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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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Almost two-thirds of emerging market and developing 
economies rely heavily on resource sectors for economic 
activity, fiscal and export revenues. In these economies, eco-
nomic planning requires sound baseline projections for the 
global prices of the commodities they rely on and a sense 
of the risks around such baseline projections. This paper 
presents a model suite to prepare well-founded forecasts for 
the global prices for oil and six industrial metals (aluminum, 
copper, lead, nickel, tin, and zinc). The model suite adapts 

six approaches used in the literature and tests their forecast 
performance. Broadly speaking, futures prices or bivariate 
correlations performed well at short horizons, and con-
sensus forecasts and a large-scale macroeconometric model 
performed well at long horizons. The strength of Bayesian 
vector autoregression models lies in generating forecast sce-
narios. The sizable forecast error bands generated by the 
model suite highlight the need for policy makers to engage 
in careful contingency planning for higher or lower prices. 

This paper is a product of the Development Prospects Group, Development Economics. It is part of a larger effort by the 
World Bank to provide open access to its research and make a contribution to development policy discussions around the 
world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The authors may 
be contacted at jkhadan@worldbank.org.  
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1. Introduction 

Almost two-thirds of emerging market and developing economies (EMDEs) depend heavily on 
commodities for export or fiscal revenue and economic activity. Among commodity-exporting 
EMDEs, resource sectors accounted for an average of 39 percent of exports of goods and non-
factor services, 31 percent of goods exports, and 10 percent of value added in 2019. In some 
commodity-importing EMDEs, in turn, commodities account for a large share of imports and, in 
the presence of subsidies, fiscal spending. For both public and private sectors, the ability to engage 
in sound economic and financial planning, therefore, depends heavily on the quality of commodity 
price forecasts. Yet, many institutions rely on futures prices for commodity price forecasts, despite 
their well-known shortcomings (Alquist and Kilian 2010).  

This paper offers a framework for commodity price forecasts, at least for the subset of seven 
industrial commodities (aluminum, copper, lead, nickel, oil, tin, and zinc) that account for 8.5 
percent of global exports and 31.6 percent of global commodity trade.1 It presents a suite of models 
adapted from the literature that forecasts commodity prices. The development of a model suite, 
rather than the attempt to identify a single “best” model, is in the spirit of Baumeister and Kilian 
(2014, 2015). For oil prices, their findings show that forecast performance can be significantly 
improved if several forecasting approaches are combined.  

Specifically, the paper addresses the following questions. First, which models are included in the 
model suite? Second, how does the forecasting performance of these models compare? Third, what 
are the implications for policy makers in EMDEs? 

This paper contributes to the literature in several ways. The previous literature is summarized in 
the next section. For each of the commodities included here, there are several studies arguing that 
they have identified the best-performing forecasting model for their sample horizon, frequency, 
and commodity.  

First, this paper differs from the existing literature in opting for consistency: it applies a consistent 
set of models to all commodities under consideration, using data at the quarterly frequency, for the 
same quarterly forecasting horizon from 2015-2022.  

Second, this paper selects the approaches in the model suite as those that, according to the existing 
literature, have arguably performed best for their selected commodity. For example, Bayesian 
vector autoregression models (BVARs) have been explored extensively in the literature on oil 
prices. Other approaches, especially machine learning techniques, have been heavily used in the 
literature on metals prices. We choose particularly well-established candidate models from all 
strands of the literature. We evaluate their relative forecast performance testing for statistically 
significant differences in bias (mean error) and root mean squared forecast errors as well as the 

 
1 The analysis is restricted to these commodities because their demand is primarily driven by economic growth, in 
contrast to demand for agricultural commodities, which is mainly driven by population growth (Baffes and Nagle 
2022; World Bank 2019). Oil prices are treated as representative of energy prices more broadly because, until recently, 
they have generally correlated closely with non-oil energy prices. 
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test for forecast accuracy developed by Diebold and Mariano (1995) and the test for directional 
forecast accuracy developed by Pesaran and Timmermann (2009).2  

The paper documents three main findings. First, all approaches other than the BVAR (and, for 
copper and lead, consensus forecasts) did well in terms of directional accuracy, at least at horizons 
of less than one year. Forecast biases typically did not differ significantly across models for most 
forecast horizons and commodities. However, forecast precision, as captured in root mean squared 
errors, differed significantly.  

Second, futures prices or bivariate correlations performed well at short horizons for most 
commodities. Consensus forecasts and a macroeconometric model (Oxford Economic Model) were 
preferred at long horizons.  

Third, the reduced form BVAR model had significantly poorer forecast performance than all other 
approaches, both in terms of bias and precision, for all commodities and all horizons.3 Also, the 
strength of BVAR models lies not only in forecast performance, but in scenario analysis: Bayesian 
vector autoregressive (BVAR) models are an important approach that allows a straightforward 
translation of global output growth forecasts into industrial commodity price forecasts. 

Section 2 reviews the extensive literature on commodity price forecasting. Section 3 presents the 
six models selected for forecasting the seven industrial commodity prices. Section 4 discusses 
these models’ forecast performance. Section 5 summarizes the main findings and highlights the 
uncertainty in commodity price forecasts.  

2. Literature review 

The empirical literature on commodity price forecasting distinguishes between quantitative 
methods and qualitative methods. The most common quantitative methods used in the forecasting 
literature include financial models, Bayesian time series models, univariate time series models, 
and non-standard methods such as Artificial Neural Networks (ANN) and Support Vector 
Machines (SVM). Qualitative approaches include methods such as belief networks, the Delphi 
procedure, fuzzy logic and expert systems, and text mining techniques (Behmiri and Manso 2013; 
Drachal 2016; Frey et al. 2009). This review of the commodity price forecasting literature focuses 
on quantitative methods for crude oil and metal commodity prices (Table 1).  

2.1. Crude oil price forecasting 

The review of the literature on crude oil price forecasting draws on 40 studies in peer-reviewed 
journals, most of which examine West Texas Intermediate (WTI) prices and five of which examine 

 
2 Diebold (2015), in a review of the use of the test of Diebold and Mariano (1995) argue that sometimes simpler 
approaches remain appropriate. Here, therefore, we have used both the comparisons of bias and root mean squared 
errors and the formal tests of Diebold and Mariano (1995) and Pesaran and Timmerman (2009).   
3 There are caveats. First, the sample size of the BVAR is much smaller than the other approaches due to data 
availability. The BVAR in this paper uses the quarterly average of monthly data while the other methods use monthly 
data. Second, the BVAR predicts real prices, then inflates real values to nominal prices by actual inflation rates. 
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Brent prices. 4  An about equal number of studies examine the performance of (univariate or 
multivariate) time series models and machine learning techniques (Figure 1). The vast majority of 
studies benchmark their models under examination against a no-change forecast or futures prices. 
Most studies examined time periods that ended before the collapse in oil prices in mid-2014 and 
relied on monthly data frequencies. Forecast horizons between 3 and 12 months and above one 
year were almost equally common.  

2.1.1 Futures prices  

Futures prices are widely used for forecasting purposes, including by international organizations 
such as the Asian Development Bank, the Inter-American Development Bank, the International 
Monetary Fund, and central banks such as the Bank of England and the ECB (Inter-American 
Development Bank 2022; International Monetary Fund 2014; Nixon and Smith 2012; Svensson 
2006). They provide a useful forecasting tool for policy institutions since they are based on market 
expectations of future spot prices and are easy to communicate (Baumeister 2022; Manescu and 
Van Robays 2017).  

In principle, futures prices incorporate the collective judgment of market participants, but they 
differ systematically from expected future spot prices. The deviation of futures prices from the 
expected spot price for storable commodities such as crude oil is related to a risk premium (the 
compensation to speculators), a convenience yield (the benefit of holding physical inventories), 
and costs related to storage and interest. Futures prices usually underpredict future spot prices 
because the cost component tends to be smaller than the risk and convenience yield components 
(Manescu and Van Robays 2017; Reeve and Vigfusson 2011).5  

In practice, several studies have found that futures prices tend to be unbiased predictors of future 
spot oil prices but they are not always efficient predictors.6 Futures prices have underperformed 
forecasts from a no-change benchmark (Abosedra and Baghestani 2004; Alquist and Kilian 2010; 
Alquist, Kilian and Vigfusson 2013; Chernenko, Schwarz and Wright 2004; Chu et al. 2022; 
Drachal 2016), VAR models (Baumeister and Kilian 2012; Baumeister and Kilian 2014), machine 
learning techniques (Moshiri and Foroutan 2006) and univariate time series models (Jin 2017; 
Miao et al. 2017; Naser 2016; Yousefi, Weinreich and Reinarz 2005). This finding holds for both 
WTI and Brent crude oil prices with forecast horizons up to one year. The forecasting performance 

 
4 The WTI price has increasingly reflected U.S.-specific rather than global oil market dynamics since 2010 (Berk 
2016; Manescu and Robays 2017). 
5 The futures oil market is characterized by backwardation more than two-thirds of the time (Pakko 2005). This occurs 
when the spot price of oil is higher than prices trading in futures market (Alquist and Arbatli 2010; Alquist and Kilian 
2010; Emmons and Yeager 2002; Hamilton and Wu 2014; Reeve and Vigfusson 2011; Singleton 2014). 
6 See, for example, Abosedra (2006); Abosedra and Baghestani (2004); Bopp and Lady (1991); Chinn, LeBlanc and 
Coibion (2005); Fritz and Weber (2012); Jiang, Xie and Zhou (2014); Moosa and Aloughani (1994); Shambora and 
Rossiter (2007).  
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of futures prices has tended to deteriorate with the forecast horizon (Alquist, Kilian and Vigfusson 
2013; Reichsfeld and Roache 2011).7  

The predictive content of futures prices appears to have improved since the mid-2000s, possibly 
due to increased financialization of commodity markets (Ellwanger and Snudden 2023). Using 
weekly data, Rubaszek et al. (2020) found that futures prices outperformed the random walk 
benchmark. Moreover, in an evaluation of alternative approaches to the random walk benchmark 
for commodity price forecasts, Kwas and Rubaszek (2021) found that alternative benchmarks to 
random walk can produce similar and, in some cases, superior forecast accuracy. The authors noted 
that for nominal commodity prices, the random walk benchmark should be supplemented by 
futures-based forecasts, while a local projections approach should serve as an alternative 
benchmark for real commodity prices. 

