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Development of skeletal muscle is a multistage process that includes lineage commitment of
multipotent progenitor cells, differentiation and fusion of myoblasts into multinucleated
myofibers, and maturation of myofibers into distinct types. Lineage-specific transcriptional
regulation lies at the core of this process, but myogenesis is also regulated by extracellular
cues. Some of these cues are initiated by direct cell–cell contact between muscle precursor
cells themselves or between muscle precursors and cells of other lineages. Examples of the
latter include interaction of migrating neural crest cells with multipotent muscle progenitor
cells, muscle interstitial cells with myoblasts, and neurons with myofibers. Among the sig-
naling factors involved are Notch ligands and receptors, cadherins, Ig superfamily members,
and Ephrins and Eph receptors. In this article we describe recent progress in this area and
highlight open questions raised by the findings.

Skeletal muscle is the most abundant tissue in
the vertebrate body and necessary for breath-

ing, metabolic homeostasis, and locomotion.
Development of skeletal muscle occurs in a se-
quential, multistage process that includes spec-
ification of multipotent progenitors to lineage-
committed myoblasts, differentiation of myo-
blasts into multinucleated myofibers, and mat-
uration of myofibers by innervation and bun-
dling into functional muscles (Biressi et al.
2007; Comai and Tajbakhsh 2014; Tintignac
et al. 2015). Myoblast differentiation is itself a
complex process that involves both induction of
the muscle-specific transcriptome and fusion of
myoblasts into an elongated syncytium. Simi-
larly, maturation is multifaceted. Mature myo-
fibers are classified as “slow” or “fast” types,

based on expression of distinct myosin heavy
chain (MyHC) isoforms and metabolic capabil-
ities (Schiaffino and Reggiani 2011; Talbot and
Maves 2016).

Myogenic specification and differentiation
are coordinated by the myogenic basic helix–
loop–helix (bHLH) transcription factors Myf5,
MyoD, myogenin, and MRF4. Uncommitted
progenitor cells are specified to become line-
age-committed myoblasts through the com-
bined actions of Myf5, MRF4, and MyoD,
whereas differentiation of myoblasts is regulated
by myogenin, MyoD, and MRF4 (Tapscott 2005;
Biressi et al. 2007; Comai and Tajbakhsh 2014).
Expression of these factors, particularly MyoD,
in many nonmuscle cell types converts such cells
to the skeletal muscle program, revealing their
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ability to drive tissue-specific transcription and
cell differentiation (Tapscott 2005; Fong and
Tapscott 2013). The ability of MyoD to function
in this manner occurs in conjunction with non-
muscle-specific factors such as its heterodimeric
partners, the E proteins; members of the Mef2
family of transcription factors; transcriptional
coactivators; and chromatin remodeling factors
(Tapscott 2005; Biressi et al. 2007; Sartorelli and
Juan 2011; Fong and Tapscott 2013; Comai and
Tajbakhsh 2014). These and additional tran-
scription factors orchestrate development of
the skeletal muscle lineage.

Although the importance of lineage-specific
transcriptional regulation in skeletal myogene-
sis has long been appreciated, myogenesis is also
regulated by extracellular cues that initiate in-
tracellular signaling (Guasconi and Puri 2009).
Some of these extracellular cues are secreted fac-
tors, such as fibroblast growth factor (Fgf ), Wnt
family ligands, and Sonic hedgehog (Shh). A
growing body of evidence indicates that signal-
ing initiated by direct cell–cell contact also pro-
vides key regulatory information during devel-
opment of the skeletal muscle lineage. In adult
skeletal muscle, stable cell–cell junctions (ex-
emplified by epithelial, cadherin-based adhe-
rens junctions) do not appear to exist between
myofibers, which are the unit cells of this tissue.
(Cell–cell junctions do exist between myofibers
and skeletal muscle stem cells known as satellite
cells; this is discussed below.) Nevertheless,
cell–cell adhesion, and signaling that derives
from cell–cell contact, occurs between various
muscle precursor cells and between these cells
and nonmuscle cell types during myogenesis.
Furthermore, such interactions are important
for muscle development. In this review, we dis-
cuss the roles and mechanisms whereby cell–
cell contact regulates skeletal myogenesis.

PROGENITOR CELL COMMITMENT TO THE
SKELETAL MUSCLE CELL LINEAGE

In vertebrates, skeletal muscles of the trunk and
limbs develop from somites, transiently existing
blocks of columnar epithelial cells that form in
an anterior-to-posterior manner from paraxial
mesoderm. Somites mature dorsally into the

dermomyotome, which has epithelial character
and gives rise to skeletal muscle and dermis, and
ventrally into the sclerotome, which has mesen-
chymal character and gives rise to the bones and
cartilage of the axial skeleton (Brand-Saberi and
Christ 2000). Some dermomyotomal progenitor
cells undergo an epithelial-mesenchymal transi-
tion (EMT), become committed to the skeletal
muscle lineage, and migrate between the dermo-
myotome and sclerotome to form the myotome,
a set of differentiated embryonic muscle cells.
Subsequent embryonic, fetal, and postnatal
stages of myogenesis involve additional muscle
progenitors that originally migrate from the der-
momyotome and ultimately establish the trunk
and limb musculature (Biressi et al. 2007; Comai
and Tajbakhsh 2014).

