Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
skip to main content
10.1145/2939672.2939785acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections

XGBoost: A Scalable Tree Boosting System

Authors: Tianqi Chen, Carlos GuestrinAuthors Info & Claims
KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Pages 785 - 794
Published: 13 August 2016 Publication History

Abstract

Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

Supplementary Material

MP4 File (kdd2016_chen_boosting_system_01-acm.mp4)

References

[1]
R. Bekkerman. The present and the future of the kdd cup competition: an outsider's perspective.
[2]
R. Bekkerman, M. Bilenko, and J. Langford. Scaling Up Machine Learning: Parallel and Distributed Approaches. Cambridge University Press, New York, NY, USA, 2011.
[3]
J. Bennett and S. Lanning. The netflix prize. In Proceedings of the KDD Cup Workshop 2007, pages 3--6, New York, Aug. 2007.
[4]
L. Breiman. Random forests. Maching Learning, 45(1):5--32, Oct. 2001.
[5]
C. Burges. From ranknet to lambdarank to lambdamart: An overview. Learning, 11:23--581, 2010.
[6]
O. Chapelle and Y. Chang. Yahoo! Learning to Rank Challenge Overview. Journal of Machine Learning Research - W & CP, 14:1--24, 2011.
[7]
T. Chen, H. Li, Q. Yang, and Y. Yu. General functional matrix factorization using gradient boosting. In Proceeding of 30th International Conference on Machine Learning (ICML'13), volume 1, pages 436--444, 2013.
[8]
T. Chen, S. Singh, B. Taskar, and C. Guestrin. Efficient second-order gradient boosting for conditional random fields. In Proceeding of 18th Artificial Intelligence and Statistics Conference (AISTATS'15), volume 1, 2015.
[9]
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9:1871--1874, 2008.
[10]
J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5):1189--1232, 2001.
[11]
J. Friedman. Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4):367--378, 2002.
[12]
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28(2):337--407, 2000.
[13]
J. H. Friedman and B. E. Popescu. Importance sampled learning ensembles, 2003.
[14]
M. Greenwald and S. Khanna. Space-efficient online computation of quantile summaries. In Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data, pages 58--66, 2001.
[15]
X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers, and J. Q. n. Candela. Practical lessons from predicting clicks on ads at facebook. In Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, ADKDD'14, 2014.
[16]
P. Li. Robust Logitboost and adaptive base class (ABC) Logitboost. In Proceedings of the Twenty-Sixth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI'10), pages 302--311, 2010.
[17]
P. Li, Q. Wu, and C. J. Burges. Mcrank: Learning to rank using multiple classification and gradient boosting. In Advances in Neural Information Processing Systems 20, pages 897--904. 2008.
[18]
X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar. MLlib: Machine learning in apache spark. Journal of Machine Learning Research, 17(34):1--7, 2016.
[19]
B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo. Planet: Massively parallel learning of tree ensembles with mapreduce. Proceeding of VLDB Endowment, 2(2):1426--1437, Aug. 2009.
[20]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825--2830, 2011.
[21]
G. Ridgeway. Generalized Boosted Models: A guide to the gbm package.
[22]
S. Tyree, K. Weinberger, K. Agrawal, and J. Paykin. Parallel boosted regression trees for web search ranking. In Proceedings of the 20th international conference on World wide web, pages 387--396. ACM, 2011.
[23]
J. Ye, J.-H. Chow, J. Chen, and Z. Zheng. Stochastic gradient boosted distributed decision trees. In Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM '09.
[24]
Q. Zhang and W. Wang. A fast algorithm for approximate quantiles in high speed data streams. In Proceedings of the 19th International Conference on Scientific and Statistical Database Management, 2007.
[25]
T. Zhang and R. Johnson. Learning nonlinear functions using regularized greedy forest. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(5), 2014.

Cited By

View all
  • (2025)Robust watermarking against arbitrary scaling and cropping attacksSignal Processing10.1016/j.sigpro.2024.109655226(109655)Online publication date: Jan-2025
  • (2025)Online motion accuracy compensation of industrial servomechanisms using machine learning approachesRobotics and Computer-Integrated Manufacturing10.1016/j.rcim.2024.10283891(102838)Online publication date: Feb-2025
  • (2025)Machine learning approach in multi-channel fiber-optic SPR sensorsOptics & Laser Technology10.1016/j.optlastec.2024.111618181(111618)Online publication date: Feb-2025
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
August 2016
2176 pages
ISBN:9781450342322
DOI:10.1145/2939672
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 August 2016

Permissions

Request permissions for this article.
Request Permissions

Check for updates

Author Tag

  1. large-scale machine learning

Qualifiers

  • Research-article

Funding Sources

Conference

KDD '16
Sponsor:

Acceptance Rates

KDD '16 Paper Acceptance Rate 66 of 1,115 submissions, 6%;
Overall Acceptance Rate 1,133 of 8,635 submissions, 13%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)44,327
  • Downloads (Last 6 weeks)5,278
Reflects downloads up to 21 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2025)Robust watermarking against arbitrary scaling and cropping attacksSignal Processing10.1016/j.sigpro.2024.109655226(109655)Online publication date: Jan-2025
  • (2025)Online motion accuracy compensation of industrial servomechanisms using machine learning approachesRobotics and Computer-Integrated Manufacturing10.1016/j.rcim.2024.10283891(102838)Online publication date: Feb-2025
  • (2025)Machine learning approach in multi-channel fiber-optic SPR sensorsOptics & Laser Technology10.1016/j.optlastec.2024.111618181(111618)Online publication date: Feb-2025
  • (2025)Elastic modulus prediction for high-temperature treated rock using multi-step hybrid ensemble model combined with coronavirus herd immunity optimizerMeasurement10.1016/j.measurement.2024.115596240(115596)Online publication date: Jan-2025
  • (2025)Biomass flame spectroscopy technique to identify wood species through spectral emission during combustion processesMeasurement10.1016/j.measurement.2024.115581240(115581)Online publication date: Jan-2025
  • (2025)Nonlinear and threshold effects of the built environment, road vehicles and air pollution on urban vitalityLandscape and Urban Planning10.1016/j.landurbplan.2024.105204253(105204)Online publication date: Jan-2025
  • (2025)A Universal Adaptive Algorithm for Graph Anomaly DetectionInformation Processing & Management10.1016/j.ipm.2024.10390562:1(103905)Online publication date: Jan-2025
  • (2025)A stacking ensemble model for predicting the flexural fatigue life of fiber-reinforced concreteInternational Journal of Fatigue10.1016/j.ijfatigue.2024.108599190(108599)Online publication date: Jan-2025
  • (2025)Explainable machine learning-based fatigue assessment of 316L stainless steel fabricated by laser-powder bed fusionInternational Journal of Fatigue10.1016/j.ijfatigue.2024.108588190(108588)Online publication date: Jan-2025
  • (2025)Prediction of combustion pressure with deep learning using flame imagesFuel10.1016/j.fuel.2024.133203380(133203)Online publication date: Jan-2025
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media

View Table of Contents