There is some evidence that information contained in futures prices can improve forecasts when 
combined with other information or when examined over long periods. For example, models 
including both futures and spot WTI prices have yielded more accurate forecasts than raw oil 
futures prices (Wu and McCallum 2005). Vector error correction models (VECM) and vector 
autoregression (VAR) models suggest that the long-run relationship between spot and future WTI 
price fluctuations explains a sizable portion of in-sample oil price movements (Coppola 2008). 
However, in-sample relationships between spot and future prices do not necessarily translate into 
improved out-of-sample forecasts (Rubaszek et al. 2020).  

2.1.2 Univariate time series models  

Several studies have shown that univariate time series models perform poorly against other 
approaches. Univariate models produce less accurate forecasts than futures prices (Abosedra 2006; 
Chinn and Coibion 2014), BVAR models (Baumeister and Kilian 2012), and machine learning 
techniques (Fernandez 2007; Godarzi et al. 2004; Li et al. 2018; Mostafa and El-Masry 2016; Xie 
et al. 2006; Yu, Wang and Lai 2008) although they outperform the no-change benchmark (Alquist, 
Kilian and Vigfusson 2013; Chen 2014; Coppola 2008; Cortazar, Ortega and Valencia 2021; Jin 
2017).  

For horizons up to 12 months, an autoregressive–moving-average (ARMA) model—a widely used 
univariate time series model in the forecasting literature—lacks directional accuracy and produces 
larger forecast errors than VAR models (Baumeister and Kilian 2012). Machine learning methods 
have outperformed ARMA models in both level and directional forecasting accuracy (Lu et al. 
2021). Autoregressive integrated moving average (ARIMA) models have also had poorer out-of-
sample forecasting power than non-standard methods such as nonlinear ANN and SVM 
(Fernandez 2007; Mostafa and El-Masry 2016; Xie et al. 2006).  

 
7 An exception is Chu (2022), who found that while futures prices are inferior to no-change forecasts for WTI up to 
one year, they outperform no-change forecasts for horizons from one to five years. 
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While other time series models have been used to forecast oil price levels, the generalized 
autoregressive conditional heteroskedasticity (GARCH) family of models is the main approach 
used to model and forecast oil price volatility. Markov switching stochastic volatility models have 
outperformed both GARCH and historical volatility models for forecasting WTI and Brent oil 
price volatility for both in-sample and out-of-sample forecasts (Vo 2009; Wang, Wu and Yang 
2016).8 The predictive accuracy of oil price realized volatility has been enhanced by accounting 
for implied volatility and additional information on stocks, exchange rates, macroeconomic 
variables, and other market variables (Degiannakis and Filis 2017; Haugom et al. 2014; Pincheira-
Brown et al. 2022; Wen, Gong and Cai 2016). 

2.1.3 Multivariate time series models 

Models that include the behavior of economic agents and economic variables can improve 
forecasts of crude oil prices. Baumeister, Korobilis and Lee (2022) showed that the most accurate 
models for Brent oil prices forecast included their global economic conditions indicator, which 
covers several dimensions of the global economy. OPEC (Organization of the Petroleum Exporting 
Countries) decisions relating to production quotas, overproduction, spare capacity, and capacity 
utilization have had statistically significant effects on crude oil price forecasts in the short term 
(Dées et al. 2007; Kaufmann et al. 2004; Tang and Hammoudeh 2002; Zamani 2004). The world 
output gap and the U.S. dollar real effective exchange rate have played a statistically significant 
role in explaining oil and copper price dynamics (Lalonde, Zhu and Demers 2003, Arroyo-Marioli 
and Letelier 2021). Petroleum inventories, including nonlinear inventory variables such as low and 
high inventory states, have improved short-run oil price predictions for both in-sample and out-of-
sample forecasting (Ye, Zyren and Shore 2002; Ye, Zyren and Shore 2005; Ye, Zyren and Shore 
2006).  

VAR models, the most commonly used Bayesian models, have produced lower out-of-sample 
forecast errors and more accurate directional accuracy at horizons up to 12 months than no-change 
forecasts and ARMA models (Alquist Kilian, and Vigfusson 2013; Baumeister and Kilian 2012). 
VAR models have produced more accurate real-time short-run forecasts than futures prices, no-
change forecasts and regression models, while Bayesian vector autoregression (BVAR) models 
have offered the best combination of low forecast error and high directional accuracy (Baumeister 
and Kilian 2012; Baumeister and Kilian 2014).9  

However, at very short horizons of one to five days, error-correction models have performed better 
than unrestricted VARs or random walk models (Zeng and Swanson 1998). ANN techniques such 

 
8 Even among the GARCH family of models, there have been differences in forecast performance. For Brent price 
volatility, a standard GARCH model forecasts performed better than other GARCH variants at short horizons, but an 
Asymmetric Power ARCH (APARCH)-normal model performed better at longer forecast horizons (Cheong 2009). 
For WTI price volatility, the Fractionally Integrated Asymmetric Power ARCH (FIAPARCH) model had the highest 
accuracy at both short and long horizons (Mohammadi and Su 2010). 
9 VAR forecasting models using monthly data outperform those based on quarterly data (Baumeister and Kilian 2014). 
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as back-propagation networks-genetic algorithms have also outperformed VAR models in the 
forecast direction of movement (Mirmirani and Li 2004).  

Combinations of several forecasting models have tended to generate more accurate out-of-sample 
forecasts. For horizons up to two years, a combination of four models yields WTI price forecasts 
with statistically significantly better directional accuracy than no-change forecasts (Baumeister 
and Kilian 2015). Over horizons up to 11 quarters, Manescu and Van Robays (2017) found 
similarly improved directional accuracy and unbiasedness over both futures prices and no-change 
forecasts for Brent oil price forecasts with a combination forecasting model built from futures, 
risk-adjusted futures, a SVAR, and a dynamic stochastic general equilibrium model.  

2.1.4. Machine learning techniques  

Numerous studies have applied nonstandard or machine learning techniques to forecast crude oil 
prices. These models have the advantage of accounting for nonlinearity and being well-suited for 
noisy data series such as crude oil prices. The application of machine learning techniques to crude 
oil prices has included approaches such as ANN, SVM, empirical mode decomposition (EMD) 
models, and gene expression programming (Cheng et al. 2019; Gabralla, Jammazi and Abraham 
2013; Mostafa and El Masry 2016; Zhang, Zhang and Zhang 2015).  

Despite their reported success, these machine learning-based techniques have several shortfalls. 
They tend to lack theoretical foundations, their forecast accuracy notwithstanding. In addition, Yu, 
Wang and Lai (2008) and Yu, Zhao and Tang (2014) pointed to local minima and overfitting in 
ANN models, the requirement of long time series in SVM models, and sensitivity parameter 
selection in ANN, SVM, and genetic programming models. Zheng, Cheng and Yang (2014) and 
Lei et al. (2013) point to the sensitivity of EMD models to statistical problems in irregular, noisy 
data. Peng et al. (2014) cite issues with convergence and efficiency in gene expression 
programming.  

Machine learning techniques have generally shown better forecast performance than other 
approaches such as univariate time series models (Moshiri and Foroutan 2006; Xie et al. 2006). A 
neural network ensemble learning model based on an empirical mode decomposition (EMD) has 
had better forecast prediction and directional accuracy than an ARIMA model and other nonlinear 
methods, for both WTI and Brent prices (Yu, Wang and Lai 2008). But the comparison has been 
sensitive to the forecast horizon. For example, ARIMA models have outperformed ANN models 
at very shortest forecast horizons but, at longer horizons, ANN and SVR have outperformed 
ARIMA models (Fernandez 2007). Similar results were found by Cheng et al. (2019) in the 
comparison of a hybrid vector error correction and nonlinear autoregressive neural network (VEC-
NAR) model with linear time-series models such as VAR, VEC, and GARCH models.  

A gene expression programming algorithm has outperformed traditional statistical techniques such 
as ARIMA models, and even ANN models in predicting oil prices (Mostafa and El-Masry 2016). 
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Also, Chiroma, Abdulkareem and Herawan (2015) found that genetic algorithm and neural 
network (GA–NN) methods have superior forecasting performances for monthly WTI prices than 
other benchmark algorithms.  

An EMD-based neural network ensemble learning model has performed better than an ARIMA 
model and other nonlinear methods, for both WTI and Brent prices, in terms of forecast prediction 
and directional accuracy (Yu, Wang and Lai 2008). Similar results for EMD-based machine 
learning approaches were found by Xiong et al. (2013), Zhang, Zhang and Zhang (2015) and 
Ahmad et al. (2021).  

Wavelet-based machine learning models have performed better than conventional back 
propagation neural network models for both level and directional predictive accuracy in WTI oil 
markets (Jammazi and Aloui 2012). 

2.1.5 Conclusion from the literature on oil price forecasting 

The following general conclusions can be drawn from the above literature review. First, many 
studies have empirically established that forecasts of WTI and Brent oil prices based on futures 
contracts are inferior to several model-based approaches. Second, model-based approaches have 
generally outperformed other methods. Third, several studies have found that incorporating 
relevant external regressors and controlling for time series properties embedded in oil prices can 
improve forecast accuracy. Fourth, machine learning techniques have tended to yield better 
forecasting performance than traditional benchmarks and univariate methods, but they have been 
sensitive to the choice of specifications. Their comparisons with model-based approaches have 
been limited. The few available studies show that, in at least two cases, machine learning 
techniques have outperformed reduced-form VAR models, but only at the very shortest forecast 
horizons (Cheng et al. 2019) or up to one year (Mirmirani and Li 2004).  

2.2 Metal commodity price forecasting 

This literature draws on 20 studies of price forecasts for aluminum (11 studies), copper (14), lead 
(8), nickel (8), tin (5), and zinc (8). The most evaluated methods are univariate and multivariate 
time series models—mostly benchmarked against no-change forecasts—although the number of 
studies based on machine learning techniques is also growing rapidly (Figure 2). As for oil prices, 
most studies use sample periods that end before the commodity price collapse of mid-2014 and 
most examine monthly data. In contrast to oil prices, where studies examining forecast horizons 
up to one year are common, the most examined forecast horizon for metals prices have exceeded 
one year.  

2.2.1 Futures prices 

Like for oil prices, futures prices of metals have underperformed the no-change benchmark, but 
they have predictive content that can improve model forecasts. In a study of several metals 
(aluminum, copper, lead, nickel and tin), Chinn and Coibion (2014) showed that the no-change 



9 
 

benchmark has modestly outperformed futures prices at horizons 3, 6 and 12 months. On the other 
hand, Bowman and Husain (2004) showed for several metals that models that incorporate futures 
prices in an error correction model performed better than models based entirely on historical data 
or judgment, in terms of directional accuracy and precision, particularly at longer forecast 
horizons. Complementing futures price data with other information—such as industrial 
production, exchange rate dynamics, commodity currencies, international metals stock index, 
structural breaks, and short-run common-cycle restrictions—has further improved forecast 
performance (Gong and Lin 2018; Issler, Rodrigues and Burjack 2014; Pincheira-Brown and 
Hardy 2019; Pincheira-Brown and Hardy 2021; Pincheira-Brown et al. 2021). 

