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Prions are alternatively folded, self-perpetuating protein isoforms involved in a variety of
biological and pathological processes. Yeast prions are protein-based heritable elements that
serve as an excellent experimental system for studying prion biology. The propagation of
yeast prions is controlled by the same Hsp104/70/40 chaperone machinery that is involved
in the protection of yeast cells against proteotoxic stress. Ribosome-associated chaperones,
proteolytic pathways, cellular quality-control compartments, and cytoskeletal networks in-
fluence prion formation, maintenance, and toxicity. Environmental stresses lead to asym-
metric prion distribution in cell divisions. Chaperones and cytoskeletal proteins mediate this
effect. Overall, this is an intimate relationship with the protein quality-control machinery of
the cell, which enables prions to be maintained and reproduced. The presence of many of
these same mechanisms in higher eukaryotes has implications for the diagnosis and treat-
ment of mammalian amyloid diseases.

Recent developments have led to the expan-
sion of the prion concept from one specific

group of infectious diseases to a variety of self-
perpetuating protein states associated with both
pathogenic and potentially adaptive processes.
Yeast prions, typically represented by amyloid
isoforms of various yeast proteins, manifest as
protein-based heritable elements and are there-
fore amenable to high-resolution genetic anal-
ysis. A significant fraction of the data reviewed
below has been obtained by using the Sup35/
[PSIþ] prion system. Sup35 is a translation-
al termination factor, which includes the N-
terminal prion domain ([PrD] or Sup35N),
the middle linker domain (Sup35M), and the

C-proximal domain (Sup35C) functioning in
translation termination (Liebman and Chernoff
2012; Nizhnikov et al. 2014b). Detailed infor-
mation about other yeast prions, respective pro-
teins, and their functions is discussed elsewhere
(Liebman and Chernoff 2012; Wickner 2016).
Because of the simplicity of yeast cultivation
and the availability of the powerful tools of yeast
genetics and cell biology, yeast prions provide
an excellent model for studying the fundamen-
tal mechanisms of prion formation and propa-
gation. General rules uncovered from yeast pri-
on studies can be extended to mammalian and
human prion and amyloid phenomena, includ-
ing neurodegenerative diseases.
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A connection between prions and chaper-
ones was first established using a yeast model.
Additionally, our knowledge of the cellular con-
trol of prion formation and propagation has
since been expanded in significant part because
of experiments with yeast. This review summa-
rizes the overall progress and recent break-
throughs in understanding the connections
between prions and cellular-protein quality
control in yeast.

CONTROL OF PRION PROPAGATION
BY THE Hsp104/70/40 CHAPERONE
MACHINERY IN YEAST

The connection between chaperones and prions
was first established by demonstrating that
propagation of [PSIþ], the prion form of the
translation termination factor Sup35, requires
an intermediate level of the chaperone Hsp104
(Chernoff et al. 1995). Hsp104 is a hexameric
ATPase of the AAAþ superfamily (Glover and
Lindquist 1998) and is involved in protein dis-
aggregation (Glover and Lum 2009); its pro-
karyotic counterpart is ClpB (Weibezahn et al.
2004; Glover and Lum 2009; Winkler et al.
2012a). Hsp104 is also required for all other
known amyloid-based cytosolic yeast prions
(Moriyama et al. 2000; Du et al. 2008; Alberti
et al. 2009; Patel et al. 2009; Rogoza et al. 2010;
Liebman and Chernoff 2012). Two yeast prions
that are independent of Hsp104 include [ISPþ],
presumably located in the nucleus (Rogoza et al.
2010), and the membrane-associated [GARþ],
which is not yet proven to show amyloid-like
aggregation (Brown and Lindquist 2009; Jarosz
et al. 2014). ATPases of the Hsp70 chaperone
family (Verghese et al. 2012) and their partners
from the Hsp40 family (Cyr and Ramos 2015)
are involved with Hsp104 in the process of prion
propagation (for reviews, see Liebman and
Chernoff 2012; Chernova et al. 2014).

Our current understanding of the role of
Hsp in the propagation of cytosolic yeast prions
is summarized in Figure 1. In this model, the
Hsp70/Hsp40 complex binds to prion poly-
mers first and then binds Hsp104, which
initiates polymer fragmentation by extracting
individual protein molecules from the middle

of an amyloid chain (Winkler et al. 2012b).
Polymer fragmentation generates “propagons,”
smaller “seeds” that are essential for initiating
new rounds of prion propagation as well as pri-
on segregation (Fig. 1A). In the absence of frag-
mentation, new propagons are not generated,
and prions are eventually diluted and lost in
the course of cell divisions (Fig. 1B). In the
case of the Sup35 protein, chaperone binding
is most likely mediated or modulated by the
region of oligopeptide repeats present within
the PrD (Borchsenius et al. 2001; Osherovich
et al. 2004). However, the Hsp machinery also
binds other PrDs, including those not contain-
ing repeats. The role of Hsps in prion propaga-
tion is based on their major evolutionarily con-
served enzymatic functions, because Escherichia
coli orthologs of yeast—Hsp104, Hsp70-Ssa,
and Hsp40 proteins (ClpB, DnaK, and DnaJ,
respectively)—can partially propagate yeast pri-
ons, but only if the whole bacterial chaperone
network (with the addition of the DnaK gua-
nine-exchange factor GrpE) is reassembled in
the yeast cell (Miot et al. 2011).