Signals from the adjacent dorsal neural tube
and surface ectoderm play important roles in
maturation of the dorsal somite (Munsterberg
and Lassar 1995; Stern and Hauschka 1995).
These tissues secrete Wnt1 and Wnt3a, which
signal via the “canonical” pathway to stimu-
late b-catenin/T-cell factor (TCF)–dependent
transcription. These Wnt ligands promote myo-
genesis of explanted epithelial somites in vitro
(Munsterberg et al. 1995; Stern et al. 1995; Taj-
bakhsh et al. 1998; Borello et al. 2006). Further-
more, an enhancer that regulates Myf5 expres-
sion in the dorsal somite harbors TCF binding
sites that are critical for Wnt responsiveness and
enhancer function (Borello et al. 2006) (N.B.:
Myf5 is the first myogenic bHLH factor ex-
pressed during development, and its role is
solely in lineage determination.) These results
argued that canonical Wnt ligands, along with
Shh and soluble bone morphogenetic protein
(BMP) inhibitors (Munsterberg et al. 1995; Re-
shef et al. 1998; Borycki et al. 1999), induce
muscle lineage specification of dermomyotomal
progenitor cells via b-catenin/TCF-dependent
expression of Myf5.

b-catenin is well known for having two dis-
tinct cellular functions: (1) as a transcriptional
regulator that associates with the DNA-binding
TCF proteins in a Wnt signaling-responsive
manner; and (2) as an adaptor protein that
binds to the cytoplasmic tail of cadherins and
promotes linkage to the cytoskeleton (van
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Amerongen and Nusse 2009; Niessen et al.
2011). Cells of the epithelial dermomyotome
express the cell–cell adhesion molecule N-cad-
herin with an apical localization; its adhesive
junction partner, b-catenin, is localized there
as well (Cinnamon et al. 2006). Studies with
chick embryos suggest that changes in N-cad-
herin expression and subcellular localization
play important roles in specification of multi-
potent dermomyotomal cells to the muscle lin-
eage. As these cells divide, N-cadherin is asym-
metrically localized in cells that are fated to
become skeletal muscle cells of the myotome;
conversely, daughter cells that lack N-cadherin
take on features of early dermal cells (Cinna-
mon et al. 2006). Consistent with these obser-
vations, electroporation of wild-type or domi-
nant negative mutant forms of N-cadherin into
dermomyotomal cells promoted or diminished
contribution of such cells to the myotome com-
partment, respectively (Cinnamon et al. 2006).
During EMTof dermomyotomal cells that were
fated to become muscle, the apical distribution
of N-cadherin and b-catenin was disrupted,
consistent with a transient loss of adhesion dur-
ing migration and acquisition of the myogenic
fate (Cinnamon et al. 2006).

Based on the results described above, the
adhesive and transcriptional “pools” of b-cate-
nin in dermomyotomal muscle progenitor cells
might be viewed as distinct; that is, they are
involved in either cell–cell adhesion or Wnt sig-
nal-dependent activation of Myf5 expression,
but not both. However, nuclear b-catenin sig-
naling from adhesion complexes can occur
(McCrea et al. 2015), and recent results from
the Marcelle group suggest that this process
may be involved in commitment of dermomyo-
tomal progenitor cells to the muscle lineage.
These investigators have studied the role of neu-
ral crest cells in promoting somitic myogenesis.
Neural crest cells migrate from the dorsal neural
tube to populate various structures of the em-
bryo. Some of these cells migrate past the dor-
somedial aspect of somites, a portion of the
dermomyotome known to give rise to myoblasts
early in myotome formation. Neural crest cells
in close proximity to such dermomyotomal
cells express the Notch ligand, Delta1, and cells

of the dermomyotome express Notch receptors
(Rios et al. 2011). Transient cell–cell contact
between migrating, Delta1þ neural crest cells
and Notchþ muscle progenitors in the dermo-
myotome leads to Notch signaling in the latter.
This is, in turn, required for Myf5 induction and
adoption of the skeletal muscle cell fate (Rios
et al. 2011). This “kiss and run” mode of cell–
cell contact-dependent signaling strongly sug-
gests that the concurrent timing of neural crest
cell migration and myotome formation is mech-
anistically linked.