2.2.2 Univariate time series models 

Univariate time series models have performed better than no-change forecasts but underperformed 
other quantitative methods (Rubaszek, Karolak and Kwas 2020; Alipour, Khodaiari and Jafari 
2019). For aluminum, copper, nickel, and zinc, univariate autoregressive models delivered 
significantly better forecasts than the no-change approach (Rubaszek, Karolak and Kwas 2020).  

However, univariate time series models have generally underperformed other quantitative 
methods. For copper, the forecast performance of ARIMA and no-change forecasts was inferior to 
that of neural networks, dynamic averaging and selection models and stochastic differential 
equations (Alipour, Khodaiari and Jafari 2019; Buncic and Moretto 2015; Lasheras et al. 2015). 
For aluminum, VECMs have had better out-of-sample forecast accuracy than ARIMA and VAR 
models (Castro, Araujo and Montini 2013). For aluminum and nickel prices, a modified grey wave 
forecasting technique—a univariate technique that explicitly accounts for irregular fluctuations in 
time series—performed better than no-change or ARMA methods (Chen, He and Zhang 2016). 
For aluminum, copper, lead, and zinc, wavelet-autoregressive integrated moving average 
(ARIMA)-based models have outperformed traditional ARIMA models in terms of forecast 
accuracy (Kriechbaumer et al. 2014). For lead and zinc, He et al. (2015) found that a curvelet-
based multiscale forecasting approach was superior to traditional benchmark models such as 
ARMA and random walk. For lead, ARIMA models have generated slightly better forecasts than 
models based on lagged forward prices (Dooley and Lenihan 2005). 

2.2.3. Multivariate time series models 

Multivariate time series models such as VARs have generally outperformed the no-change 
benchmark and, in many cases, univariate models. In a comprehensive analysis of price forecasts 
for copper, lead, nickel, tin and zinc, Issler, Rodrigues and Burjack (2014) using annual and 
monthly data from 1900 to 2010 found that model performance differs by data frequency and 
commodity. For annual data, univariate autoregressive models were the best for aluminum and 
copper prices, while VARs produced the best results for lead and zinc, and VECMs had the best 
results for nickel and tin. But for monthly data, VECMs of all metal prices and U.S. industrial 
production showed superior forecasting performance. Castro, Araujo and Montini (2013) also 
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showed that VECMs have had better out-of-sample forecast accuracy than VAR and ARIMA 
models for aluminum prices. In contrast, Rubaszek, Karolak and Kwas (2020) found that taking 
into account nonlinearities, such as the inclusion of a threshold structure to autoregressive models, 
did not materially improve the forecast performance for aluminum, copper, nickel, and zinc prices.  

2.2.4 Machine learning techniques  

Machine learning techniques have shown superior forecasting performance over several other 
approaches (Lasheras et al. 2015). For copper prices, ANN and support vector regression (SVR) 
models have produced a better forecast performance than a range of other models, and the gene 
expression programming method has generated more accurate predictions than time series and 
multivariate regression methods (Astudillo et al. 2020; Dehghani 2018; Khoshalan et al. 2021). 
For copper prices, forecasts from hybrid neural network models have outperformed other models 
(Du et al. 2021) and traditional ANN techniques in terms of level and directional predictions 
(Wang et al. 2019). 

2.2.5 Conclusion from the literature on metal price forecasting 

The following general conclusions can be drawn from the literature on metal price forecasting. 
First, similar to crude oil, futures prices have generally had inferior forecast performance to the 
no-change benchmark, but they have had some predictive information when combined with other 
modeling approaches. Second, multivariate time series models have performed better than 
univariate time series methods and no-change forecasts. Third, machine learning techniques have 
outperformed both univariate time series methods and no-change. However, to the best of our 
knowledge, there is no comparison between forecasts from multivariate time series models and 
machine learning techniques. Fourth, as in the case of oil, several studies found that the addition 
of other economic variables and controlling for properties of the metal price series, such as 
structural breaks, can improve forecast accuracy for metal prices.  

3. A model suite 

This paper draws on these existing studies to inform the choice of models for a broad range of 
model-based metal price forecasts. The model suite includes six approaches: futures prices and 
consensus forecasts; bivariate correlations; a Bayesian vector autoregression estimation (BVAR); 
a model-based approach (the Oxford Economics Model); and a machine learning-based approach 
(EMD-based support vector regression and GARCH). Although the literature review highlights the 
promise of forecast combination approaches, we do not explore this approach since the aim of our 
model suite is to develop a range of commodity price forecasts rather than a single “best” forecast.  

These approaches were used to establish quarterly forecasts one to eight quarters ahead. The 
estimated parameters of the models were updated using an expanding scheme that allows for the 
inclusion of new observations as data availability increases. The forecasts derived from the six 
approaches were compared with realized prices for the period 2015Q1-2022Q1.  
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This period is one of substantial commodity price volatility. It included the plunge from mid-2014 
to its trough in early 2016, the subsequent rebound, the collapse during the pandemic, in spring 
2020, and again the subsequent rebound—for many commodities to historic highs. Since many of 
these swings were unusually strong by historical standards, model performance is likely to be 
generally poorer than in previous studies.10 

3.1 Futures prices and consensus forecasts  

Consensus forecasts were drawn from Consensus Forecast Reports accessed through the IMF-
World Bank library for 2000-2022. Data is available monthly, with quarterly forecasts until the 
end of the subsequent year.  

Generic futures prices were drawn from Bloomberg for all seven commodities for 2000-2022: Oil 
(tickers CL3-CL6-CL9-CL12); copper (tickers HG3-HG6-HG9-HG12); aluminum (tickers AA3-
AA6-AA9-AA12); lead (tickers LL3-LL6-LL9-LL12); nickel (tickers LN3-LN6-LN9-LN12); tin 
(tickers LT3-LT6-LT9-LT12); and zinc (tickers LX3-LX6-LX9-LX12). Monthly average data is 
used, with 3-, 6-, 9, and 12-month-ahead futures prices.  

3.2 Bivariate correlations 

Alquist, Kilian, and Vigfusson (2013), in their review of oil price forecasting models, identify 
several variables that are strongly correlated with oil prices over the subsequent 6-12 months. 
These include the Commodities Research Bureau (CRB) Raw Industrial Commodity Index, U.S. 
M1 growth, futures prices, and consensus (or other professional) forecasts. These variables are 
augmented with indicators for China, which plays a large role in global metal markets, and 
purchasing managers indicators. These include China’s Manufacturing Purchasing Managers’ 
Index (PMI), the Global Manufacturing PMI, and the Global Composite PMI.  

Based on Alquist, Kilian, and Vigfusson (2013), the forecast is obtained by regressing the future 
change of a commodity price against past independent variables: 

∆𝒉𝒉𝒀𝒀𝒕𝒕 = 𝜷𝜷𝑴𝑴𝒕𝒕 + 𝜺𝜺𝒕𝒕,𝒕𝒕+𝒉𝒉 

∆𝒉𝒉𝒀𝒀𝒕𝒕 = 𝒀𝒀𝒕𝒕+𝒉𝒉 − 𝒀𝒀𝒕𝒕 

where ∆𝒉𝒉𝒀𝒀𝒕𝒕 indicates the percent change of a commodity price within the next h months, and 𝑴𝑴𝒕𝒕 
is one input.  

Six inputs are used separately: U.S. base money (M1 from the FRED database), 10-year Treasury 
bond yields (from the FRED database), and the CRB Raw Materials Index (from Bloomberg) in 
past percent differences equivalent to the horizon.11 For example, the percent change over the last 

 
10 Several studies employed different approaches to address the breaks introduced by the COVID-19 pandemic in 
forecasting (Schorfheide and Song 2021; Ng 2021; Lenza and Primiceri 2022). There was no need to make 
assumptions about the treatment of the pandemic in the econometric exercise here as the COVID-19 period formed 
part of the out-of-sample evaluation period in our comparison.  
11 The CRB Raw Industrial Commodity Index includes 22 commodities. The 22 commodities are combined into an 
“All Commodities” grouping, with two major subdivisions: Raw Industrials, and Foodstuffs. Raw Industrials include 
burlap, copper scrap, cotton, hides, lead scrap, print cloth, rosin, rubber, steel scrap, tallow, tin, wool tops, and zinc. 
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three months of the U.S. M1 is used to forecast the percent change in oil prices over the next three 
months. Global PMIs (composite and manufacturing), and China’s manufacturing PMI are used 
in levels and lagged h months. In total, each commodity has six forecasted values for each horizon. 
The final forecast is an average of all statistically significant forecasts. Equations with 
nonsignificant results are discarded. The exercise is conducted with monthly data. 

Monthly data are available for 2004-2022, constrained by the availability of China’s 
Manufacturing PMI. All data are from Haver Analytics. 

3.3 Bayesian vector autoregression model 

A reduced-form Bayesian VAR model is used to forecast oil prices. In the estimation step, to 
ensure compatibility between prediction and scenario analysis, we impose sign-restrictions on the 
VAR model. The BVAR employs quarterly data for commodity production, commodity prices, 
and global real GDP growth. Forecasts are conditioned on realized data or the June 2022, Global 
Economic Prospects report (GEP).  

The BVAR model of the global oil or metal market is written as: 

𝒀𝒀𝒕𝒕 = �𝑨𝑨𝒊𝒊𝒀𝒀𝒕𝒕−𝒊𝒊

𝟒𝟒

𝒊𝒊=𝟏𝟏

+ 𝒖𝒖𝒕𝒕  

 

where 𝒀𝒀𝒕𝒕 is the vector of endogenous variables, 𝒖𝒖𝒕𝒕 is a sequence of serially uncorrelated random 
vectors with mean zero and covariance matrix 𝚺𝚺𝒖𝒖 .. 𝑨𝑨𝒊𝒊, 𝒊𝒊 = 𝟏𝟏,𝟐𝟐,𝟑𝟑,𝟒𝟒  denotes the coefficient 
matrices. Endogenous variables are 𝒀𝒀𝒕𝒕 = [𝚫𝚫𝒒𝒒𝒕𝒕, 𝚫𝚫𝒚𝒚𝒕𝒕, 𝒑𝒑𝒕𝒕]′, where 𝚫𝚫𝒒𝒒𝒕𝒕, 𝚫𝚫𝒚𝒚𝒕𝒕, 𝒑𝒑𝒕𝒕 denote the log-
differences of metal or oil productions, GDP growth rates and metal or oil prices.12 Since GDP 
growth is only available on a quarterly basis, the exercise is conducted with quarterly averages of 
monthly data. Other variables that have been used in forecasting commodity prices include 
indicators of global economic conditions, world output gap, capacity utilization, industrial 
production and exchange rates (Baumeister, Korobilis and Lee 2022; Dées et al. 2007; Kaufmann 
et al. 2004; Tang and Hammoudeh 2002; Zamani 2004; Lalonde, Zhu and Demers 2003; Ye, Zyren 
and Shore 2006). 

