SOLVING RAMANUJAN’S SQUARE EQUATION
COMPUTATIONALLY

CURTIS BRIGHT

Srinivasa Ramanujan asked [7] in 1913 if the Diophantine equation
2?4 7=2" (1)

had any positive solutions (z,n) other than (1,3), (3,4), (5,5), (11,7) and (181, 15).
It was first proved by Tryve Nagell [5] in 1948 that these are in fact the only
solutions; see [6] for an English translation. Accordingly, (1) is often referred to as
the Ramanujan-Nagell equation. A summary of its history and related problems is
provided by Edward Cohen [1].

The purpose of this article is to show how the equation may be solved using sim-
ple congruence techniques with the benefit of a computer. The principle underlying
theory required is in the solving of the equation 22 — Dy? = N. The method is
similar to one presented by Maurice Mignotte [2] although he does not apply it to
(1) and uses a another method [3] in its resolution.

The case where n is even is easily solved, since writing n = 2k leads to the
difference of squares

(z+2F)(z — 2%) = -7

Examining the divisors of —7 we conclude that 4+ 2F = 7 and z — 2 = —1, i.e.,
r =3 and 2% = 4, which yields the only solution with n even, (z,n) = (3,4).

The case where n is odd requires more careful analysis. Writing n = 2k + 1 and
making the substitution y = 2* leads to the equation

2 — 2y = T, (2)

so we would like to find all solutions (x,y) to (2) such that y is a power of 2.
The set of solutions (x,y) to equations of the form

> = Dy*=N (3)

(where D > 0 is not a square) have a well-known structure. These equations are
generalizations of the so-called Pell equation

x2*Dy2:15 (4)

which in fact plays an important role in solving the generalized case. Note that if
(Z,9) is a solution of (4) and (x, y) is a solution to (3) then (xZ+yyD, xg+y) is also
a solution to (3). Using this fact, we may partition solutions to (3) into equivalence
classes: we say that (z,y) ~ (2/,y’) if there is some solution (Z,§) to (4) such that
(2',y') = (2@ +yyD, zy + yZ). It may be shown [4] that an equivalent condition is
if xa’ = yy'D (mod |N|) and 2y’ = 2’y (mod |N|). Thus the pigeonhole principle
gives a (generally weak) upper bound of N? classes of solutions to (3), since if two
solutions are congruent modulo N then they belong to the same class. In particular,
we have that every solution to (4) belongs to the same class.
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Define the minimal positive solution of a class of solutions to be the unique
solution (x,y) with the smallest z,y > 0. All solutions to (4) may be generated
from its minimal positive solution, so to determine all solutions to (3) we need only
find the minimal positive solution to (4) and a single solution from each class of
(3). This is exposited in the following theorem, which is noted in [8].

Theorem 1. Let (z,y) be a solution of z? — Dy?> = N and (%,4) be the minimal
positive solution of z? — Dy? = 1. Define the pair of linear recurrence relations:

X, =21 X1 — X
Y; = 25Y; 1 — Y (5)

with initial conditions (Xg,Yy) = (z,y) and (X1,Y1) = (2% + yyD, x§ + yZ). Then
all solutions to 2 — Dy? = N in the class of (x,y) are given by +(X;,Y;) fori € Z.

Note that (X;,Y;) is well-defined for ¢ < 0 since rearranging (5) yields
Xi =22 Xit1 — Xiyo 6
Y, =22Yi1 — Yiqo. ()

Define the fundamental solution of a class of solutions to be the solution (z,y)
with the smallest y > 0, along with > 0 if (x,y) ~ (—z,y). We will be able to
use Theorem 1 if we can compute all fundamental solutions of (3) and the minimal
positive solution of (4); methods for doing this are described in [4, 8] and code for
Maple implementations is included at the end of this article. The minimal positive
solution of (4) may be computed by the “PQa” algorithm; this method uses the
convergents to the continued fraction expansion of v/D. The fundamental solutions
of (3) may often be computed by a brute-force search since general bounds on these
solutions are known; the following were specifically stated in [8].

Theorem 2. Let (z,y) be a fundamental solution of 2> — Dy?> = N and (Z,§) be
the minimal positive solution of z? — Dy? = 1. Then

0 N(z —1)
[IN|
D

Armed with these theorems, we can now find all solutions to (2), i.e., (3) with
D =2, N = —7. We calculate that the minimal positive solution to 2> — 2y% =1
is (3,2) and that the fundamental solutions to 2% — 2y? = —7 are (z,y) = (1,2)
and (u,v) = (—1,2). Using Theorem 1 we can construct the sequence of solutions
(X;,Y;) and (U;, V;). Table 1 shows the small solutions; all solutions to z2 — 2y? =
—7 are given by £(X;,Y;) and +(U;, V;) for i € Z.

