s look at the repeated measures ANOVA that mir-
rors the dependent t-test, which gives F(1, 9) = 22.50, p = 0.001.
Statistical software such as SPSS will provide η2

p = 0.71, and using

the supplementary spreadsheet we find that η2
G = 0.26 (which

2These files can be downloaded from http://dl.dropboxusercontent.com/u/
1857674/CIstuff/CI.html
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is identical to η2
G when analyzing the data as a between-subjects

design). For this simple design, we can again easily calculate ω2
p:

ω2
p = 1 × (5 − 0.222)

1 × 5 + (10 − 1) × 0.222
= 0.68 (21)

We can use η2
p to perform a power analysis. It was already

explained that for within-subjects designs, η2
p from SPSS dif-

fers from η2
p from G∗Power. G∗Power provides two options, “as

in SPSS” and “as in Cohen (1988)—recommended.” The differ-
ence between the two lies in how the non-centrality parameter
(λ) is calculated, which is used in the power calculations. A full
explanation of the non-central t-distribution is beyond the scope
of this article, but for an accessible introduction, see Cumming
(2012). The formula either uses N (Cohen, 1988) or the degrees
of freedom (SPSS). Selecting the “as in SPSS” option will there-
fore always provide a more conservative estimate. If we select the
recommended option “as in Cohen (1988)” G∗Power returns the
estimated sample size of eight participants. Again, readers should
be reminded that power analysis provides a point estimate of the
minimal sample size, and these calculations should be interpreted
while keeping the typical uncertainty about the true effect size in
mind.

To report this analysis, researchers could write: “Participants
reported higher evaluations for Movie 1 (M = 8.7, SD = 0.82)
than Movie 2 (M = 7.7, SD = 0.95), F(1, 9) = 22.50, p = 0.001,
η2

p = 0.71, 90% CI [0.31, 0.82], η2
G = 0.26.” Note that I’ve chosen

to report both partial eta squared (including the 90% confidence
interval, using the scripts provided by Smithson, 2001) as gen-
eralized eta squared. By providing η2

p, researchers can perform

a-priori power analyses, and by providing η2
G, researchers can

easily include the study in a future meta-analysis that compares
effects across different designs (see Olejnik and Algina, 2003).
Providing two effect sizes is in line with the suggestion that
reporting multiple effect sizes can yield a greater understanding
of a specific effect (Preacher and Kelley, 2011).

GENERAL DISCUSSION
The aim of this article was to provide a practical primer on
how to calculate and report effect sizes to facilitate cumulative
science, with a focus on t-tests and ANOVA’s. Current prac-
tices in the way researchers report effect sizes can be improved.
First, researchers should always report effect sizes. When using
effect sizes based on Cohen’s d, researchers should specify which
standardizer is used (for example by using subscripts). When
reporting effect sizes for ANOVAs it is recommended to report
generalized eta squared instead of (or in addition to) partial eta
squared. Finally, effect sizes should be interpreted, preferably by
comparing them to other effects in the literature or through
the common language effect size, instead of using the bench-
marks provided by Cohen (1988). This primer explained which
effect sizes should be reported and provides a supplementary
spreadsheet that researchers can use to easily calculate these effect
sizes.

Correctly reporting effect sizes does not only facilitate meta-
analyses, but also makes it easier for researchers who build on

previous results to perform power analyses. Considering the sta-
tistical power of a test when designing a study is useful for cumu-
lative science. As the sample size increases, sampling bias goes
down (e.g., Borenstein et al., 2011), and therefore high-powered
studies provide better effect size estimates for meta-analyses than
studies with low power. Researchers should keep in mind that
observed effect sizes in a study can differ from the effect size in
the population, and there are reasons to believe overestimations
are common given current publication practices where journals
mainly accept studies that observe statistically significant effects
(Lane and Dunlap, 1978). Early publications of a given finding
tend to overestimate the effect size due to regression to the mean
(Fiedler et al., 2012). For these reasons, it is inadvisable to focus
solely on an a-priori power analysis when the sample size for
a future study is determined (unless a very accurate effect size
estimate is available), and researchers should pay attention to
alternative approaches to plan sample sizes (see Maxwell et al.,
2008).