In the prediction step, 1-step-ahead prediction at the time origin 𝒉𝒉, 𝒀𝒀�𝒉𝒉(𝟏𝟏), and the associated 
forecast error, 𝒆𝒆𝒉𝒉(𝟏𝟏) are: 

𝒀𝒀�𝒉𝒉(𝟏𝟏) = �𝑨𝑨𝒊𝒊𝒀𝒀𝒉𝒉+𝟏𝟏−𝒊𝒊,
𝟒𝟒

𝒊𝒊=𝟏𝟏

 𝒆𝒆𝒉𝒉(𝟏𝟏) = 𝒖𝒖𝒉𝒉+𝟏𝟏. 

 
Foodstuffs include butter, cocoa beans, corn, cottonseed oil, hogs, lard, steers, sugar, and wheat. It is developed by 
the Commodities Research Bureau.  
12 We adopt a log-level commodity price model following Kilian and Murphy (2014). As they suggested, it is not clear 
whether commodity prices should be modeled in log-levels or log-differences. The advantage of the level specification 
is that impulse responses of log-level price models are consistent with sign-restrictions while, in many cases, log-
difference price models create meaningless impulse responses that would not be extended to scenario analysis in 
practice. The disadvantage of not imposing unit roots in estimation is a loss of asymptotic efficiency. 
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For 2-step-ahead forecasts: 

𝒀𝒀�𝒉𝒉(𝟐𝟐) = 𝑨𝑨𝟏𝟏𝒀𝒀�𝒉𝒉(𝟏𝟏) + �𝑨𝑨𝒊𝒊𝒀𝒀𝒉𝒉+𝟐𝟐−𝒊𝒊,
𝟒𝟒

𝒊𝒊=𝟐𝟐

 𝒆𝒆𝒉𝒉(𝟐𝟐) = 𝒖𝒖𝒉𝒉+𝟐𝟐 + 𝑨𝑨𝟏𝟏�𝒀𝒀𝟏𝟏 − 𝒀𝒀�𝒉𝒉(𝟏𝟏)�. 

 

We extend the 3 to 8-step ahead forecasts in a similar fashion. Forecasted commodity prices 𝒑𝒑�𝒉𝒉 
(one of 𝒀𝒀�𝒉𝒉) are in real prices, thus we re-inflate 𝒑𝒑�𝒉𝒉 using actual (realized) U.S. CPI. 

In the estimation step, we estimate the following VAR representation: 

𝑩𝑩𝟎𝟎𝒀𝒀𝒕𝒕 = �𝑩𝑩𝒊𝒊𝒀𝒀𝒕𝒕−𝒊𝒊

𝟒𝟒

𝒊𝒊=𝟏𝟏

+ 𝜺𝜺𝒕𝒕 

where 𝜺𝜺𝒕𝒕  is the structural shocks which follow standard normal distribution. 𝑩𝑩𝒊𝒊  denotes the 
coefficient matrices. The structural shocks comprise of supply shocks, demand shocks, and 
residual shocks. 

The identification problem consists of finding a mapping from the errors in the reduced-form 
representation to its structural counterpart: 

𝒖𝒖𝒕𝒕 = 𝑩𝑩𝟎𝟎
−𝟏𝟏𝜺𝜺𝒕𝒕. 

  

We exploit the following relation: 

𝚺𝚺𝒖𝒖 = 𝑬𝑬[𝒖𝒖𝒕𝒕𝒖𝒖𝒕𝒕′] = 𝔼𝔼 �𝑩𝑩𝟎𝟎
−𝟏𝟏𝜺𝜺𝒕𝒕�𝑩𝑩𝟎𝟎

−𝟏𝟏𝜺𝜺𝒕𝒕�
′
� = 𝑩𝑩𝟎𝟎

−𝟏𝟏𝔼𝔼[𝜺𝜺𝒕𝒕𝜺𝜺𝒕𝒕′]�𝑩𝑩𝟎𝟎
−𝟏𝟏�

′
= 𝑩𝑩𝟎𝟎

−𝟏𝟏𝚺𝚺𝜺𝜺�𝑩𝑩𝟎𝟎
−𝟏𝟏�

′

= 𝑩𝑩𝟎𝟎
−𝟏𝟏�𝑩𝑩𝟎𝟎

−𝟏𝟏�
′
. 

 
 

To explore 𝑩𝑩� , the estimate of 𝑩𝑩𝟎𝟎
−𝟏𝟏 , we generate the random orthogonal matrix 𝑸𝑸𝑸𝑸′ = 𝑰𝑰 and 

consider Cholesky factor 𝚺𝚺𝒖𝒖 = 𝑷𝑷𝑷𝑷′ as follows: 

𝚺𝚺𝒖𝒖 = 𝑷𝑷𝑷𝑷𝑸𝑸′𝑷𝑷′ = (𝑷𝑷𝑷𝑷)(𝑷𝑷𝑷𝑷)′.  
 

Relating the above equations, we consider the matrix 𝑩𝑩� = 𝑷𝑷𝑷𝑷 as a valid candidate. The structural 
shocks are identified using the sign restriction of Kilian and Murphy (2014) as shown in Table 
2.13 A positive demand shock on impact is assumed to raise the real price of oil or metals and 
stimulate oil or metal production, as well as raise GDP growth. A negative supply shock is assumed 
to lower oil or metal production on impact. It will also lower global economic activity while 
increasing the real price of oil or metals. 

We simulate impulse responses based on a candidate 𝑩𝑩�. The candidate 𝑩𝑩� is retained if the resulting 
impulse responses meets the sign restrictions, otherwise discarded. 

 
13 The quantitative restrictions on supply elasticities used by Kilian and Murphy (2014) are avoided since such 
elasticities cannot easily be benchmarked for metals prices. 
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The integrated estimation steps are as follows: 

1. Run an unrestricted VAR and find 𝚺𝚺�𝒖𝒖. Implement Cholesky decomposition to extract 𝑷𝑷.14 

2. Draw a random orthogonal matrix 𝑸𝑸 and compute 𝑩𝑩� = 𝑷𝑷𝑷𝑷. 

3. Compute impulse responses using 𝑩𝑩� calculated in the step 2. If all implied impulse response 
functions satisfy the sign restrictions (Table 2), retain 𝑩𝑩�. Otherwise discard 𝑩𝑩�. 

4. Repeat the first two steps 50,000 times, recording each 𝑩𝑩� that satisfies the restrictions and 
record the corresponding impulse response functions. About one-fifth of the draws are 
discarded. 

The commodity price data for aluminum, copper, lead, nickel, oil, tin, and zinc are drawn from the 
World Bank’s Commodities Price Data (Pink Sheet). The price for oil is the unweighted average 
of the Brent, West Texas Intermediate, and Dubai oil prices. These commodity prices are deflated 
by the U.S. CPI from the Federal Reserve Economic Data (FRED) database. Quarterly GDP 
growth rates are from Haver Analytics, with forecasts based on the World Bank’s June 2022, 
Global Economic Prospects report. Commodity production for aluminum, copper, zinc, lead, 
nickel, oil, tin, and zinc is drawn from the World Bureau of Metal Statistics. Quarterly averages of 
monthly data are available for 2000—2022Q1.  

3.4 Oxford Economics Model (OEM) 

The OEM is a macroeconometric model that is routinely used for growth forecasting in many 
international institutions and central banks (Guenette and Yamazaki 2021). It includes price series 
for world food, world beverages, world agricultural raw materials, aluminum, copper, iron, lead, 
nickel, tin, zinc, coal, oil, and natural gas.15 These are extracted from the latest OEM forecasts.  

The OEM is a macroeconometric model with 46 countries, 6 regional blocs and the Eurozone 
(Oxford Economics 2019). Most components are specified as error correction models. In the short 
run, shocks to demand generate economic cycles that can be influenced by fiscal and monetary 
policy. Over the long-run, output is determined by supply side factors: investment, demographics, 
labor participation and productivity. The resulting dynamics of short-run fluctuations and long-run 
trend are integrated in terms of cointegration. We use biannual (Q1 and Q3) forecast data from 
2015Q1–2022Q1 due to data availability.16  

3.5 Machine learning approach  

The EMD-based support vector regression and GARCH model of Zhang, Zhang and Zhang (2015) 
is selected as a machine learning approach, in line with its generally successful forecast 

 
14 We adopt the Gibbs-sampler, an estimation approach that allows for structural identifications such as elasticity and 
sign restrictions and prior beliefs about future economic events, to estimate a restricted VAR. Although the 
identification procedure is not required for forecasting, we impose sign-restrictions to ensure compatibility between 
prediction and scenario analyses. 
15 Natural gas is a composite of Henry Hub, Japan, and European natural gas prices. 
16  Since the OEM uses biannual forecasts while other models use quarterly forecasts, its performance may be 
underestimated by Diebold-Mariano statistic in Figure 3 because the number of forecasts for OEM is smaller than 
other models.  
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performance documented in the literature on oil prices. First, the EMD approach decomposes the 
seven industrial commodity price series into multiple nonlinear components and time-varying 
components. Then, the price forecasts are compiled from the predicted values from a support 
vector regression for the nonlinear components and a GARCH (1,1) model for the time-varying 
components. Specifically, the EMD approach is conducted in the following five steps.  

First, each of the seven industrial commodity price series (𝑷𝑷𝒕𝒕) is represented as being subject to 
multiple white noise processes: 

𝑷𝑷𝒕𝒕𝒊𝒊 = 𝑷𝑷𝒕𝒕 + 𝜺𝜺𝒕𝒕𝒊𝒊 , (𝒊𝒊 =  𝟏𝟏,𝟐𝟐, … ,𝑴𝑴) 

where 𝜺𝜺𝒕𝒕𝒊𝒊 denotes the ith white noise series, and 𝑷𝑷𝒕𝒕𝒊𝒊  represents the industrial commodity price in the 
ith trial. The standard deviation of 𝜺𝜺𝒕𝒕𝒊𝒊 is assumed to be 0.005 times the standard deviation of the 
original series. 