EFFECTS OF Hsp104 LEVELS ON YEAST
PRIONS

Interestingly, transient overproduction of
Hsp104 also cures yeast of some prions, for ex-
ample, [PSIþ] (Chernoff et al. 1995) and
[MODþ] (Suzuki et al. 2012). This agrees
with the notion that Hsp104 can bind polymer-
ic Sup35 without the help of Ssa, which leads to
prion loss rather than polymer fragmentation
(Winkler et al. 2012a,b). Such “nonproductive”
binding (Fig. 1B) involves the Hsp104 N-termi-
nus, which is not required for prion fragmenta-
tion and propagation (Hung and Masison 2006;
Winkler et al. 2012b) and is apparently mediat-
ed by a portion of the linker region of Sup35
(Sup35M) (Glover and Lindquist 1998; Glover
and Lum 2009; Helsen and Glover 2012a,b).
Two possible (and not mutually exclusive)
mechanisms proposed for [PSIþ] curing by ex-
cess Hsp104 include “chopping” monomers
from polymers and inhibiting polymer frag-
mentation and/or segregation in cell divisions
(Fig. 1C). Evidence in favor of each mechanism
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has been reported (Newnam et al. 2011; Lieb-
man and Chernoff 2012; Chernova et al. 2014;
Klaips et al. 2014; Park et al. 2014). An Hsp104
derivative lacking the N-terminal region can
fragment Sup35NM polymers in vitro but
cannot extract monomers from polymers
(Sweeny et al. 2015), which is consistent with
its inability to eliminate [PSIþ] on overproduc-
tion in vivo. However, overproduction of full-
size Hsp104 leads to an increase in the average
size of Sup35 polymers in vivo (Kryndushkin
et al. 2003), pointing to the possibility of the
fragmentation defect, which results in fiber
growth.

Hyperfunctional mutations in Hsp104 fa-
cilitate [PSIþ] curing and may counteract oth-
er amyloid-like aggregates expressed in yeast
(Gokhale et al. 2005; Jackrel et al. 2014). Like-
wise, effects of antiprion mutations in Sup35
are modulated by Hsp104 levels (DiSalvo et al.

2011). On the other hand, chaperone sequestra-
tion by some overproduced glutamine/aspara-
gine (Q/N)-rich, aggregation-prone proteins
may cause destabilization of the [PSIþ] prion
(Derkatch and Liebman 2013; Yang et al. 2013).

ROLES OF VARIOUS Hsp70 AND Hsp40
PROTEINS AND THEIR COFACTORS IN
PRION PROPAGATION

The yeast cell contains multiple subfamilies of
the Hsp70 and Hsp40 families. The major
Hsp70 subfamily that plays a role in prion prop-
agation is Ssa, which is composed of four chap-
erones (Ssa2 produced constitutively; Ssa1 pro-
duced during vegetative growth and induced by
stress; and two strictly stress-inducible proteins,
Ssa3 and Ssa4). Any of these chaperones can
work in [PSIþ] propagation, although some
differences between their specific effects exist
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Figure 1. Role of chaperones in the propagation of the Sup35 prion. (A) Polymer fragmentation and propagon
formation at the normal levels of Hsp104, Hsp70, and Hsp40 proteins. (B) Impairment of prion propagation in
the absence of Hsp104. (C) Impairment of prion propagation at high levels of Hsp104 (two models are shown).
(Red square) Sup35N (PrD) in prion form; (red line) Sup35M linker and Sup35N in a misfolded intermediate
form; (red spiral line) Sup35NM region in a nonprion form; (red circle) globular Sup35C domain.
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(Allen et al. 2005; Sharma and Masison 2008;
Liebman and Chernoff 2012). Overproduction
of Ssa1 (Newnam et al. 1999) or any other Ssa
protein (Allen et al. 2005) allows propagation of
the [PSIþ] prion, even in the presence of high
levels of Hsp104, apparently via counteracting
the “nonproductive” interaction of Hsp104
with prion polymers and directing Hsp104 to
the fragmentation pathway. Mutational alter-
ation and/or deletion of SSA1 and/or SSA2 de-
stabilizes or cures some variants of [PSIþ]
(Sharma and Masison 2008; Newnam et al.
2011). In the case of [URE3], Ssa1 and Ssa2
show differential effects (Schwimmer and Ma-
sison 2002), and this difference is controlled by
a single amino-acid substitution (Sharma and
Masison 2011). Ssa proteins can physically bind
Sup35 (Allen et al. 2005) and represent the most
abundant proteins among those co-isolated to-
gether with Sup35 from yeast cells (Bagriantsev
et al. 2008).