Canonical Notch signaling involves cleavage
of its intracellular domain (NICD), which
translocates to the nucleus and binds RBP-J to
stimulate pathway-responsive gene expression
(Fortini 2009). In exploring how Notch signal-
ing promotes Myf5 expression in dermomyoto-
mal progenitor cells, it was found that NICD
inhibited GSK3b activity independently of
NICD’s transcriptional role in the nucleus
(Sieiro et al. 2016). This, in turn, led to stabili-
zation of Snai1, which promoted EMT of these
cells. Unexpectedly, NICD also drove TCF-de-
pendent reporter activity and Myf5 expression,
again independently of its canonical transcrip-
tional role. Notch-stimulated, TCF-dependent
reporter activity and Myf5 expression were in-
dependent of Wnt signaling and appeared to
result from liberation of a membrane source
of b-catenin (Sieiro et al. 2016). As described
above, EMT of dermomyotomal cells was ac-
companied by loss of N-cadherin andb-catenin
from an apical junction location. It may be that
the reduction in cell–cell adhesion that allows
muscle progenitor cells to migrate out of the
dermomyotome (and which is promoted by
the EMT program) allows b-catenin to reloc-
alize from the plasma membrane to the nucleus
and specify the myogenic cell fate via TCF-de-
pendent induction of Myf5 (Fig. 1). The mech-
anism by which b-catenin is relocalized is not
clear, but expression of a phosphorylation-de-
ficient b-catenin mutant that is poorly mobi-
lized from junctional complexes was ineffective
in Myf5 induction. Therefore, b-catenin may be
phosphorylated during EMT to trigger alter-
ation of its subcellular localization. Taken to-
gether, these results uncovered a novel mecha-
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Figure 1. Delta/Notch signaling from migrating neural crest cells to dermomyotomal muscle progenitor cells
stimulates translocation of b-catenin from adhesive junctions to the nucleus to promote Myf5 expression and
myogenic commitment. Before engagement with a neural crest cell (top), dermomyotomal cells express N-
cadherin andb-catenin in an apical location. The Myf5 gene is not expressed and the cells are multipotent. When
neural crest cells migrate across the surface of the dorsal somite, Delta1 on their surface binds to Notch1 on the
surface of dermomyotomal cells (bottom). This leads to cleavage of the Notch intracellular domain (NICD),
which acts in the cytoplasm to inhibit GSK-3b, in turn stabilizing Snai1. Snai1 induces an epithelial–mesen-
chymal transition (EMT). The dashed line between Snai1 and EMT indicates that this is a complex event; the
multiple dashed lines emanating from EMT indicate that EMT induces multiple profound changes to the cell.
Among these, N-cadherin no longer localizes to an apical site and b-catenin translocates from an adhesive
junction to the nucleus where it associates with TCF to induce expression of Myf5. Expression of Myf5 commits
progenitor cells to the skeletal muscle lineage. Alterations in N-cadherin localization are also associated with
asymmetric cell divisions (not shown, but see text for further details).
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nism whereby contact between migrating neural
crest cells and dermomyotomal progenitor cells
triggers a nontranscriptional Notch signaling
function. This noncanonical Notch signal pro-
motes a change in cell adhesion and redirection
of b-catenin’s function from the membrane to
the nucleus, thereby stimulating myogenic cell
fate acquisition (Sieiro et al. 2016).

These findings raise numerous questions. If
Notch-dependent b-catenin/TCF activity is key
to myogenic specification, what is the role of
canonical Wnt signaling—which can be ob-
served and is distinguishable from the Notch/
b-catenin activity—in this process? What kinas-
esmaybe involved inb-cateninphosphorylation
and how istheiractivity regulated? IsN-cadherin
the b-catenin partner that releases the “pool” of
b-catenin in this process or are other cadherins
involved? We note that P-cadherin, and perhaps
additional cadherins, is also expressed in the ep-
ithelial dermomyotome (Thuault et al. 2013).
How do these new findings relate to the earlier
results on N-cadherin in myogenic specification
via asymmetric cell divisions (Cinnamon et al.
2006)? Canonical Notch signaling plays roles
later in myogenesis, including inhibition of
myoblast differentiation such that appropriate
numbers of myoblasts are produced (Schuster-
Gossler et al. 2007; Vasyutina et al. 2007); how,
if at all, are these two Notch functions related?
Finally, these findings are compelling, but have
been performed only with electroporated chick
embryos. It will be interesting and important to
address the pathway with conditional mutants in
mouse embryos also.

MYOBLAST DIFFERENTIATION
AND FUSION

Differentiation of skeletal myoblasts into myo-
fibers is a multistep process involving withdraw-
al from the cell cycle, adoption of a muscle-spe-
cific transcriptional program, cell elongation,
and cell–cell fusion (Biressi et al. 2007; Comai
and Tajbakhsh 2014). Cell–cell contact is, of
course, a prerequisite for fusion of myoblasts
with each other or with nascent myofibers, but
the myoblast differentiation program as a whole
is regulated by direct cell–cell contact. It is high-

ly likely that changes in gene expression and cell
morphology are coordinated during differenti-
ation to produce this very specialized cell type.
The mechanisms by which this coordination
occurs are not fully clear, but cell–cell contact
between myoblasts is likely to play a role.

Myogenic differentiation is amenable to
analysis in vitro, as both primary mouse myo-
blasts and myoblast cell lines are easily obtained
and studied. Myoblasts are generally allowed to
proliferate in mitogen-rich medium until near
confluence, at which point they are switched to
mitogen-poor medium to stimulate differentia-
tion. Although growth factor deprivation is a
primary differentiation signal in these cultures,
high cell density itself is strongly promyogenic. It
was subsequently showed that cell–cell contact
and adhesion regulates promyogenic signal
transduction pathways. Multiple mechanisms
underlie this effect, and we have reviewed the
field previously (Krauss et al. 2005; Krauss 2010).

A central factor in cell contact-dependent
signaling in myoblasts is the multifunctional
cell-surface coreceptor, Cdon (also called Cdo).
Cdon has multiple immunoglobulin (Ig) and
FNIII repeats in its extracellular region, a single
transmembrane region, and a long cytoplasmic
tail that does not resemble other proteins and
lacks known catalytic activity (Kang et al. 1997,
1998). Cdon binds in cis to several different
adhesion molecules and signaling receptors,
and it can serve in ligand binding or signal prop-
agation, depending on the receptor complex in
question. One major binding partner for Cdon
in skeletal myoblasts is N-cadherin (Kang et al.
2003; Lu and Krauss 2010). Trans-ligation of
N-cadherin on adjacent myoblasts stimulates
assembly of signaling complexes on the Cdon
intracellular region (Fig. 2). These include direct
association with (1) Bnip-2, which binds and
brings to the complex the small GTPase,
Cdc42 (Kang et al. 2008); and (2) JLP, a scaffold
protein for the p38a/b mitogen-associated
protein (MAP) kinase pathway (Takaesu et al.
2006). Formation of such complexes stimulates
Cdc42-dependent activation of p38a/b (here-
after, p38) via a cascade of kinases that includes
Pak1/2, Tak1 and/or Ask1, and MKK3/6 (Wu
et al. 2000; Takaesu et al. 2006; Tran et al. 2012;
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Joseph and Krauss, in prep). Activated p38, in
turn, promotes myogenic differentiation
through phosphorylation of proteins that stim-
ulate the muscle-specific transcriptional activity
of MyoD. Among these promyogenic p38 sub-
strates are the MyoD dimeric partner, E47;