Second, an EMD model decomposes 𝑷𝑷𝒕𝒕𝒊𝒊  into finite intrinsic mode functions (IMFs), 𝒄𝒄𝒊𝒊𝒊𝒊  (𝒋𝒋 =
 𝟏𝟏,𝟐𝟐, … , 𝑱𝑱 ), and residual series. The ensemble mean of 𝑴𝑴  trials for each IMFs is 𝑪𝑪𝒕𝒕

𝒋𝒋 =
𝟏𝟏
𝑴𝑴
∑ 𝒄𝒄𝒕𝒕

𝒊𝒊𝒊𝒊𝑴𝑴
𝒊𝒊=𝟏𝟏  and the ensemble mean of the residuals is 𝑹𝑹𝒕𝒕𝑴𝑴 = 𝟏𝟏

𝑴𝑴
∑ 𝒓𝒓𝒕𝒕𝒊𝒊𝑴𝑴
𝒊𝒊=𝟏𝟏 . The relationship between 

the price series (𝑷𝑷𝒕𝒕), the ensemble mean IMFs (𝑪𝑪𝒕𝒕𝒊𝒊), and the residuals (𝑹𝑹𝒕𝒕𝑴𝑴) is represented as: 

𝑷𝑷𝒕𝒕 = �𝑪𝑪𝒕𝒕
𝒋𝒋 + 𝑹𝑹𝒕𝒕𝑴𝑴.

𝑱𝑱

𝒋𝒋=𝟏𝟏

 

Third, 𝑪𝑪𝒕𝒕
𝒋𝒋 and 𝑹𝑹𝒕𝒕𝑴𝑴 are rearranged into a time varying component (𝑺𝑺𝒕𝒕𝒍𝒍) and nonlinear component 

(𝑵𝑵𝒕𝒕
𝒌𝒌), such that the equation above is reshaped into the following: 17 

𝑷𝑷𝒕𝒕 = �𝑵𝑵𝒕𝒕
𝒌𝒌 + � 𝑺𝑺𝒕𝒕𝒍𝒍 + 𝑹𝑹𝒕𝒕𝑴𝑴

𝒏𝒏

𝒍𝒍=𝒎𝒎+𝟏𝟏

.
𝒎𝒎

𝒌𝒌=𝟏𝟏

 

Fourth, GARCH (1,1) is applied to 𝑺𝑺𝒕𝒕𝒍𝒍  to forecast the time varying component (𝑺𝑺�𝒕𝒕𝒍𝒍) and a support 
vector machine is applied to 𝑵𝑵𝒕𝒕

𝒌𝒌 and 𝑹𝑹𝒕𝒕𝑴𝑴 to forecast the nonlinear component (𝑵𝑵�𝒕𝒕𝒌𝒌) and residuals 
�𝑹𝑹�𝒕𝒕𝑴𝑴�. 

Fifth, the final price forecasts (𝑷𝑷�𝒕𝒕 ) is constructed from these component forecasts using the 
following equation: 

𝑷𝑷�𝒕𝒕 = �𝑵𝑵�𝒕𝒕𝒌𝒌 + � 𝑺𝑺�𝒕𝒕𝒍𝒍 + 𝑹𝑹�𝒕𝒕𝑴𝑴.
𝒏𝒏

𝒍𝒍=𝒎𝒎+𝟏𝟏

𝒎𝒎

𝒌𝒌=𝟏𝟏

 

The approach is applied to monthly commodity price data for oil, aluminum, copper, lead, nickel, 
tin, and zinc and then converted into quarterly averages. The data are drawn from the World Bank’s 

 
17 In this paper, IMF1, IMF2 and IMF3 are classified as time-varying components and the other IMFs are classified 
as nonlinear components based on Zhang, Zhang and Zhang (2015).  
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Commodities Price Data (Pink Sheet). The price for oil is the unweighted average of the Brent, 
West Texas Intermediate, and Dubai oil prices. Monthly data from January 1995 to December 
2014 are used for the training sample, the model is updated based on expanding scheme, and data 
from 2015Q1 to 2022Q1 are used as the testing period. 

4. Forecast performance 

The six models are compared in terms of their bias and precision.18 The forecast of each model is 
compared against all other approaches in the model suite, rather than a single benchmark (Figure 
3).19 The mean error (bias) is defined as the difference between the actual price and the price 
forecast one to eight quarters ahead for each of the seven industrial commodities. Precision is 
captured by the root mean squared error (RMSE). Model comparisons are tested for statistical 
significance in a t-test (for absolute bias) or an F-test (for RMSE) or in the significance of the 
Diebold-Mariano statistic. Futures prices are only available up to one year ahead with reasonable 
liquidity, hence longer forecast horizons are not considered here for futures prices.20 Bivariate 
correlations are only significant for horizons up to one year ahead; hence, forecasts from bivariate 
correlations are dropped for horizons beyond one year. OEM forecasts are only available on a 
semi-annual basis and the statistical tests are adjusted for the fewer degrees of freedom.  

4.1 Oil prices 

None of the oil price forecasts generated by any of the six methodologies had a statistically 
significant bias (Table 3.A). However, the RMSEs were sizable for several approaches and have 
tended to be larger at longer horizons (except for OEM-based forecasts, Table 3.B). At horizons 
up to one year, all approaches except the BVAR predicted the direction of forecast changes 
accurately; at horizons over one year, only consensus forecasts and the OEM did so (Tables 3.C-
D).  

At the one- to four-quarter horizons, futures prices had particularly small RMSEs that were either 
significantly smaller than those of most other approaches or no larger (Tables 4.A-B). Similarly, 
the Diebold-Mariano test suggests significantly better or no worse forecast accuracy of futures 
prices than all other approaches (Figure 3). At longer horizons, both OEM-based forecasts had 
smaller biases, lower RMSEs and better forecast accuracy than other forecasting approaches. At 
all horizons, BVAR-based forecasts and bivariate correlations generally performed more poorly 
than one or more of the other approaches, despite being unbiased.  

 
18 The sample period used to compute forecast and forecast errors was restricted to 2015-2022 to ensure sufficient 
observations for estimation. 
19 The evaluation period for our model suite is 2015-2022. Other studies have compared forecast performance for 
longer periods for several commodities, particularly for futures prices, for example Reeve and Vigfusson (2011) and 
Bowman and Husain (2004). 
20 A comparison of the forecast accuracy of futures prices against other methods using the Diebold-Mariano statistic 
and RMSEs for time horizons beyond one year showed that futures performed better than other methods in some 
cases. However, we opted to exclude forecast comparisons with futures prices beyond one year from the forecast 
evaluation exercise over concerns about their overall robustness. Futures contracts for distant delivery months tend to 
have low trading volumes and liquidity. This lack of activity can reduce price discovery, leading to less reliable 
forecasts and a potentially biased comparison of futures prices with other models. 
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4.2 Aluminum prices  

Like for oil prices, none of the approaches generated significantly biased forecasts of aluminum 
prices and none of the approaches generated statistically significantly inaccurate forecast 
directions. That said, biases for futures prices were significantly larger than those of all other 
approaches (Table 5.A).  

Bivariate correlations (at horizons up to two quarters) and machine learning approaches (at 
horizons of three to five quarters) had significantly smaller RMSEs and significantly better forecast 
accuracy than other approaches (Table 5.B). At horizons above five quarters, the OEM had 
significantly better forecast accuracy than other approaches (Figure 3). The BVAR 
underperformed on both metrics.  

4.3 Copper prices 

Again, none of the approaches had statistically significant forecast biases at any forecast horizon. 
However, only futures prices, bivariate correlations, and machine learning approaches generated 
accurate forecast directions at horizons below one year, and only the OEM at horizons above one 
year, as suggested by the Pesaran-Timmerman test (Table 3.D). The BVAR, bivariate correlations, 
and machine learning techniques produced very particularly imprecise forecasts with large 
RMSEs.  

Biases, even if statistically indistinguishable from zero, were significantly larger for bivariate 
correlations than for most other approaches at horizons above one quarter. At the one-quarter 
horizon, bivariate correlations had significantly smaller RMSEs than most other approaches 
(Tables 6.A-B). But at the two- to four-quarter horizon, this advantage switched to futures prices. 
Based on the Diebold-Mariano test, futures prices generated statistically significantly more 
accurate forecasts than other approaches at horizons up to one year (Figure 3). At horizons beyond 
one year, consensus forecasts and OEM-based forecasts had similar or smaller errors than other 
approaches. BVAR-based forecasts had significantly higher RMSEs and poorer forecast accuracy, 
but no larger biases, than all other approaches at almost all forecast horizons.  

4.4 Lead prices 

With the exception of some few instances, all approaches underpredicted prices at virtually all 
horizons during the forecast period. However, none of these biases were statistically significant at 
any forecast horizon. Like for copper prices, only futures, bivariate correlations, the OEM and the 
machine learning approach produced forecast that were directionally accurate at horizons up to 
one year, and only the OEM at horizons above one year. RMSEs were particularly large for the 
BVAR, the machine learning approach (at longer horizons) and bivariate correlations (at shorter 
horizons).  

At horizons up to one year, futures prices were more accurate than almost all other approaches, 
with significantly smaller RMSEs, although at the one-quarter horizon, bivariate correlations 
performed similarly to futures prices (Tables 7.A-B). At horizons above one year, none of the 
approaches differed in their biases but consensus forecasts were the most accurate forecasts, with 
the smallest RMSEs. The BVAR approach was again outperformed by all other approaches.  
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4.5 Nickel prices 

Again, none of the forecast approaches generated statistically significantly biased forecasts. The 
only approach that did not produce forecast that were directionally accurate at horizons up to one 
year was the BVAR but, at longer horizons, only the OEM produced directionally accurate 
forecasts.  

At horizons up to one year, futures prices were significantly more accurate than other approaches, 
with significantly smaller RMSEs(Tables 8.A-B). At horizons beyond one year, OEM-based 
forecasts outperformed all other approaches. Both the BVAR and, to a lesser extent, the machine 
learning approach performed worse than other approaches.  

4.6 Tin prices 

Except for bivariate correlations and machine learning methods, all approaches underpredicted 
prices at all forecast horizons, but not statistically significantly. All approaches, except for the 
machine learning approach at horizons above one-year, generated forecasts that were directionally 
accurate. RMSEs were particularly large for the BVAR. RMSEs were particularly large for the 
machine learning and BVAR approaches.  

At horizons up to one year, futures prices were no less accurate or significantly more accurate than 
all other approaches; at horizons up to half a year, the forecast accurate of bivariate correlations 
was on par with that of futures prices (Tables 9.A-B). At horizons above one year, the OEM 
produced the most accurate forecasts. At all forecast horizons, the BVAR performed the same or 
worse than all other approaches.  