Several members of the Hsp40 family have
been shown to influence prion propagation (for
review, see Liebman and Chernoff 2012) in a
prion-specific manner (e.g., Reidy et al. 2014),
with Ydj1 (Moriyama et al. 2000; Sharma et al.
2009; Hines et al. 2011) and/or Sis1 (Sond-
heimer et al. 2001; Higurashi et al. 2008; Kirk-
land et al. 2011), the major Hsp40 partners of Ssa
(Rikhvanov et al. 2007), typically playing a ma-
jor role (Summers et al. 2009). Otherchaperone-
related proteins involved in the propagation of
yeast prions include guanine-exchange factors
for Ssa, Fes1, and Sse1 (Jones et al. 2004; Fan
et al. 2007; Kryndushkin and Wickner 2007;
Moran et al. 2013), and Ssa co-chaperones, Sti1
and Cpr7 (Jones et al. 2004; Wolfe et al. 2013),
perhaps acting via modulation of Ssa function.
Hsp82 (yeast counterpart of Hsp90) somewhat
increases curing of [PSIþ] by excess Hsp104
(Moosavi et al. 2010; Reidy and Masison 2011);
however, the specific mechanism is unclear.

ROLE OF RIBOSOME-ASSOCIATED
CHAPERONES IN PRION FORMATION
AND PROPAGATION

In addition to Ssa, the yeast cell possesses a va-
riety of other Hsp70 subfamilies (Peisker et al.

2010; Liebman and Chernoff 2012). One of
them, Ssb, is composed of two nearly identical
members, Ssb1 and Ssb2 (termed Ssb protein).
Ssb is neither essential for cell viability nor
stress-inducible (Nelson et al. 1992). It binds
translating ribosomes (Fig. 2A) via the ribo-
some-associated complex (RAC), composed of
the Hsp40 protein Zuo1 and a noncanonical
Hsp70 protein Ssz1 (Gautschi et al. 2001; Huang
et al. 2005), and is involved in folding of nascent
polypeptides (James et al. 1997; Willmund et al.
2013). In the absence of a fully assembled RAC
(e.g., in strains lacking one or both RAC com-
ponent[s]), Ssb is dissociated from the ribo-
some (Willmund et al. 2013). Depletion of Ssb
(Fig. 2B) or its dissociation from the ribosome
caused by RAC disruption (Willmund et al.
2013) results in accumulation of misfolded ag-
gregated proteins. Ribosome profiling analysis
(Ingolia et al. 2009) indicates that the set of
potential Ssb substrates is enriched by long pro-
teins with hydrophobic aggregation-prone re-
gions (Willmund et al. 2013).

Notably, double deletion of both genes
coding for Ssb (Chernoff et al. 1999), or dele-
tion of gene(s) coding for one or both RAC
components, ZUO1 and/or SSZ1 (Kiktev et
al. 2015; Amor et al. 2015), increases de novo
formation of [PSIþ], possibly because of the
accumulation of misfolded Sup35 protein, a
substrate for prion formation, on the Ssb-de-
pleted ribosomes (Fig. 2B,C). Ssb consistently
acts against prions, as excess Ssb destabilizes
some variants of the [PSIþ] prion (Kushnirov
et al. 2000; Chacinska et al. 2001; Allen et al.
2005), and Ssb overproduction facilitates
[PSIþ] loss in the presence of excess Hsp104,
whereas the double ssb1D ssb2D deletion (ssb1/
2D) counteracts it (Chernoff et al. 1999). How-
ever, RAC disruption increases [PSIþ] curing
by excess Hsp104 and destabilizes a “weak” var-
iant of [PSIþ] at normal levels of Hsp104
(Kiktev et al. 2015). This effect of RAC disrup-
tion is not detected in the ssb1/2D background,
showing that cytosolic Ssb, released from ribo-
somes, antagonizes propagation of the [PSIþ]
prion.

Differences in the effects of Ssa and Ssb pro-
teins on [PSIþ] prions are primarily controlled
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by their substrate-binding domains (Allen et al.
2005). Importantly, both genetic and biochem-
ical data show that cytosolic Ssb antagonizes
binding of Ssa to prion polymers (Kiktev et al.
2015). Ssb itself is apparently capable of only a
transient interaction with a prion in vivo (Allen

et al. 2005; Bagriantsev et al. 2008; Kiktev et al.
2015) and inhibits the seeded Sup35NM amy-
loidogenesis in combination with Hsp104 in
vitro (Shorter and Lindquist 2008). Thus, Ssb
competition with Ssa impairs prion propaga-
tion (Fig. 2C).
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Figure 2. Model for the effects of ribosome-associated chaperones in prion formation and propagation. (A)
Wild-type cell. (B) Cell lacking Ssb. (C) Cell lacking Zuo1 and/or Ssz1. Sup35 regions and isoforms are shown as
in Figure 1. The cytosolic Hsp40 protein is not shown for simplicity.
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Interestingly, a release of Ssb from ribo-
somes into cytosol can be induced not only by
mutational disruption of RAC but also by cer-
tain physiological conditions (e.g., by growth in
poor synthetic medium) (Kiktev et al. 2015).
Propagation of a “weak” variant of the [PSIþ]
prion is destabilized under these conditions
much more efficiently in the wild-type strain
compared with the ssb1/2D strain. This implies
the role of cytosolic (not bound to ribosomes)
Ssb in [PSIþ] destabilization and confirms the
physiological importance of the Ssb-based pri-
on-modulating circuit. Although the overall
rate of protein synthesis decreases in unfavor-
able conditions, synthesis of some proteins
must be maintained or increased (Verghese
et al. 2012; Conrad et al. 2014). This may result
in their misfolding and accumulation of prion-
like self-perpetuating aggregates, either toxic or
cytoprotective (e.g., via promoting formation
of quality-control protein deposits discussed
below or other protective structures such as
stress granules) (Miller et al. 2015b). However,
even persistent propagation of cytoprotective
aggregates could become toxic, especially if con-
ditions were to change. Cytosolic Ssb may pre-
vent efficient aggregate propagation, thus com-
pensating in part for the shortage of Ssb on
ribosomes.