MEF2 proteins; the SWI-SNF chromatin re-
modeling complex subunit BAF60c; the RNA
decay-promoting factor KSRP; and the poly-
comb repressive complex 2 catalytic subunit,
EZH2 (Fig. 2) (Wu et al. 2000; Simone et al.
2004; Briata et al. 2005; de Angelis et al. 2005;
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Figure 2. N-cadherin ligation between myoblasts stimulates Cdon-dependent activation of p38, which promotes
myogenic differentiation. N-cadherin ligation occurs on contact and adhesion of myoblasts and this, in turn,
leads to assembly of signaling complexes on the intracellular region of Cdon. The scaffold protein Bnip-2
associates with both Cdon and Cdc42. Activated Cdc42 signals via Pak1/2 kinases to stimulate a p38 MAP
kinase cascade bound to the Cdon-associated scaffold protein JLP. Activated p38 phosphorylates substrates that
promote MyoD-dependent, muscle-specific gene expression to drive differentiation; among these substrates are
E47, MEF2, BAF60c, KSRP, and EZH2. p38 activity also promotes cell-surface localization of the potassium
channel, Kir2.1, which associates with Cdon. The dashed lines indicate that the p38 substrate involved in
trafficking of Kir2.1 is not identified, and it is not clear whether the association between Cdon and Kir2.1 is
a direct one. The dashed circle indicates that Kir2.1 is likely in a vesicular location before p38 activation, but the
specific trafficking events that lead to cell-surface localization are not known. See text for further details. MAP,
Mitogen-associated protein.
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Lluis et al. 2005; Rampalli et al. 2007; Serra et al.
2007; Palacios et al. 2010).

Kang and colleagues recently showed that,
in addition to its transcriptional regulatory
function, Cdon-dependent p38 activation also
promoted cell-surface expression of the inward-
ly rectifying potassium channel, Kir2.1 (Leem
et al. 2016). Furthermore, Cdon and Kir2.1
formed complexes with each other at the cell
surface. Importantly, plasma membrane hyper-
polarization mediated by Kir2.1 promoted
myoblast differentiation (Fischer-Lougheed
et al. 2001; Konig et al. 2004). Cdon2/2 myo-
blasts displayed both defective differentiation
and defective Kir2.1 activity, both of which
could be rescued by expression of a constitutive-
ly active form of the p38 upstream activating
kinase, MKK6 (Leem et al. 2016). Cdon expres-
sion is itself up-regulated by MyoD (Cole et al.
2004). Cell–cell adhesion between myoblasts,
therefore, helps stimulate a complex feedback
network of signaling and transcriptional regu-
lation that reinforces both cell surface and nu-
clear drivers of myoblast differentiation (Fig. 2).

Cdon has multiple additional roles that in-
fluence skeletal myogenesis. Cdon interacts in
cis with the netrin receptor, neogenin (Kang
et al. 2004). Like Cdon, neogenin is an Ig and
FNIII repeat–containing receptor. Myoblasts
produce both netrin-3 ligand and neogenin,
suggesting that they function in an autocrine
manner (Kang et al. 2004). Although netrins
are secreted molecules, in myoblast cultures
they are associated with cell membranes and/
or the extracellular matrix, indicating that they
signal via short range in these cells, likely con-
tributing to the promyogenic effects of cell–cell
contact. Stimulation of primary or C2C12 myo-
blasts with netrin led to activation of focal
adhesion kinase (FAK) and the extracellular sig-
nal–regulated kinase (ERK) MAP kinase (Kang
et al. 2004; Bae et al. 2009). ERK, in turn, phos-
phorylated the calcium sensor Stim1, which
promoted activation of the calcium-sensitive,
promyogenic transcription factor, NFATc3
(Lee et al. 2012). These netrin-initiated signal-
ing events occurred in a manner that is depen-
dent on both neogenin and Cdon (Kang et al.
2004; Bae et al. 2009). Cdon binds to neogenin,

but not to soluble netrin, implying its role is as a
coreceptor (Kang et al. 2004), but Cdon’s mech-
anistic function in netrin signaling is less clear
here than with cadherin-based signaling. Cdon
also serves to regulate the Hedgehog and Wnt
pathways (Zhang et al. 2006; Allen et al. 2011;
Jeong et al. 2014). However, these are less likely
to be cell–cell contact-dependent events, and
Cdon’s specific role in the ability of these path-
ways to influence muscle development is not
clear. Mice lacking Cdon displayed delayed skel-
etal muscle development, and primary myo-
blasts from such mice differentiated defectively
in vitro (Cole et al. 2004). The phenotype asso-
ciated with loss of Cdon may arise from a com-
bination of suboptimal signaling via several of
the pathways it regulates.