4.7 Zinc prices 

Again, with the exception of bivariate correlations and machine learning-based models, all 
approaches underpredicted prices at all forecast horizons, but not statistically significantly. All 
approaches other than the BVAR generated directionally accurate forecasts. RMSEs were 
particularly large for the BVAR and machine learning approaches. 

At horizons up to one year, futures prices were more accurate than all other approaches, except for 
bivariate correlation which were equally accurate at the one-quarter horizon (Tables 10.A-B). At 
horizons beyond one year, consensus and OEM-based forecasts were more accurate than the 
BVAR and machine learning approaches.  

4.8 Comparison across industrial commodities 

A few patterns hold across all commodities. First, forecast biases typically did not differ 
significantly across models for most forecast horizons and commodities. However, forecast 
precision, as captured in root mean squared errors, and forecast accuracy, as captured by the 
Diebold-Mariano test, differed significantly across models (Tables 11.A-G; Table 12).   

Second, futures prices or bivariate correlations performed well at short horizons for most 
commodities, but especially for metals commodities. Consensus forecasts or the 
macroeconometric OEM were preferred at long horizons.  
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Third, BVAR models had significantly poorer forecast performance than all other approaches, in 
terms of bias, precision, and direction of change, for all commodities and all horizons. The strength 
of BVAR models lies not so much in forecast performance, but in scenario analysis: among the 
approaches considered here, BVAR models allow the most straightforward translation of global 
output growth forecasts into industrial commodity price forecasts (Table 13).  

There are some caveats on the comparison. Broadly speaking, these caveats bias the comparison 
against the BVAR approach. First, future prices, consensus forecasts, and the machine learning 
approach directly predict nominal price levels while bivariate correlations forecast percent changes 
of nominal prices. BVAR models predict real prices, then inflate nominal prices using actual 
inflation rates. Second, all the models except for the BVAR approach generate monthly price 
forecasts that are aggregated into quarterly forecasts for comparison; in contrast, the BVAR uses 
the quarterly average of monthly data as input to generate quarterly price forecasts since GDP data 
is only available at the quarterly frequency. Third and most important, forecasts were done without 
any judgement. None of the forecasting approaches here have pre-designed scenarios or priors. 
However, in reality, it is often of interest to condition the forecasts on different scenarios. The 
OEM is particularly useful to conduct scenario exercises that take into account changes in policy 
variables, global growth, inflation, and structural variables. Another purpose of conditional 
forecasts is to incorporate information from higher frequency data or judgment into the model 
(Karlsson 2013). This underscores the main advantage of the BVAR model, which allows the 
forecaster to simulate scenarios or test priors while maintaining the statistical properties of model. 
The forecaster can then make inferences about the posterior forecast conditional on the prior. The 
version of the BVAR model used in this exercise leads to a larger forecast bias than other models 
for oil prices. However, in practice, the forecaster could subsequently adjust the parameters to 
reflect changes in priors to arrive at more informed forecasts. 

5. Conclusion 

This paper presents a model suite for forecasting prices of seven industrial commodities: oil, 
aluminum, copper, lead, nickel, tin, and zinc. It includes six approaches, based on the review of a 
rich literature of commodity price forecasting: consensus forecasts, futures prices, univariate 
correlation, a Bayesian VAR, a large-scale macroeconometric model (Oxford Economic Model), 
and a machine learning-based approach (EMD-based SVR and GARCH).  

It finds that no single approach is the best but rather that model performance depends on the 
commodity and the forecast horizon. As a rule, futures prices or bivariate correlations performed 
well at short horizons; consensus forecasts and a macroeconometric model at long horizons. The 
strength of a BVAR model lies in its ready applicability to forecast scenarios and the incorporation 
of external knowledge.  

While these approaches are useful to anchor forecasts, they will always need to be supplemented 
by judgment. For policy makers, the wide range of forecasts and forecast errors is a reminder of 
the uncertainty around commodity price forecasts and the need to develop contingency plans for 
alternative outcomes.   
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Figure 1. Summary of studies of crude oil price forecast performance 

A. Forecasting methodologies evaluated B. Benchmarks used for evaluation 

   
C. Time period for evaluation  D. Data frequency 

  
E. Forecast horizon F. Outcomes of forecast performance 

evaluation 

   
Source: World Bank.  
A. Number of studies that examine the forecast performance of futures prices, machine learning techniques, 
multivariate models (including structural VARs and Bayesian VARs), and univariate time series models against a 
benchmark. The two studies that examine both multivariate and univariate models are shown in the category for 
multivariate models.  
B. Number of studies that benchmark forecast performance against latest spot prices (“no change”), futures prices, 
multivariate models (including structural VARs and Bayesian VARs), and univariate time series models. Studies that 
benchmark against both no-change forecasts and futures prices (9) and against both no-change forecasts and univariate 
models (2) are shown in the category for no-change benchmarks.  
C.-E. Number of studies by end date of sample period (C), data frequency (D), and forecast horizon (E).  
F. Number of studies in which benchmark approaches on the x-axis (no-change forecasts, futures, univariate models) 
had better or worse forecast performance than the approaches listed in the legend (futures prices, univariate models, 
multivariate models, and machine learning techniques).  

6

16

6

12

0

5

10

15

20
Fu

tu
re

s

M
ac

hin
e

lea
rn

ing
 m

od
els

M
ult

iva
ria

te
m

od
els

Un
iva

ria
te

m
od

els

Number of studies

4

25

3
8

0
5

10
15
20
25
30

Fu
tu

re
s

N
o 

ch
an

ge

M
ul

tiv
ar

ia
te

m
od

el
s

U
ni

va
ria

te
m

od
el

s

Number of studies

12 11
8

0
0
2
4
6
8

10
12
14

Be
fo

re
Se

pt
em

be
r

20
08

Be
fo

re
 J

ul
y

20
14

Be
fo

re
Ja

nu
ar

y 
20

20

Af
te

r t
he

pa
nd

em
ic

Number of studies

8

22

1
0

5

10

15

20

25

Daily/Weekly Monthly Quarterly

Number of studies

5

15

11

0
2
4
6
8

10
12
14
16

<3 months <=1 year > 1 year

Number of studies

0

5

10

15

20

Better Worse Better Worse Better Worse

No change is 
…

Futures are … Univariate 
models are …

Number of studies Machine learning models
Multivariate models
Univariate models
Futures prices



21 
 

Figure 2. Summary of studies of metal price forecast performance 

A. Metals being evaluated B. Forecasting methodologies evaluated 

   
C. Benchmarks used for evaluation D. Time period for evaluation 

    
E. Data frequency F. Forecast horizon 

    
Source: World Bank.  
Note: Figures show the number of studies that included each commodity or applied different forecasting methods. 
Since several studies examine more than one metal price, the total can be larger than the number of studies. 
B. Number of studies that examine the forecast performance of futures prices, machine learning techniques, 
multivariate models (including structural VARs and Bayesian VARs), and univariate time series models against a 
benchmark. The one study that examine both machine learning techniques and univariate models are shown in the 
category for machine learning techniques. The one study that examines both futures prices and univariate models is 
shown in the category for futures prices.  
C. Number of studies that benchmark forecast performance against latest spot prices (“no change”), futures prices, 
multivariate models (including structural VARs and Bayesian VARs), and univariate time series models. Studies that 
benchmark against both no-change forecasts and futures prices (1) and against both no-change forecasts and univariate 
models (1) are shown in the category for no-change benchmarks. The one study that conducts a qualitative analysis is 
included in the category for judgment-based forecasts.  
D. Number of studies that evaluate forecast performance for each metal price.  
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Table 1.A. Literature review of forecasting methods for crude oil prices 

Authors and 
year 

Crude oil 
prices Methods Main findings 

Real or 
nominal 
prices 

In-sample or 
out-of-sample 

forecasts 

Abosedra 
(2006) WTI 

Futures, 
univariate 
models 

Futures and univariate models 
are unbiased and weakly 
inefficient. 

Nominal 
prices 

In-sample 
forecasts 

Abosedra 
and 
Baghestani 
(2004) 

WTI Futures, no-
change 

Futures prices underperform 
no-change forecasts. 

Nominal 
prices 

Out-of-sample 
forecasts 

Alquist and 
Kilian (2010)  WTI Futures, no-

change 

Futures are not the most 
accurate predictor of the spot 
oil price. 

Nominal 
prices 

Out-of-sample 
forecasts 

Alquist, 
Kilian and 
Vigfusson 
(2013)  

WTI Futures, no-
change, VAR 

VAR models have lower out-
of-sample forecasting errors 
than no-change. Long-term 
futures prices are less accurate 
than the no-change.   

Both prices Out-of-sample 
forecasts 

Baumeister 
and Kilian 
(2014)  

WTI 
Futures, 
SVAR, no-
change 

VAR models generate more 
accurate forecasts than futures 
prices and no-change 
forecasts. 

Real prices Out-of-sample 
forecasts 

Baumeister 
and Kilian 
(2015)  

WTI 

VAR model, 
futures prices, 
no-change, 
forecast 
combination 
models 

Forecast combinations 
generate more accurate out-of-
sample forecasts than no-
change forecasts.  

Real prices Out-of-sample 
forecasts 

Baumeister 
and Kilian 
(2012)  

WTI 

AR, ARMA, 
BVAR, VAR, 
futures prices, 
no-change 

Recursive VAR forecasts have 
lower forecast errors at short 
horizons than other models. 

Real prices Out-of-sample 
forecasts 

Chen (2014) Brent; 
WTI 

Predictive 
regression 
models, no-
change  

Oil-sensitive stock prices 
contain substantial 
information for predicting 
nominal and real crude oil 
prices at short horizons. 

Both prices Both types of 
forecasts 
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Table 1.A. Literature review of forecasting methods for crude oil prices (continued) 

Authors 
and year 

Crude oil 
prices Methods Main findings 

Real or 
nominal 
prices 

In-sample or 
out-of-sample 

forecasts 

Cheng et al. 
(2019) 

Brent; 
WTI 

VEC-NAR, 
VAR, VECM, 
and GARCH 
models 

The hybrid VEC-NAR 
model outperforms other 
models for longer forecast 
horizons. 

Nominal 
prices 

Out-of-sample 
forecasts 

Chernenko, 
Schwarz and 
Wright 
(2004) 

WTI Futures, no-
change 

Forward or futures rates are 
not rational expectations of 
actual future prices. 

Nominal 
prices 

Both types of 
forecasts 

Chinn and 
Coibion 
(2014) 

WTI 

Futures, 
GARCH, linear 
regressions, no-
change 

Futures prices outperform 
forecasts from reduced-form 
empirical models and no-
change. 