PRIONS AND PROTEIN QUALITY CONTROL

Notably, the same Hsp104/Hsp70-Ssa/Hsp40
chaperone machinery that controls prion prop-
agation is also involved in protecting yeast cells
against stress and promoting disaggregation
of stress-damaged proteins (Glover and Lind-
quist 1998). Apparently, the effects of chaper-
ones on aggregates of stress-damaged proteins
and on amyloid polymers are based on the same
molecular mechanisms but lead to different
consequences because of different features of
the aggregated proteins. Chaperones tend to
solubilize monomeric proteins from aggregates
of damaged proteins, resulting in aggregate dis-
assembly. However, because of the highly or-
dered organization of prion polymers, chaper-
ones fragment them into oligomeric propagons.
In this way, prions hijack the cellular stress-de-

fense machinery for the purpose of their own
propagation. Essentially, it is the Hsp-mediated
fragmentation that enables prions to be “repli-
cated” and transmitted on cell division and
therefore makes the amyloid a prion.

Clearance of prions and prionogenic pro-
teins is still poorly understood, although some
data point to the role of the ubiquitin-protea-
some system (UPS) in prion formation. In-
creased levels of free ubiquitin stimulate de
novo formation of the [PSIþ] prion in the pres-
ence of excess Sup35 by an unknown mecha-
nism (Chernova et al. 2003), whereas deletion
of the gene coding for one of the major yeast
ubiquitin-conjugating enzymes, Ubc4, in-
creases spontaneous [PSIþ] formation (Allen
et al. 2007). Because no evidence of Sup35 ubiq-
uitination has been uncovered despite numer-
ous attempts (Peng et al. 2003; Allen et al. 2007;
Kabani et al. 2014), it appears that the effect of
ubc4D on [PSIþ] formation is mediated by oth-
er proteins. Notably, increased [PSIþ] forma-
tion in the ubc4D strain does not require the
presence of other prions but is antagonized by
the deletion of RNQ1, a gene coding for the
prion protein Rnq1 (Allen et al. 2007). Several
other UPS deficiencies increase [PSIþ] forma-
tion similarly to ubc4D (Tyedmers et al. 2008),
and some proteins with Q/N-rich prion-like
domains that can stimulate formation of the
[PSIþ] prion on overproduction (Derkatch
et al. 2001) are known to be ubiquitinated and
degraded by the proteasome. One well-studied
example is the Lsb2/Pin3 protein (Chernova
et al. 2011), which is discussed in the following
section. Ubc4D also antagonizes [PSIþ] curing
by excess Hsp104 (Allen et al. 2007). This effect
does not depend on Rnq1 protein but rather is
associated with increased binding of Ssa protein
to Sup35 prion polymers. Overall, it appears
that UPS exercises its effects on the [PSIþ] pri-
on primarily by modulating auxiliary factors
involved in prion formation and propagation.

PRIONS AND QUALITY-CONTROL
COMPARTMENTS

Yeast cells contain various protein quality-con-
trol deposits (for review, see Sontag et al. 2014;
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Miller et al. 2015b). Misfolded proteins, which
cannot be degraded by UPS, are concentrated
into such deposits, which possibly leads to their
detoxification via preventing sequestration of
other proteins and UPS components, their deg-
radation via autophagy, and/or their clearance
from daughter cells via asymmetric cell division
(see below).

Amyloidogenic proteins accumulate in
perivacuolar insoluble protein deposits (IPODs)
in a highly ordered form (Kaganovich et
al. 2008). Production of the polyglutamine-
extended exon 1 of huntingtin (a protein asso-
ciated with Huntington’s disease in humans)
leads to the formation of the perinuclear and
perivacuolar deposits, co-localized with the
spindle body (the yeast analog of the centro-
some) marker Spc42, and therefore resembling
the mammalian aggresome (Wang et al. 2009).
Notably, the P-rich region of huntingtin, located
next to the polyQ-expanded region, is impor-
tant for aggresome formation and polyQP de-
toxification in yeast.