Note that (X;,Y;) = (—U—_;, V_;), and since we only want to find solutions (z,y)
to (2) where y is a power of 2, it sufficies to just find when Y; is a power of 2.
Examining Table 1, we see that Y; = 2% for i € {-3,-1,0,1}, with k£ € {7,2, 1,3},
leading to the remaining solutions (z,n) of (1): (181,15), (5,5), (1,3) and (11,7).

Next, we will show that these are in fact the only instances when Y; is a power of
2, and thus completely solve (1). We do this by examining the following sequences:

z1(m) = {2° mod m}$2,

zo(m) = {Y; mod m};2,

IN

< if N > 0;

y
N|(& + 1
y < M@+
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IN

if N <0.
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{ X; Y; U; Vi
—5 | —6149 4348 | —12875 9104
—4 | —1055 746 | —2209 1562
-3 | —181 128 —-379 268
-2 —31 22 —65 46
-1 -5 4 —11 8
0 1 2 -1 2
1 11 8 5 4
2 65 46 31 22
3
4

379 268 181 128
2209 1562 1055 746

5 | 12875 9104 | 6149 4348
TABLE 1. Small solutions to x? — 2y% = —7.

for some suitable m. It is clear from their definition that both z;(m) and zo(m) are
periodic for all m. Given some m, define \; to be the period of z;(m) and p; to be
the pre-period of z;(m). Note that pus = 0 since the periodic portion of zo(m) will
extend backwards by (6). If we can show that

{Qi mod m}f:l:l}\l_l N {Y; mod m}jio_l =0 (7)

then Y; # 2% for all i € Z unless k < y1.

Now all that remains is to find an m which satisfies (7); this is best accomplished
by a computer search. Although I will not go into detail here, rather than checking
each m > 1 individually there are conditions which simplify the search considerably.
In our case, with m = 1966336 = 28 - 7681 we find that

M1 = 8, )\1 = 38407 M2 = 0, )\2 = 256.

There are 3840 residues in {2! mod m}3847 and 256 residues in {Y; mod m}253, but
(7) is satisfied! Since we have already noted all k such that Y; = 2 for k < 8, we
have proved that no other solutions to Ramanujan’s square equation exist.

As a final remark, we note that alterative possibilities for m include 16777472 =
28 - 65537 and 25167872 = 211 - 12289.
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Maple Code 1 Returns the minimal positive solution (z,y) to the Pell equation
2?2 — Dy? = 1 (where D > 0 is not a perfect square) using the PQa algorithm.

pellsolve := proc(D::posint)
local P, Q, a, A, B, i;
if type(sqrt(D), integer) then
error ("D must be a nonsquare integer");

end if;

P := 0;

Q :=1;

a := floor(sqrt(D));
A =1, a;

B :=0, 1;

for i from 1 do
P := axQ - P;

Q := (D - P72)/Q;
a := floor((P+sqrt(D))/Q);
A := A[2], axA[2]+A[1];
B := B[2], a*B[2]+B[1];
if Q =1 and i mod 2 = 0 then
break;
end if;
end do;
return A[1], B[1];

end;

Maple Code 2 Returns a set containing all fundmental solutions (z,y) to the
generalized Pell equation 2?2 — Dy?> = N (where D > 0 is not a perfect square)
using brute-force search between bounds on .

genpellsolve := proc(D::posint, N::integer)
local t, u, L1, L2, sols, x, y;
if type(sqrt(D), integer) then
error ("D must be a nonsquare integer");
end if;
t, u := pellsolve(D);
if N > O then
L1 := 0;
L2 := floor(sqrt(N*(t-1)/(2%D)));
elif N < O then

L1 := ceil(sqrt(-N/D));

L2 := floor(sqrt((-N)*(t+1)/(2%D)));
else

return {[0, 0]};
end if;
sols := {};

for y from L1 to L2 do
x := sqrt(N+D*y~2);
if type(x, integer) then

sols := sols union {[x, yl};
if x72+y~2%D mod N <> O or 2*x*y mod N <> O then
sols := sols union {[-x, yl};
end if;
end if;
end do;

return sols;
end;