Nominal 
prices 

Out-of-sample 
forecasts 

Chu et al. 
(2022) Brent Futures, no-

change 

No-change forecast 
performs better than futures 
prices in the short term.  

Nominal 
prices 

Out-of-sample 
forecasts 

Coimbra and 
Esteves 
(2004) 

Crude oil 
price 

Futures, 
random walk 
(carry over 
assumption) 

No difference between 
opting for futures prices or 
using the carry-over 
assumption for short-term 
forecast horizons. 

Nominal 
prices 

In-sample 
forecasts 

Coppola 
(2008) WTI VEC model, 

no-change 
Forecasts from VEC models 
outperform no-change. 

Nominal 
prices 

Both types of 
forecasts 

Cortazar, 
Ortega and 
Valencia 
(2021) 

WTI 

Multifactor 
stochastic 
pricing model; 
no-change; 
Bloomberg’s 
consensus 
expected price 
model 

Multifactor stochastic 
pricing models perform 
better than no-change and 
Bloomberg’s consensus 
expected price models. 

Both prices Both types of 
forecasts 

Drachal 
(2016) WTI 

ARIMA, 
futures prices, 
model 
averaging 
methods, no-
change 

Forecasts based on futures 
contracts produce larger 
errors than no-change. 

Nominal 
prices  

Out-of-sample 
forecasts 
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Table 1.A. Literature review of forecasting methods for crude oil prices (continued) 

Authors and 
year 

Crude oil 
prices Methods Main findings 

Real or 
nominal 
prices 

In-sample or  
out-of-sample 

forecasts 

Fernandez 
(2007) 

Arab Gulf 
Dubai 

ARIMA, artificial 
neural networks, 
support vector 
regression 

ARIMA model forecasts 
outperform artificial neural 
networks and support 
vector regression 
approaches only in the 
short term.  

Nominal 
prices 

Out-of-sample 
forecasts 

Godarzi et al. 
(2014) 

Crude oil 
price 

Time series 
models, dynamic 
Nonlinear Auto 
Regressive model 
with eXogenous 
input (NARX) 

NARX model is more 
accurate than the time 
series models in predicting 
oil prices. 

Nominal 
prices 

Out-of-sample 
forecasts 

He (2018) WTI 

ARIMA, simple 
exponential 
smoothing, 
moving average, 
support vector 
regression 

Support vector regression 
and ARIMA models have 
similar forecasting 
accuracy. 

Nominal 
prices 

Out-of-sample 
forecasts 

Jin (2017) WTI 

Futures, no-
change, 
unobserved 
components model 

A futures-based unobserved 
components model 
outperforms no-change and 
futures prices. 

Real prices Out-of-sample 
forecasts 

Kaboudan 
(2001) 

Crude oil 
price 

Genetic 
programming, no-
change 

No-change is inferior to 
forecasts derived from 
genetic programming 
models but outperforms 
those from artificial neural 
networks. 

Nominal 
prices 

Out-of-sample 
forecasts 

Lalonde, Zhu 
and Demers 
(2003) 

WTI 
SVAR, VAR, AR 
(1) model, no-
change 

SVAR models outperform 
other models in out-of-
sample oil price 
forecasting. 

Real prices Out-of-sample 
forecasts 

Li et al. 
(2018) 

Brent; 
WTI 

Time series, 
ensemble 
empirical mode 
decomposition, 
sparse Bayesian 
learning 

Ensemble empirical mode 
decomposition with sparse 
Bayesian learning and 
addition outperforms other 
forecasting methodologies. 

Nominal 
prices 

Out-of-sample 
forecasts 
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Table 1.A. Literature review of forecasting methods for crude oil prices (continued) 

Authors and 
year 

Crude oil 
prices Methods Main findings 

Real or 
nominal 
prices 

In-sample or 
out-of-sample 

forecasts 

Lin and Sun 
(2020) WTI 

ARIMA, random 
walk, ensemble 
empirical mode 
decomposition 

Ensemble empirical mode 
decomposition performs better 
than other models forecasting 
oil prices. 

Nominal 
prices 

Out-of-sample 
forecasts 

Lu et al. 
(2021) WTI 

ARIMA, artificial 
neural networks, 
random walk, 
machine learning 
methods  

The long short-term memory 
network method outperforms 
benchmark methods in both 
level and directional 
forecasting accuracy. 

Both prices Out-of-sample 
forecasts 

Miao et al. 
(2017)  WTI 

No-change, 
futures-based 
forecast, factor-
based model, 
LASSO method, 
stepwise 
regression 
method 

LASSO regression improves 
the accuracy of price forecasts 
compared to no-change and 
futures-based models. 

Real prices Out-of-sample 
forecasts 

Mirmirani and 
Li (2004) 

Crude oil 
price 

Artificial neural 
networks, VAR  

Artificial neural networks 
outperform VAR models. 

Nominal 
prices 

Out-of-sample 
forecasts 

Moosa and 
Al-Loughani 
(1994) 

WTI 
Error-correction 
models, Futures 
prices, GARCH 

Futures prices are neither 
unbiased nor efficient 
forecasters of spot prices. 

Nominal 
prices 

 In-sample 
forecasts 

Moshiri and 
Foroutan 
(2006) 

Crude oil 
price 

ARIMA, 
GARCH models, 
artificial neural 
networks 

Artificial neural networks yield 
better forecasts than ARIMA 
and GARCH models.  

Nominal 
prices 

Out-of-sample 
forecasts 

Mostafa and 
El-Masry 
(2016) 

Crude oil 
price 

ARIMA, artificial 
neural networks, 
gene expression 
programming 
(GEP)  

The GEP model outperforms 
artificial neural networks and 
ARIMA models in predicting 
oil prices. 

Nominal 
prices 

Out-of-sample 
forecasts 

Ramyar and 
Kianfar 
(2017) 

Brent, 
WTI, 
Dubai 
Fateh 

Artificial neural 
networks, VARs 

Multi-layer perceptron neural 
networks can more accurately 
predict crude oil prices than a 
VAR model.  

Nominal 
prices 

Both types of 
forecasts 
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Table 1.A. Literature review of forecasting methods for crude oil prices (continued) 

Authors and 
year 

Crude oil 
prices Methods Main findings 

Real or 
nominal 
prices 

In-sample or 
out-of-sample 

forecasts 

Reichsfeld 
and Roache 
(2011) 

WTI 

ARMA, futures 
prices, 
exponential 
smoother, error 
correction 
model, random 
walk 

Futures prices and random 
walk models outperform 
other models over the short 
horizon. 

Nominal 
prices 

Both types of 
forecasts 

Wu and 
McCallum 
(2005) 

WTI 

Hotelling’s 
model, no-
change, futures 
model, futures-
spot spread 
model 

Raw oil futures prices 
provide relatively less 
accurate forecasts than the 
futures-spot spread model. 

Nominal 
prices 

Both types of 
forecasts 

Xie et al. 
(2006) WTI 

ARIMA, 
artificial neural 
networks, 
support vector 
machines 

Support vector machines are 
better than other forecasting 
methods but sometimes 
underperform ARIMA and 
artificial neural network 
methods. 

Nominal 
prices 

Out-of-sample 
forecasts 

Xiong, Bao 
and Hu 
(2013) 

WTI 

Empirical mode 
decomposition 
models, random 
walk 

The empirical mode 
decomposition-slope-based 
method has the best 
prediction accuracy. 

Nominal 
prices 

Out-of-sample 
forecasts 

Ye, Zyren 
and Shore 
(2005) 

WTI 

No-change, 
relative stock 
model, modified 
alternative 
model 

The relative stock model 
produces the best out-of-
sample forecast results and 
no-change has the worst. 

Nominal 
prices 

Both types of 
forecasts 

Yousefi, 
Weinreich 
and Reinarz 
(2005) 

Crude oil 
price 

Futures prices, 
wavelets 

Wavelet-based forecasts 
outperform futures prices in 
the short term. 

Nominal 
prices 

Out-of-sample 
forecasts 

Yu, Wang 
and Lai 
(2008) 

Brent; 
WTI 

ARIMA, 
artificial neural 
networks 

The neural network ensemble 
learning model performs 
better than other models. 

Nominal 
prices 

Out-of-sample 
forecasts 
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Table 1.A. Literature review of forecasting methods for crude oil prices (continued) 

Authors and 
year 

Crude oil 
prices Methods Main findings 

Real or 
nominal 
prices 

In-sample or 
out-of-sample 

forecasts 

Zeng and 
Swanson 
(1998) 

Crude oil 
price 

Random walk, 
VAR, VECM 

Error-correction models 
perform better in shorter 
forecast horizons.  

Nominal 
prices 

Both types of 
forecasts 

Zhao, Li and 
Yu (2017) WTI 

Deep learning 
neural network 
model, 
multivariate 
forecasting 
models 

The deep learning approach 
outperforms multivariate 
forecasting models. 

Nominal 
prices 

Out-of-sample 
forecasts 

Note: AR (Autoregressive Model), ARMA (Autoregressive–Moving-Average Model), ARIMA (Autoregressive 
Integrated Moving Average Model); BVAR (Bayesian Vector Autoregressive Model); GARCH (Generalized 
Autoregressive Conditional Heteroskedasticity); Least Absolute Shrinkage and Selection Operator (LASSO); 
SVAR (Structural Vector Autoregressive Model); VECM (Vector Error Correction Model); VEC-NAR (Vector 
Error Correction Model and nonlinear autoregressive neural network); VAR (Vector Autoregressive Model); WTI 
(West Texas Intermediate). 
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Table 1.B. Literature review of forecasting methods for metals prices 

Authors and 
year Metals  Models Main findings 

Real, 
nominal or 
both prices 

In-sample, out-
of-sample or 
both types of 

forecasts 

Alipour, 
Khodaiari and 
Jafari (2019) 

Copper 

ARIMA, 
TGARCH, 
stochastic 
differential 
equations 

Stochastic differential 
equations are better at 
forecasting copper price 
movements than 
traditional linear or non-
linear functional forms. 

Nominal 
prices 

Out-of-sample 
forecasts 

Bowman and 
Husain (2004) 

Aluminum, 
copper, lead, 
nickel, tin, 
zinc, others 

ARMA, error-
correction 
models, 
judgmental 
models 

Futures-based models 
have better statistical- and 
directional- forecast 
accuracy than historical-
data-based or judgment 
approaches. 

Nominal 
prices 

Out-of-sample 
forecasts 

Buncic and 
Moretto 
(2015) 

Copper 

Model 
averaging 
methods, 
random walk 

Model averaging methods 
outperform random walk.  