Several lines of evidence indicate that yeast
prions interact with the quality-control depos-
its of insoluble proteins, such as IPODs and
aggresome, and modify their distribution and
composition. Overproduction of Rnq1 protein
in a strain containing [RNQþ] prions leads to
the formation of a structure combining some
features of IPODs and aggresome, because it is
located on the cell periphery but is co-localized
with Spc42 (Treusch and Lindquist 2012). This
structure is cytotoxic, which is apparently a
result of sequestration of the spindle body com-
ponents. In contrast, the polyQP-induced
aggresome does not lead to spindle body mis-
localization and is normally not cytotoxic
(Wang et al. 2009). These results indicate that
formation of IPOD-like deposits of different
proteins could be based on similar molecular
mechanisms; however, their eventual localiza-
tion and cytotoxicity patterns could be influ-
enced by prion composition of the yeast cell.
Consistent with this model is the observation
that the normally cytoprotective polyQP aggre-
some becomes cytotoxic in cells containing the
Sup35 prion, [PSIþ] (Gong et al. 2012). In this
case, cytotoxicity is a result of sequestration of

the essential termination factor Sup45 (eRF1), a
partner of Sup35 in translation termination.
The prion form of Sup35, which interacts with
polyQP aggregates, mediates sequestration of
Sup45, whereas overproduction of Sup45 ame-
liorates cytotoxicity.

The [URE3] prion (Kryndushkin et al.
2008) and artificial prion [NPR1Cþ], which
contains the PrD-like region of the yeast protein
Nrp1 (Malinovska et al. 2012), are cured by
overproduction of Btn2 or Cur1, yeast members
of the Hook protein family whose metazoan
counterparts are involved in microtubule-de-
pendent centrosome attachment to the nucleus
(Malone et al. 2003) and aggresome formation
(Szebenyi et al. 2007). Normal levels of Btn2 and
Cur1 proteins also counteract propagation of de
novo induced [URE3] prions, as shown in ex-
periments with deletion strains (Wickner et al.
2014). This implicates Btn2 and Cur1 as com-
ponents of the antiprion system. Yeast proteins
Btn2 and Cur1, which are stress-inducible, are
involved in redistribution of misfolded proteins
between IPOD and a juxtanuclear compartment
(Malinovska et al. 2012), which investigators
equate with JUNQ (Kaganovich et al. 2008) or
InQ (Miller et al. 2015a), a deposit of soluble
misfolded proteins apparently distinct from the
aggresome. The effect of Cur1 on quality-con-
trol compartments could at least be partly at-
tributable to targeting of the Hsp40 chaperone
Sis1 from cytosol to the nucleus (Malinovska
et al. 2012). Prion curing by Cur1 (and possibly
Btn2) overexpression could be a result of Sis1
sequestration or relocation, as supported by the
observation that curing is inhibited in the pres-
ence of high levels of Sis1 (Malinovska et al.
2012). It is more difficult to explain the effects
of the normal levels of Btn2 or Cur1 in this way,
because Sis1 is more abundant than Cur1
(Wickner et al. 2014).

THE CYTOSKELETON AS A SCAFFOLD
FOR PRIONOGENESIS

Large filamentous or ring-like structures are
formed by overproduced green fluorescent
protein (GFP)-tagged constructs containing
Sup35 PrD during the process of de novo
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[PSIþ] induction (Zhou et al. 2001; Ganusova
et al. 2006). Although these structures are typ-
ically not seen in the cells containing mature
[PSIþ] prions, cells with filaments or rings
preferentially produce [PSIþ] colonies, impli-
cating filamentous structures as intermediates
in the prion-formation pathway. Peripheral
filamentous structures overlap with actin patch-
es, associated with the endocytic sites, whereas
internal rings are assembled around the vacuole
(Ganusova et al. 2006). Filamentous Sup35
structures accumulate actin assembly proteins
involved in endocytosis (Ganusova et al. 2006),
such as Sla1 and Sla2, a yeast homolog of mam-
malian huntingtin-interacting protein, Hip1
(Kalchman et al. 1997). Sup35 physically and
genetically interacts with Sla1 (Bailleul et al.
1999), and deletions of SLA1 or genes coding
for other actin assembly proteins, END3 or

SLA2, impair de novo [PSIþ] induction by ex-
cess Sup35 (Bailleul et al. 1999; Ganusova et al.
2006). Some ring-like Sup35 structures also co-
localize with the autophagy markers character-
istic of IPODs (Tyedmers et al. 2010). Overall, it
appears that misfolded Sup35 is assembled into
filamentous structures with the help of the pe-
ripheral actin cytoskeleton (Fig. 3A) and is then
transported to the IPOD-like and/or autopha-
gosome-like compartments attached to the vac-
uole (Fig. 3B). This process, apparently aimed at
detoxifying and possibly eliminating the mis-
folded proteins, eventually promotes de novo
prion formation via accumulating prionogenic
molecules in these compartments.