Because power-analyses are inherently tied to null-hypothesis
significance testing, some researchers are ambivalent about justi-
fying the sample size of a study based on the likelihood to observe
a significant effect. An often heard criticism about null hypothesis
significance tests is that the null hypothesis is never true (Schmidt,
1992; Tabachnick and Fidell, 2001). However, the null hypothesis
is often a good (and sometimes extremely accurate) approxima-
tion (Murphy et al., 2012), and in strictly controlled experiments,
it is possible to make the direction of the difference, instead of the
size of the effect, central to the purpose of the research (Cohen,
1995). On the other hand, one can reasonably argue that even
when researchers are performing a null-hypothesis significance
test, they are in reality testing whether an effect is so small that
it can be considered negligible (for a detailed description of such
minimum-effect tests, see Murphy and Myors, 1999). This in turn
requires that researchers at least implicitly consider only effects
that are large enough to be theoretically interesting.

The current article is limited to effect sizes for standardized
mean differences. Such comparisons are extremely common in
experimental psychology, but hardly cover all possible research
designs. Instead of a complete overview of effect sizes in exper-
imental research (e.g., Grissom and Kim, 2005), I have tried to
provide a practical primer that aims to be an time-efficient but
complete overview of one specific type of research question. I
therefore see the limitation as a strength, and think similar ded-
icated overviews for other types of analyses (e.g., risk ratios,
multi-level modeling) would be very useful for the scientific
community, especially when they are openly accessible. When
possible, future articles about effect size calculations should pro-
vide software or spreadsheets to make it as easy as possible for
researchers to implement these calculations into their workflow.
For excellent examples, see ESCI (Cumming and Finch, 2005),
confidence interval software by Smithson (2001), and G∗Power
(Faul et al., 2009). Note that the easiest way to facilitate cumu-
lative science is to share the data of the studies you report. The
internet makes it incredibly easy to upload data files in order
to share them with the scientific community (for example, see
www.openscienceframework.org). Especially for mixed designs
or analyses with covariates, where calculating ω2

G becomes quite
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complex, sharing the data will always enable researchers who want
to perform a meta-analysis to calculate the effect sizes they need.

A more fundamental question is whether effect sizes from
within-subjects designs that control for intra-subjects variability
(η2

p and ω2
p), or that take the correlation between measurements

into account (Cohen’s dz) are an accurate description of the size
of the effect, or whether effect sizes that do not control for intra-
subjects variability (η2

G and ω2
G), or that control for correlation

between measurements (e.g., Cohen’s drm or Cohen’s dav) are pre-
ferred. I believe this discussion is currently biased by what could
be called designism, a neologism to refer to the implicit belief
that between-subjects designs are the default experimental design,
and that effect sizes calculated from between-subjects designs are
more logical or natural. The defense for designism is as follows.
It is desirable to be able to compare effect sizes across designs,
regardless of whether the observations originate from a within or
between-subjects design. Because it is not possible to control for
individual differences in between-subject designs, we therefore
should consider the effect size that does not control for individual
differences as the natural effect size. As a consequence, effect sizes
that control for individual differences are “inflated” compared to
the “default” (e.g., Dunlap et al., 1996).