Myoblast fusion is fundamental to produc-
tion of myofibers and obviously requires cell–
cell contact and adhesion. Led by genetic
screens in Drosophila and followed by studies
in zebrafish and mice, great progress has been
made in understanding mechanisms of myo-
blast fusion. A recent model proposes that three
steps underlie myoblast fusion: (1) cell recogni-
tion and adhesion, (2) enhancement of cell
proximity via F-actin-propelled membrane
protrusions by one fusion partner cell and my-
osin II-dependent cortical tension in the other,
and (3) destabilization of the two apposed plas-
ma membrane lipid bilayers and formation of a
fusion pore (Kim et al. 2015). Many intracellu-
lar components that mediate steps 2 and 3 have
been identified in Drosophila and, where tested,
appear to be evolutionarily conserved in zebra-
fish and mice, and cultured cells. In contrast, a
clear picture of the factors that mediate cell rec-
ognition and adhesion in these different models
has not yet emerged. Comprehensive reviews
have recently been published on myoblast fu-
sion (Abmayr and Pavlath 2012; Hindi et al.
2013; Kim et al. 2015), and for the purposes
of this review, we will focus on open questions
pertaining to the cell–cell adhesion molecules
involved in this process.

In the Drosophila embryo, fusion takes place
between two types of myoblasts: muscle founder
cells and fusion competent myoblasts. The for-
mer express the related adhesion receptors
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Dumbfounded and Roughest, whereas the latter
express the related counter-receptors, Sticks-
and-stones, and Hibris. All of these are Ig super-
family receptors (Kim et al. 2015). Engagement
of these cell adhesion molecules triggers signal-
ing events, which ultimately promote steps 2 and
3 above. The cell–cell contact points at which
adhesion molecules and actin-rich protrusions
are localized are complex cell–cell junctions and
have been likened to synapses (Sens et al. 2010;
Duan et al. 2012; Kim et al. 2015). Many intra-
cellular signaling proteins and actin regulatory
factors that are required for myoblast fusion in
Drosophila are also required for this process in
vertebrates (Krauss 2007; Moore et al. 2007; Sri-
nivas et al. 2007; Laurin et al. 2008; Vasyutina
et al. 2009; Gruenbaum-Cohen et al. 2012).
However, the cell adhesion molecules that are
critical for this process in zebrafish and mice
may be different from those in Drosophila, and
all the critical factors are probably not yet in
sight. In zebrafish, a Dumbfounded ortholog
(Kirrel3l) and a Sticks-and-Stones ortholog
(Nephrin) have been assessed for roles in myo-
blast fusion via morpholino-mediated knock-
down. Kirrel3l morphants had a strong fusion
defect, suggesting a potentially conserved func-
tion, but they also had myofiber attachment de-
fects (Srinivas et al. 2007). Nephrin morphants
had shorter, disorganized myofibers but did not
display overt loss of myoblast fusion (Sohn et
al. 2009). Morpholino-dependent knockdown
was, however, inefficient and it may be that a
fusion defect would require a greater level of
depletion. In contrast, JAM-B and -C, two dif-
ferent Ig superfamily counter-receptors, were es-
sential for myoblast fusion in zebrafish (Powell
and Wright 2011). Studies with mice carrying
individual mutations in the members of the Kir-
rel, Nephrin, and JAM families have not been
studied specifically for muscle development or
myoblast fusion, but most mutants survive long
enough that it is not possible for a complete
block to myoblast fusion to have occurred in
these animals (Donoviel et al. 2001; Putaala
et al. 2001; Gliki et al. 2004; Sakaguchi et al.
2006; Prince et al. 2013; Yesildag et al. 2015).

Cadherins have been suggested to play a role
as adhesion molecules in myoblast fusion, but

there is little genetic evidence to support a crit-
ical role of any single cadherin in this process
(Charlton et al. 1997; Radice et al. 1997; Holl-
nagel et al. 2002). One possibility is that the
multiple cadherins that are expressed in myo-
blasts may have overlapping or compensatory
functions (Charlton et al. 1997; Radice et al.
1997; Hollnagel et al. 2002; Marthiens et al.
2002). Consistent with this notion is that forced
expression of the intracellular region of E-cad-
herin in C2C12 myoblasts blocked both fusion
into myotubes and cell-surface localization of
endogenous N- and M-cadherin (note E-cad-
herin is not expressed endogenously in these
cells, but its intracellular region is similar to
that of the other cadherins) (Ozawa 2015). We
have recently constructed mice that lack N- and
M-cadherin in the muscle lineage. Although
myoblast fusion was not obviously perturbed
in these animals, primary myoblasts isolated
from them had a specific fusion defect in vitro
(AJ Goel and RS Krauss, in prep). This suggests
that multiple cadherins may indeed display re-
dundant functions in myoblast fusion, but there
may be additional redundancy or requirements
in vivo than in vitro.