Some cytoskeletal assembly proteins (in-
cluding Sla2) contain Q/N-rich prion-like do-
mains (Michelitsch and Weissman 2000; Alberti
et al. 2009). One such protein, termed Pin3, has

Vacuole

Sup35 folded

Sup35 misfolded

Sup35 prion Actin patch

Sla1Sla2

Actin Las17 Lsb1

Lsb2

A

Vacuole

IPOD

B

Figure 3. Model for the role of the actin cytoskeleton in the formation of the Sup35 prion. (A) Initial assembly of
misfolded Sup35 in the peripheral cytoskeletal sites. (B) Cytoskeleton-mediated accumulation of Sup35 in the
quality-control compartment, followed by conversion into a prion form. Sup35 regions and isoforms are shown
as in Figure 1.
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been identified among proteins whose over-
production facilitates formation of the [PSIþ]
prion by excess Sup35 in cells lacking other pre-
existing prions (Derkatch et al. 2001). Pin3,
more commonly called Lsb2, binds a major
yeast actin-nucleating protein, Las17 (Madania
et al. 1999). Although Lsb2 is not conserved in
mammals, Las17 is a homolog of the mamma-
lian actin nucleator, Wiscott–Aldrich syndrome
protein (WASP) (Takenawa and Suetsugu 2007).
[PSIþ] induction by Lsb2 requires its inter-
action with Las17 (Chernova et al. 2011). Over-
produced Lsb2 forms large structures that
promote accumulation of misfolded Sup35 pro-
tein in adjacent cytoskeleton-associated loca-
tions, which serve as “prion induction” sites.
The [PSIþ]-inducing phenotype can persist in
the cells for a certain number of cell generations
after Lsb2 overproduction is turned off (Cher-
nova et al. 2011), suggesting that Lsb2 can form
a metastable prion-like state that facilitates for-
mation of other prions. In addition to [PSIþ],
Lsb2 apparently promotes formation of the pri-
on form of Rnq1 (Chernova et al. 2011). Nota-
bly, Lsb2 is a short-lived ubiquitinated protein
whose levels are rapidly increased during envi-
ronmental stress, such as heat shock (HS),
which is followed by rapid degradation during
adaptation to stress conditions (Chernova et al.
2011). Therefore, reversible variations of Lsb2
levels under physiological conditions may
modulate some of the previously reported
(e.g., Tyedmers et al. 2008) effects of stress-in-
ducing agents on de novo prion formation.

Proteins containing PrD-like domains are
also involved in generating other cytoprotec-
tive assemblies such as stress granules (Buchan
2014) and P-bodies (Gilks et al. 2004; Decker
et al. 2007; Reijns et al. 2008; Kato et al. 2012;
Newby and Lindquist 2013; Anderson et al.
2014). The PrD-like domain of the stress-gran-
ule assembly protein Tia1/Pub1 interacts with
Sup35 PrD in yeast, and the tubulin-associated
dimeric complex formed by this interaction is
important for the integrity of tubulin cytoskel-
eton (Li et al. 2014).

It is likely that interactions of some PrDs
with cytoskeletal components reflect the role
of PrDs in forming intracellular structures,

and accumulation of misfolded prionogenic
proteins into certain cellular locations, mediat-
ed by cytoskeletal structures, may also serve a
cytoprotective purpose (Chernoff 2007). Prion
formation may arise as a by-product of such an
adaptive process. It is also possible that in some
cases, conversion of misfolded proteins into
self-perpetuating prions may minimize cellular
damage when other protective strategies are ex-
hausted. Indeed, it is shown that the Sis1 chap-
erone suppresses the cytotoxicity of overpro-
duced Rnq1 protein by promoting formation
and/or propagation of its prion form (Douglas
et al. 2008).

PRION MAINTENANCE DURING STRESS
AND AGING

Short-term exposure to some stresses destabi-
lizes propagation of certain prions (e.g.,
[PSIþ]) (Cox et al. 1988). Indeed, short-term
(15–60-min) exposure of an exponentially
growing yeast culture to mild HS (39˚C–
42˚C) destabilizes “weak” variants of [PSIþ]
(Newnam et al. 2011; Klaips et al. 2014). Most
prion loss takes place during cell division, occur-
ring after a return to normal temperature and
resumption of growth. This generates sectored
(“mosaic”) colonies. Notably, prion destabiliza-
tion is not seen if cells are incubated at 39˚C for a
longer time (Newnam et al. 2011). Although
Hsp104 (which has low background levels) is
accumulated quickly during HS, the increase
in levels of Ssa (starting from significantly higher
background) proceeds more slowly. Thus, the
“window” of maximal prion destabilization co-
incides with the period of maximal imbalance
between the Hsp104 and Ssa proteins, although
after several hours, Ssa levels catch up with the
levels of Hsp104 (Fig. 4). Indeed, deletions of
SSA genes increase prion destabilization by
short-term HS and impair prion “recovery”
during long-term HS (Newnam et al. 2011).

HS-induced [PSIþ] loss, at least in the first
post-HS cell division, is clearly asymmetric,
with daughter cells (new buds) losing prions
more frequently than mother cells (Newnam
et al. 2011; Ali et al. 2014). In this way, prion
segregation after HS resembles segregation of
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oxidatively damaged proteins, which are prefer-
entially accumulated in mother cells (Aguilaniu
et al. 2003; Liu et al. 2011; Nystrom and Liu
2014). This mother-specific retention of protein
aggregates requires Hsp104 (Erjavec et al. 2007;
Tessarz et al. 2009; Newnam et al. 2011; Zhou
et al. 2011) and has been explained by various,
not necessarily mutually exclusive, mechanisms
such as decreased passive diffusion through bud
neck, active retention through association with
organelles, quality-control compartments and/
or cytoskeletal components, and retrograde
transport mediated by the actin cytoskeleton
(Erjavec et al. 2007; Tessarz et al. 2009; Liu
et al. 2010; Zhou et al. 2011, 2014; Spokoini
et al. 2012; Higuchi et al. 2013; Coelho et al.