Such a reasoning ignores the fact that many effects in psy-
chology are inherently contextual. For example, consider the
investigation of how people slow down in a reaction time task
after they have made an error (post-error slowing; Rabbit, 1966).
Recently, Dutilh et al. (2012) have suggested that the best way to
answer research questions about post-error slowing is to calcu-
late pairwise comparisons around each error, and analyze these
difference scores (against zero, or against the difference score in
other conditions), instead of averaging response times over all
pre-error and post error responses and compare these two aver-
ages in a paired-samples t-test. In other words, the difference
score is the most natural unit of analysis in such research. Because
a between-subjects design is not possible, there will never be a
meta-analysis that compares post-error slowing across between
and within-subjects designs. Because difference scores are the nat-
ural unit of analysis, one could argue that the larger effect sizes are
not inflated, but within-subjects analyses simply reflect a different
research question, examined at a different level of analysis (intra-
individual instead of inter-individual). There are clear parallels
with continuing discussions about measures for the proportion
of variance explained in multilevel modeling, where it is much
more common to assume that repeated measurements of individ-
uals are the default unit of analysis (see Tabachnick and Fidell,
2001).

When empirical questions can only be examined in within-
subjects designs (such as in the case of post-error slowing), effect
sizes that control for intra-subjects variability (η2

p and ω2
p), or that

take the correlation between measurements into account (Cohen’s
dz) are a reasonable statistic to report. This is nicely demonstrated
by the common language effect size (which can be directly calcu-
lated from Cohen’s ds or Cohen’s dz). In the illustrative example
presented earlier in this article, we concluded the chance that for
a randomly selected pair of individuals the evaluation of Movie 1
is higher than the evaluation of Movie 2 is 79% (in the between-
subject experiment), but that the chance that an individual who

sees both movies (in a within-subject experiment) prefers Movie
1 over Movie 2 is 93%. The CL of 93% is not an overestimation,
but an accurate description of the likelihood in correlated samples
where measurements are paired. We can calculate effect sizes for
within-subject designs (e.g., Cohen’s drm and Cohen’s dav) that
are generalizable to between-subjects designs, but if our goal is
to make a statement about whether individuals who watch both
movies will prefer Movie 1 over Movie 2, an effect size that gen-
eralizes to situations where two different groups of people watch
one of the two movies might not provide the best answer to our
question.

Generalization across designs (that include or do not include
blocking factors, for example) can still be desirable. It would be
possible to develop a “within-subjects generalized eta squared”
equivalent that excludes variation due to individual differences
from the denominator (as η2

p) for the effect size calculation, but

includes variation due to manipulated factors (as η2
G), if one

was inclined to make a statement against “designism.” The cur-
rent article highlights that there is no single “true” definition
of an standardized effect size. Researchers need to choose which
effect size provides the best summary of the effect, and specify
which effect size they report (Thompson, 2007; Cumming, 2012).
An efficient way to do so is the use of subscript letters, as used
throughout the current article.

In the end, the choice of an effect size calculation depends on
the research question and the experimental design. It is impor-
tant to explicitly state which effect size is calculated, and to make
a motivated choice about which effect sizes to report. With the
current overview, I hope to have provided a practical primer to
assist researchers in choosing and calculating effect sizes, in the
conviction that making a more informed choice of about which
effect size estimates to report will facilitate cumulative science.
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APPENDIX
The parameter Cohen’s f 2 used in G∗Power differs from the
parameter for Cohen’s f 2 that is used in the statistical software
package SPSS. Since η2

p = f 2/1 + f 2, this also means the val-

ues for η2
p are not interchangeable between SPSS and G∗Power.

As Erdfelder (personal communication) explains, SPSSη2
p can be

converted to G∗Power η2
p by first converting it to f 2

SPSS using:

f 2
SPSS = SPSSη2

p

1 − SPSSη2
p

Then, insert it in the following formula:

f 2
G∗Power = f 2

SPSS × N − k

N
× (m − 1)

m
× (1 − ρ)

where N is the sample size, k is the number of groups, m is the
number of repetitions, and ρ is the (mean) correlation between
the measures, which can finally be converted into partial eta as it
is used in G∗Power:

G∗Powerη2
p = f 2

G∗Power/1 + f 2
G∗Power.
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