It is important to note that although Kirrel,
Nephrin, Jam, and cadherin family proteins are
sufficient to promote cell–cell adhesion, they
are not sufficient to drive cell–cell fusion (Mar-
tı̀n-Padura et al. 1998; Galletta et al. 2004; Shi-
lagardi et al. 2013). Furthermore, their expres-
sion is not restricted to the skeletal muscle
lineage or even to other fusogenic cell types.
The identity of a true fusogen in myoblast
fusion is, therefore, of very high interest. One
possibility here is the recently discovered myo-
maker, a cell-surface protein with seven mem-
brane-spanning regions (Millay et al. 2013,
2016). Myomaker (also called TMEM8c) is es-
sential for myoblast fusion in both mice and
zebrafish (Millay et al. 2013, 2014; Landemaine
et al. 2014). It is expressed exclusively in the
skeletal muscle lineage and at the times during
muscle development and regeneration when fu-
sion is occurring. Significantly, ectopic expres-
sion of myomaker in fibroblasts allows them to
fuse with myoblasts, an activity not seen previ-
ously with any other protein (Millay et al. 2013,
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2016; Landemaine et al. 2014). Whether myo-
maker is the long sought direct fusogen, or
somehow regulates the process in another fun-
damental way, is not yet clear. However, under-
standing its mechanism of action, how it might
interact with adhesion molecules, and what cell-
surface junctional complexes it is a component
of are important questions.

Finally, a recent finding has suggested that
cell–cell contact and signaling between myo-
blasts and a nonmyogenic, muscle interstitial
cell stimulates neonatal muscle growth in mice
by promoting myoblast migration to fusion
sites on myofibers (Gu et al. 2016). Myofiber
formation is thought to be largely complete by
birth, but fibers continue to grow during the
early postnatal period via fusion of myoblasts
at the tips of fibers. Specific, muscle-resident
cells that expressed the surface marker NG2
contacted myoblasts to promote their migration
to these sites. NG2þ cells also had high NF-kB
activity, which directly regulated expression of
ephrin-A5. Signaling by ephrins and their Eph
receptors is a widely used mechanism of direct-
ed cell motility and migration (Lisabeth et al.
2013). Genetic removal of the p65 subunit of
NF-kB or ephrin-A5 from NG2þ cells showed
that these factors were important for the ability
of NG2þ cells to promote myoblast motility in
vitro and for proper myoblast localization and
fusion in postnatal myofiber growth (Gu et al.
2016). As seen with neural crest cells and so-
mitic muscle progenitors, these intriguing re-
sults provide another example of how cell con-
tact–mediated signaling between nonmuscle
cell types and muscle precursors regulates spe-
cific events in muscle development.

MUSCLE FIBER-TYPE PATTERNING

Skeletal myofibers are classified into different
types by a variety of criteria, including expres-
sion of specific isoforms of MyHC, use of gly-
colytic versus oxidative metabolism, and speed
of contraction (i.e., twitch) and fatigue (Schiaf-
fino and Reggiani 2011; Talbot and Maves
2016). A broad classification scheme separates
slow-twitch fibers, called Type 1, from fast-
twitch fibers, which encompass Types 2A, 2X,

and 2B. Slow-twitch and Type 2A fibers use ox-
idative metabolism. As their name implies,
slow-twitch fibers are the slowest contracting
and fatiguing of all the myofiber types, with
2A fibers being the slowest contracting and fa-
tiguing of the fast-twitch fibers. Type 2X and 2B
fibers use glycolytic metabolism, and they con-
tract and fatigue faster than do 2A fibers (or,
naturally, than slow-twitch fibers).

Fiber type identity begins to be specified
during embryonic development. However, late
in prenatal development and continuing into
the postnatal period, interactions between my-
ofibers and their innervating motor neurons
play a key role in stable fiber-type specification.
Newly formed myofibers can contact axons
from many different motor neurons, but over
time all neuromuscular synapses but one, per
fiber, are lost. Mature motor neurons innervate
many individual fibers, and together these are
called motor units. Fiber type identity, includ-
ing expression of specific isoforms of MyHC, is
plastic until myofibers are innervated by a single
motor neuron and organized into a motor unit
(Sanes and Lichtman 1999). Motor neurons
themselves are also categorized into slow versus
fast-resistant versus fast-fatigable, based on,
among other properties, their firing rate. With-
in a motor unit, the neuronal firing rate helps
specify fiber type. These observations raise the
critical question of how motor neurons of the
appropriate type interact stably with fibers that
already possess some degree of fiber-type iden-
tity. Recent work by Cornelison and colleagues
implicates ephrins and their cognate Eph recep-
tors in this process (Stark et al. 2015).

Of eight ephrins screened for expression in
adult mouse muscle, only ephrin-A3 was ex-
pressed in a nonuniform pattern (Stark et al.
2015). Costaining for the various types of
MyHC revealed that ephrin-A3 was expressed
exclusively on Type 1 (slow) fibers and that all
such fibers were positive for ephrin-A3 (Stark
et al. 2015). Ephrin-A3 expression on such fi-
bers initiated after expression of MyHC-I (the
isoform expressed by slow fibers), indicating
that it is a part of the program that characterizes
the early, cell-autonomous slow fiber program.
To assess a role for ephrin-A3 in fiber-type pat-
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terning, a series of genetic experiments were
performed. The number of MyHC-Iþ fibers
was not different between control and ephrin-
A3-null mice through the first two weeks of
postnatal life. However, between P14 and adult-
hood, the mutant mice underwent a striking
diminution in numbers of slow fibers in most
hind limb muscles, without a change in overall
fiber number (Stark et al. 2015). Taken together,
these results suggested that ephrin-A3 is dispen-
sable for early specification of the slow fiber
type, but is required for the process whereby
fiber type identity is solidified and maintained
by motor neuron engagement. To further test
this notion, ephrin-A3 was ectopically ex-
pressed via in vivo plasmid electroporation of
the anterior region of the adult Tibialis anterior
muscle, which normally contains no slow fibers.
This was followed by a sciatic nerve crush de-
nervation protocol, which stimulates reinnerva-
tion by endogenous repair processes. Electropo-
ration of a control plasmid was without effect,
irrespective of whether denervation had oc-
curred, and expression of ephrin-A3 in myofib-
ers was without effect in the absence of dener-
vation; however, ephrin-A3 expression followed
by denervation resulted in production of abun-
dant slow fibers in the electroporated area.
These data are consistent with the conclusion
that ephrin-A3 plays a role in motor neuron–
dependent fiber-type specification and pattern-
ing, both during normal muscle maturation
and reinnervation after injury.