2014; Song et al. 2014). Our data show that
the actin cytoskeleton apparently plays a role
in prion segregation, because [PSIþ] destabili-
zation is significantly increased in strains lack-
ing the actin assembly protein Lsb2 or its pa-
ralog Lsb1; whereas in the strain lacking both
proteins, [PSIþ] remains destabilized even after
prolonged HS (Chernova et al. 2011; Ali et al.
2014). As mentioned previously, Lsb2 synthesis
is induced by HS (Chernova et al. 2011), where-
as in the case of Lsb1, the proteolytic processing
leading to accumulation of membrane non-
bound (cytosolic) protein isoform is HS-induc-
ible (Ali et al. 2014). It is possible that associa-
tion with actin assembly proteins promotes
delivery of prion seeds to daughter cells (Fig. 4).
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Figure 4. Model for prion destabilization after HS. (Top) Dynamics of Hsp104, Hsp70-Ssa, actin assembly
protein Lsb2, and cytosolic-processed isoform (Lsb10) of its paralog Lsb1 during short-term (acute) and
prolonged (chronic) temperature stress. (Bottom) Asymmetric segregation of prions, heat-shock damaged
proteins, and chaperones in cell division after stress. Sup35 regions and isoforms are shown as in Figure 1.
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In addition to asymmetric distribution of
prion aggregates per se, chaperone distribution
in cell divisions may also play a role in [PSIþ]
destabilization by HS. Although mother cells
accumulate more protein aggregates, they also
accumulate more aggregate-associated chaper-
ones, specifically Hsp104. Indeed, when mother
cells retain a prion in the first post-HS division,
they produce colonies with an increased pro-
portion of [ psi2] cells generated in subsequent
cell divisions compared with daughters (Klaips
et al. 2014). One explanation for this could be
an increased level of Hsp104 in mother cells.

Asymmetric segregation of prion aggregates
can also be detected in other conditions. When
Hsp104 activity is chemically inhibited and
propagons are diluted by subsequent cell divi-
sions, mother cells are more likely to retain
prions than daughters (Cox et al. 2003). Aged
yeast [PSIþ] cells accumulate larger-sized ag-
gregates, indicative of the asymmetry of aggre-
gate segregation (Derdowski et al. 2010). The
ability of yeast cells to get rid of prion aggre-
gates in cell divisions may explain why in mam-
malian systems amyloids and prions are most
damaging to terminally differentiated cells like
neurons.

IS THERE AN AMYLOID SENSOR?

Triggering a protective response in a cell that has
accumulated amyloid deposits requires “amy-
loid sensor(s)” that can orchestrate cellular re-
sponses. One candidate is the small glutamine-
rich tetratricopeptide co-chaperone Sgt2, a
yeast counterpart of mammalian SGT, specifi-
cally SGTA (Cziepluch et al. 1998; Liu et al.
1999). Sgt2 is involved in the guided entry of
tail-anchored (GET) proteins trafficking path-
way (Schuldiner et al. 2008; Wang et al. 2010). It
binds hydrophobic tails of newly synthesized
membrane-bound proteins and mediates their
association with cytosolic chaperones (includ-
ing Ssa and Ydj1) and other components of the
GET pathway (Get3, 4, and 5 proteins), thus
preventing uncontrolled aggregation of tail-
anchored proteins and facilitating their delivery
to membranes (Liou et al. 2007; Jonikas et al.
2009).

Under conditions when major Hsps are not
induced, Sgt2 is increased in abundance in re-
sponse to the presence of a prion in the yeast
cells (Kiktev et al. 2012). The animal ortholog of
Sgt2 is also shown to interact with amyloids in
some assays (Fonte et al. 2002), suggesting that
the amyloid-binding properties of Sgt2/SGT
could be conserved in evolution. Recent data
show that Sgt2 also interacts with polyglut-
amine (Wang et al. 2007, 2009) and prion (Kik-
tev et al. 2012) aggregates and facilitates binding
of Ssa to Sup35 prion fibers, thus promoting
[PSIþ] propagation even in the presence of
high levels of Hsp104 (Kiktev et al. 2012). For-
mation of amyloid-like aggregates and quality-
control deposits by expanded polyglutamines in
yeast also promotes formation of cytosolic ag-
gregates of TA and Get proteins whose forma-
tion depends on Sgt2 (Kiktev et al. 2012) and
leads to the appearance of detergent-insoluble
aggregates of Sgt2, which are similar to those
formed by yeast prion proteins (Nizhnikov
et al. 2014a). These data implicate Sgt2 as an
“amyloid sensor,” connecting chaperones to
amyloidogenic/prionogenic proteins and po-
tentially capable of acquiring at least a transient
amyloid-like form by itself. It remains to be
determined whether the amyloid-like state of
Sgt2 is transmissible; if so, this will be the first
proven case of a chaperone or co-chaperone that
possesses prion properties.