As Ephrins bind their cognate Eph receptors
during cell–cell interactions to provide contact-
based repulsion signals (Lisabeth et al. 2013),
these investigators searched for Eph receptors
with a reciprocal expression pattern to ephrin-
A3. EphA8 was found to be expressed at the
neuromuscular junctions of fast, but not slow,
fibers (Stark et al. 2015). Interestingly, the cell
type on which synaptic EphA8 is expressed is a
nonmyelinating glial cell present at neuromus-
cular junctions called terminal Schwann cells.
Taken together, these results lead to the follow-
ing model: After early specification during
embryonic development, MyHC-Iþ slow fibers
express ephrin-A3. Many motor axons of both
slow and fast subtypes can make contact with

these fibers (with fast axons outnumbering
slow ones), leading to polyinnervation. During
the 2- to 4-week postnatal period, MyHC-Iþ/
ephrin-A3þ fibers become stably monoinner-
vated only by neurons whose Schwann cells
lack EphA8; in contrast, neuromuscular junc-
tions that harbor EphA8þ Schwann cells are
found only on fast fibers, which lack ephrin-
A3 (Stark et al. 2015). It is logical to propose,
therefore, that cell contact-based repulsion be-
tween MyHC-Iþ/ephrin-A3þfibers and EphA8þ

presynaptic termini promotes stable monoin-
nervation of slow fibers by only EphA82 synaps-
es. In contrast, ephrin-A32 (fast) fibers can be
monoinnervated by EphA8þ synapses. This
cell–cell contact-based mechanism can explain
at least some of the final reciprocal patterns of
myofiber types and their associated motor neu-
rons, and the overall pattern of slow versus fast
fiber types.

SATELLITE CELL–MYOFIBER INTERACTIONS

Adherens junction-like structures are not
known to exist between skeletal myofibers. (It
is worth noting that “cardiomyocytes” do have
such structures (Vite and Radice 2014.) How-
ever, adult myofibers have stable cell–cell junc-
tions in two notable cases. One is the neuro-
muscular junction. This is a complex synapse
essential for nervous control of muscle contrac-
tion. Development and maintenance of the
neuromuscular junction is beyond the scope
of this review, which is focused on myogenesis,
and readers are directed to a review on this topic
(Tintignac et al. 2015). The second is the junc-
tion that exists between myofibers and their as-
sociated satellite cells. Satellite cells are adult
skeletal muscle stem cells located between the
myofiber and its surrounding basal lamina, and
they are the source of skeletal muscle’s remark-
able regenerative properties (Brack and Rando
2012; Doles and Olwin 2015; Dumont et al.
2015). Unlike tissues such as the epidermis or
hematopoietic system, myofibers are not re-
plenished homeostatically, and as such, satellite
cells do not play a major role in maintenance of
adult skeletal muscle (Fry et al. 2015; Keefe et al.
2015). Therefore, satellite cells exist in a largely
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quiescent state in adult mice. However, on mus-
cle injury they are activated to proliferate and
produce the myoblasts that will ultimately dif-
ferentiate to form new myofibers; they also self-
renew to replenish the muscle stem cell com-
partment (Brack and Rando 2012; Doles and
Olwin 2015; Dumont et al. 2015).

Within their niche, satellite cells display po-
larized adhesive interactions (Fig. 3). On their
basal side, they express integrins (e.g., integrin
a7b1) that bind laminins present in the basal
lamina that enwraps each individual myofiber.
On their apical side, satellite cells are directly
apposed to the plasma membrane of their asso-
ciated myofiber. M-cadherin, a muscle-specific
classical cadherin, is localized exclusively at the
site of contact between the satellite cell and the
fiber. Quiescence is the hallmark property of
satellite cells, and it is widely believed that the
satellite cell niche plays a role in its maintenance.
This is important as in instances in which qui-
escence is inappropriately broken, satellite cell
number and/or function is diminished (Fukada

et al. 2011; Bjornson et al. 2012; Chakkalakal
et al. 2012; Cheung et al. 2012; Mourikis et al.
2012; Gopinath et al. 2014; Dumont et al. 2015).
In 1990, Bischoff (1990) reported that myofib-
ers themselves are an important component of
the quiescence-inducing niche. These results in-
dicated that direct cell–cell interactions be-
tween myofibers and satellite cells were likely
to regulate this key property of the latter.