PARALLELS AND DIFFERENCES
BETWEEN CHAPERONE EFFECTS ON
AMYLOIDS IN LOWER AND HIGHER
EUKARYOTES

Chaperone proteins of the Hsp70 and Hsp40
families, as well as their major co-chaperones
and cofactors, are conserved from yeast to hu-
mans. The constitutive protein of the human
Hsp70 family, Hsc70, can support yeast viability
and [PSIþ] prion propagation in the absence of
yeast Ssa, albeit with reduced efficiency (Tutar
et al. 2006). Mutations in human Hsp40 protein
DNAJB6 that are associated with myopathy dif-
ferentially impact yeast prions [PSIþ] and
[RNQþ] when introduced to the Sis1-DNAJB6
chimeric construct (Stein et al. 2014). Thus, it is
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likely that mammalian and human chaperones
are involved in modulation of amyloid-like ag-
gregation in their native environments. Indeed,
the Hsp40 proteins from mammals and other
animals have been reported to influence aggre-
gation-related disorders such as polyglutamine
diseases (Kazemi-Esfarjani and Benzer 2000;
Auluck et al. 2002; Fayazi et al. 2006; Brehme
et al. 2014; Paul and Mahanta 2014). Binding
to the Hsp70/Hsp40 chaperones prevents
heat shock–induced intranuclear aggregation
of mammalian protein TDP-43 (Udan-Johns
et al. 2014), which is associated with a variety
of human neurodegenerative diseases. The ani-
mal ortholog of the Sgt2 co-chaperone is shown
to interact with amyloids in some assays (Fonte
et al. 2002), suggesting that the role of Sgt2/
SGT in “amyloid sensing” could be conserved
in evolution. The Hsp70-Ssb chaperone is fun-
gi-specific (Peisker et al. 2010); however, the
RAC complex is conserved (Jaiswal et al. 2011),
and, therefore, it is likely that another member
of the Hsp70 family works as a functional ana-
log of Ssb in mammals.

In contrast to other members of the yeast
prion-propagating machinery, orthologs of
Hsp104 (except for its mitochondrial counter-
parts) are not found in multicellular animals,
although they are present in plants, protists, and
prokaryotes (Zolkiewski et al. 2012). Highly ex-
pressed or “potentiated” hyperactive Hsp104
constructs counteract some metazoan amyloids
in yeast and animal models (Satyal et al. 2000;
Jackrel et al. 2014; Jackrel and Shorter 2015);
however, some other protein(s) should take
the place of Hsp104 in native animal cells. It
appears that such functional analogs of
Hsp104 exist, as constructs based on yeast
Sup35NM can propagate the prion state in cul-
tured mammalian cells (Hofmann and Vorberg
2013; Hofmann et al. 2013). The Hsp110 pro-
tein (homologous to yeast Sse1) has been im-
plicated in helping Hsp70/Hsp40 to disaggre-
gate stress-damaged mammalian proteins
(Shorter 2011; Torrente and Shorter 2013).
The human Hsp110/Hsp70/Hsp40 complex,
with the help of the small Hsp, HspB5, can pro-
mote depolymerization of a-synuclein (associ-
ated with Parkinson’s disease) in vitro (Duenn-

wald et al. 2012). Some mammalian proteins of
the AAAþ superfamily are also obvious candi-
dates for the role of Hsp104. Of special interest
are proteins RuvbL1 and RuvbL2, which were
previously described as helicases but were
recently shown to perform some chaperone
functions and participate in the control of pro-
tein aggregation and aggregate detoxification
(Zaarur et al. 2015). Notably, RuvbL can pro-
mote disassembly of amyloid b (Ab) aggregates
in vitro, and overexpressed yeast homologs of
Ruvb1 or 2 (Rvb1 or 2, respectively) compen-
sate for the viability defect during severe HS in
the absence of Hsp104. It is likely that different
chaperones may interact with mammalian
amyloid- and prion-like proteins expressed in
different compartments (e.g., intracellular and
excreted extracellular). Recent data (Cohen et al.
2015) identify a BRICHOS domain, implicated
in chaperone function and present in a variety
of mammalian proteins as a factor binding Ab
polymers (associated with Alzheimer’s disease)
and inhibiting formation of oligomeric seeds.
Amelioration of Ab toxicity by BRICHOS indi-
cates that the progression of Alzheimer’s disease
may depend on fragmentation and propagation
of Ab polymers in a manner similar to yeast
prions.

CONCLUDING REMARKS

Overall, an overwhelming body of data supports
the notion that the formation, propagation, and
elimination of yeast prions are mediated by the
protein quality-control machinery of the yeast
cell. Protein networks that are responsible for
proteostasis can both antagonize prions and
be hijacked by prions for the purpose of their
own proliferation. Therefore, modulation of
proteostasis networks provides a most promis-
ing tool for controlling prions and amyloids,
both in pathology and disease. Available evi-
dence strongly shows relevance of yeast-derived
results to mammalian prion and amyloid phe-
nomena and underlines the importance of yeast
as an experimental model leading to mechanis-
tic understanding of their molecular and cellu-
lar foundations.
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