The molecular mechanisms that underlie
the ability of myofibers to promote satellite cell
quiescence are poorly understood. However,
Notch signaling is critical to the maintenance
of satellite cell quiescence (Bjornson et al.
2012; Mourikis et al. 2012). A transgenic Notch
reporter construct showed activity in quiescent
satellite cells in vivo, and freshly isolated satellite
cells expressed high levels of direct Notch path-
way target genes such as Hes1, Hey1, and HeyL.
Expression of these genes was sharply di-
minished when satellite cells were activated in
response to injury in vivo or cultured under
activating conditions in vitro. RBP-J is a DNA-

Delta

Notch

Cadherins

Satellite
cell

Basal lamina
Itgα7β1

Myofiber

Figure 3. Quiescent satellite cells are polarized and form cell–cell junctions with myofibers. Satellite cells reside
between myofibers and their surrounding basal lamina. Cadherins and Notch receptors are localized to the
apical membrane of satellite cells and bind to cadherins and Notch ligands (e.g., Delta) on the myofiber
membrane. Integrin a7b1 (Itga7b1) is localized to the basal membrane of satellite cells and binds laminin
present in the basal lamina.
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binding factor required for Notch-mediated
transcriptional responses (Fortini 2009). When
Rbpj was conditionally mutated in adult mouse
satellite cells, these cells were depleted as a result
of spontaneous activation and terminal dif-
ferentiation in the absence of self-renewal
(Bjornson et al. 2012; Mourikis et al. 2012).
Consequently, such animals failed to regenerate
skeletal muscles in response to injury. Com-
bined germline knockout of Hey1 and HeyL
(also called Hesr1 and Hesr3) resulted in a sim-
ilar, although not identical, phenotype, suggest-
ing they are relevant Notch target genes (Fukada
et al. 2011).

Presumably, Notch ligands on myofibers ac-
tivate Notch receptors on satellite cells to stim-
ulate contact-dependent signals that maintain
quiescence in the absence of injury. The identi-
ty of the relevant Notch receptors expressed
by satellite cells and Notch ligands expressed by
myofibers is not known. Notch3 is likely to be
involved, as its germline mutation resulted in
perturbation of satellite cell proliferation (Kita-
moto and Hanaoka 2010), but the phenotype of
these mice was distinct from, and mild relative
to, that seen in Rbpj conditional mutants or
Hey1/HeyL double knockouts. Resting satellite
cells also express Notch1 and Notch2 (Bjornson
et al. 2012; Mourikis et al. 2012), so signaling by
multiple Notch receptors may be involved in
maintenance of quiescence. Although Notch/
RBP-J signaling is clearly a key regulator of sat-
ellite cell quiescence, the transcriptional targets
that are responsible for the long-term mainte-
nance of this fascinating cellular state are not
yet illuminated. Although Hes/Hey factors are
proximal downstream components, they are
transcriptional regulators themselves, so must
be acting to help control a quiescence program.
It is worth noting that Notch signaling is also
required for satellite cells to occupy their niche
in late development and, in its absence, satellite
cells remain in the interstitium between fibers
(Bröhl et al. 2012). The relationship between
this function for Notch signaling and Notch’s
role in maintenance of quiescence in adult sat-
ellite cells is unexplored and of high interest.

Based on its specific expression pattern and
localization, M-cadherin (encoded by Cdh15)

seems well suited to play a role in fiber-satellite
cell communication. However, the germline
Cdh15 mouse mutant displayed little to no phe-
notype in skeletal muscle development or re-
generation (Hollnagel et al. 2002). Satellite cells
express additional classical cadherins, which are
likely to act redundantly with M-cadherin in
satellite cell function. For example, we have ob-
served that satellite cells that lack both N- and
M-cadherin were prone to activation in the ab-
sence of injury, suggesting cadherins play a role
in maintenance of quiescence (AJ Goel and RS
Krauss, in prep.). This topic warrants further
attention, as does the general subject of adhesive
interactions between myofibers and their asso-
ciated satellite cells.

CONCLUDING REMARKS

Most research on the role of cell junctions and
cell–cell contact-dependent signaling in skele-
tal muscle development has been focused on
interactions between myoblasts that promoted
differentiation and fusion, or formation of neu-
romuscular junctions (Krauss 2010; Kim et al.
2015; Tintignac et al. 2015). Recent studies have
shown that cell–cell contact between various
nonmuscle and muscle cell types is important
for several steps of myogenesis and provided
mechanistic information on these processes.
Commitment of progenitor cells to the skeletal
muscle lineage, postnatal growth of fibers by
recruitment of myoblasts to sites of fusion,
and fiber-type patterning are each regulated in
this manner. Therefore, cell–cell contact-de-
pendent signaling is important at most, if not
all, steps of myogenesis (Table 1).

Many questions remain. The details of the
downstream signaling events triggered by Notch
receptors, cadherins, ephrins, and other adhe-
sion receptors in most stages of myogenesis are
not well understood. Additionally, it is clear that
contact between cells in some of these processes
is transient. How long such cells must be in
direct contact for successful signaling, how con-
tact is broken, and the molecular nature of the
cell junctions that support signaling are all in-
teresting questions. Despite tremendous pro-
gress in understanding mechanisms of myoblast
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fusion, the adhesion receptors required in ver-
tebrate species are not fully identified. The dis-
covery of myomaker was groundbreaking, and
studies on whether it is the long elusive fusogen,
what its interacting partners are, and how it
works are of high interest. Finally, it is somewhat
ironic that the stable cell–cell junction present
between myofibers and their associated satellite
cells resembles well-studied junctions in other
tissues, yet is poorly characterized and how it
regulates satellite cell biology is largely un-
known. Continued study with a variety of mod-
el organisms will surely illuminate these ques-
tions. Furthermore, the growing emphasis on
understanding regenerative myogenesis (which
is similar but not identical to developmental
myogenesis) and its implications for muscle
diseases and aging will bring deserved attention
to these fundamental questions.
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