Nominal 
prices 

Out-of-sample 
forecasts 

Castro, Araujo 
and de Avila 
Montini 
(2013) 

Aluminum ARIMA, VAR, 
VEC models 

VEC yields better forecast 
accuracy than VAR 
models. 

Nominal 
prices 

Out-of-sample 
forecasts 

Chen, He and 
Zhang (2016)  

Aluminum 
and nickel 

ARMA, grey 
wave prediction 
method, random 
walk 

Grey wave prediction 
methods forecasts 
outperform those from 
univariate models. 

Nominal 
prices 

Out-of-sample 
forecasts 

Chinn and 
Coibion 
(2014) 

Aluminum, 
copper, lead, 
nickel, tin, 
others 

Futures, 
GARCH, linear 
regressions, 
random walk 

Random walk modestly 
outperforms futures 
prices. 

Nominal 
prices 

Out-of-sample 
forecasts 

Dooley and 
Lenihan 
(2005) 

Lead and 
zinc 

ARIMA, lagged 
forward price 
model 

ARIMA models provide 
superior forecasting 
results for lead. 

Nominal 
prices 

Out-of-sample 
forecasts 

Du et al. 
(2021) Copper 

Hybrid machine 
learning model, 
individual 
prediction 
model 

Hybrid method 
significantly outperforms 
comparison models in 
metal price prediction. 

Nominal 
prices 

Out-of-sample 
forecasts 
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Table 1.B. Literature review of forecasting methods for metals prices (continued) 

Authors and 
year Metals Models Main findings 

Real, 
nominal or 
both prices 

In-sample, out-
of-sample or 
both types of 

forecasts 

He et al. 
(2015) 

Lead and 
zinc 

ARMA, 
curvelet based 
multi-scale 
forecasting, 
random walk 

Curvelet-based forecasting 
algorithms are superior to 
traditional benchmark 
models. 

Nominal 
prices 

Both types of 
forecasts 

Issler, 
Rodrigues and 
Burjack (2014) 

Aluminum, 
copper, lead, 
nickel, tin, 
zinc 

AR, VAR, 
VECM, 
restricted 
VECM 

AR models are best for 
aluminum and copper, 
VARs are best for lead and 
zinc, and VECMs are best 
for nickel and tin. 

Real prices Out-of-sample 
forecasts 

Kahraman and 
Akay (2022) 

Aluminum, 
copper, lead, 
iron, nickel, 
tin, and zinc 

Exponential 
smoothing, 
mean, naive, 
and ARIMA 
methods 

The damped trend model is 
best for aluminum, copper, 
lead, and iron prices; the 
Holt model is best for 
nickel and zinc prices; and 
the Brown model is best 
for tin prices. 

Real prices Out-of-sample 
forecasts 

Khoshalan et 
al. (2021) Copper 

Gene 
expression 
programming, 
artificial neural 
network, 
Adaptive neuro-
fuzzy inference 
system 

Artificial neural network 
was found to be the best 
approach for predicting 
copper prices.  

Nominal 
prices 

Out-of-sample 
forecasts 

Kriechbaumer 
et al. (2014) 

Aluminum, 
copper, lead, 
zinc 

Wavelet-
autoregressive 
integrated 
moving average 

ARIMA model forecasts 
improve substantially when 
combined with wavelet-
based multi-resolution 
analysis. 

Nominal 
prices 

Out-of-sample 
forecasts 

Lasheras et al. 
(2015) Copper 

ARIMA and 
artificial neural 
networks 
models 

Artificial neural network 
models perform better than 
ARIMA models.  

Nominal 
prices 

Out-of-sample 
forecasts 
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Table 1.B. Literature review of forecasting methods for metals prices (continued) 

Authors and 
year Metals Models Main findings 

Real, 
nominal or 
both prices 

In-sample, out-
of-sample or 
both types of 

forecasts 

Pincheira-
Brown and 
Hardy (2019) 

Aluminum, 
copper, lead, 
nickel, tin, 
zinc 

AR, Random Walk, 
linear specifications, 
threshold 
regressions, Markov 
switching models 

Accounting for Chilean 
peso dynamics improves 
metal price forecasts.  

Nominal 
prices 

Both types of 
forecasts 

Reichsfeld 
and Roache 
(2011) 

Aluminum, 
copper, 
others 

ARMA, ARIMA, 
futures, random 
walk, exponential 
smoother, error 
correction model 

Futures prices perform 
better at short horizons; 
time series models 
underperform random 
walk. 

Nominal 
prices 

Both types of 
forecasts 

Mysen and 
Thornton 
(2021) 

Aluminum 
VECMs and a 
machine learning 
model 

Machine learning 
models produce the 
most reliable and 
accurate forecasts. 

Nominal 
prices 

Out-of-sample 
forecasts 

Rubaszek, 
Karolak and 
Kwas (2020) 

Aluminum, 
copper, 
nickel, zinc 

AR, threshold 
Autoregressive 
model, VAR model, 
threshold vector 
autoregressive 
(TVAR), random 
walk 

Mean-reverting models 
provide better forecasts 
than naive random walk 
model; allowing for 
non-linearity does not 
improve the quality of 
forecasts. 

Real prices Out-of-sample 
forecasts 

Villegas 
(2021) Nickel 

ARIMA, artificial 
neural networks, 
GARCH models 

Artificial neural network 
methods yield more 
accurate forecasts than 
ARIMA and GARCH 
techniques. 

Real prices Out-of-sample 
forecasts 

Wang et al. 
(2019) Copper Artificial neural 

networks 

Hybrid artificial neural 
network techniques have 
more favorable forecasts 
in both level and 
directional accuracy 
compared with those of 
traditional artificial 
neural network 
techniques. 

Nominal 
prices 

Out-of-sample 
forecasts 

Note: AR (Autoregressive Model), ARMA (Autoregressive–Moving-Average Model), ARIMA (Autoregressive 
Integrated Moving Average Model); GARCH (Generalized Autoregressive Conditional Heteroskedasticity); TVAR 
(Threshold vector autoregressive model); TGARCH (Threshold Generalized Autoregressive Conditional 
Heteroskedasticity); VECM (Vector Error Correction Model); VAR (Vector Autoregressive Model).  
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Table 1.C. Literature review of forecasting methods crude oil and metal prices volatility 

Authors and 
year Metals  Models Main findings Real, nominal 

or both prices 

In-sample, out-of-
sample or both 

types of forecasts 

Astudillo et 
al. (2020) Copper Support vector 

regressions 

Support vector 
regressions provide 
good prediction 
accuracy for copper 
price volatilities over 
the short horizon. 

Nominal prices Out-of-sample 
forecasts 

Cheong 
(2009) 

WTI and 
Brent GARCH type models 

The intensity of 
long-persistence 
volatility in WTI is 
greater than in the 
Brent. 

Nominal prices Out-of-sample 
forecasts 

Degiannakis 
and Filis 
(2017) 

Brent 
Heterogeneous 
autoregressive 
models 

Information channels 
improves predictive 
accuracy of oil price 
volatility. 

Nominal prices Out-of-sample 
forecasts 

Dehghani 
(2018) Copper GEP, multivariate 

regression methods 

GEP yields better 
prediction accuracy 
than time series and 
multivariate 
regression methods. 

Real prices Out-of-sample 
forecasts 

Gong and Lin 
(2018) Copper 

Heterogeneous 
autoregressive 
models 

Accounting for 
structural breaks in 
heterogeneous 
autoregressive 
models improves 
forecasts. 

Nominal prices Both types of 
forecasts 

Haugom et 
al. (2014) WTI 

Heterogeneous 
autoregressive 
models 

Including implied 
volatility and market 
variables improves 
volatility forecasts. 

Nominal prices Out-of-sample 
forecasts 

Mohammadi 
and Su 
(2010) 

Various 
benchmark 
prices 

GARCH, EGARCH 
and APARCH and 
FIGARCH 

Forecasting accuracy 
of the APARCH 
model outperforms 
the other GARCH 
models. 

Nominal prices Out-of-sample 
forecasts 

Tang (2010) Aluminum 
and copper 

Standard GARCH 
models, Regime 
Switching GARCH 
(MRS-GARCH) 

MRS-GARCH 
models outperform 
standard GARCH 
models in predicting 
metals prices. 

Nominal prices Both types of 
forecasts 
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Table 1.C. Literature review of forecasting methods crude oil and metal prices volatility 
(continued) 

Authors and 
year Metals Models Main findings 

Real, 
nominal or 
both prices 

In-sample, out-
of-sample or 
both types of 

forecasts 

Vo (2009) WTI 

Markov switching 
stochastic volatility 
(MSSV) model; 
stochastic volatility 
(SV) model, GARCH 
model and Markov 
switching (MS) 
model 

Out-of-sample 
forecasts suggest 
that the MSSV 
outperforms other 
models. 

Nominal 
prices 

Both types of 
forecasts 

Wang, Wu 
and Yang 
(2016)  

WTI and 
Brent 

Markov switching 
multifractal (MSM) 
volatility model, 
GARCH models, 
historical volatility 
(HV) model 

MSM models have 
greater forecasting 
abilities than the 
GARCH or HV 
models. 

Nominal 
prices 

Both types of 
forecasts 

Wen, Gong 
and Cai 
(2016)  

WTI  Heterogeneous 
autoregressive models 

Different models 
exhibit different 
predictive power in 
forecasting the 1-
day, 1-week and 1-
month volatility of 
crude oil futures.  

Nominal 
prices 

Out-of-sample 
forecasts 

Note: APARCH (Asymmetric Power ARCH); EGARCH (Exponential GARCH); FIGARCH (Fractionally 
Integrated Generalized Autoregressive Conditionally Heteroskedasticity); GARCH (Generalized Autoregressive 
Conditional Heteroskedasticity); Gene expression programming (GEP); HAR (Heterogeneous Autoregressive-
type volatility models); TGARCH (Threshold Generalized Autoregressive Conditional Heteroskedasticity). 

 
Table 2. Sign restrictions on impulse responses 

 Supply shocks Demand shocks 
Oil or metal production − + 
Global economic activity − + 
Real price of oil or metals + + 
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Figure 3. Approach with the best forecast performance 

A. 3-month horizon, by Diebold-Mariano 
test 

B. 6-12-month horizon, by Diebold-
Mariano test 

  
C. 15-24-month horizon, by Diebold-
Mariano test 

D. 3-month horizon, by RMSE 

  
 

E. 6-12-month horizon, by RMSE F. 15-24-month horizon, by RMSE 

 
 

Source: World Bank.  
Note: “Biv. corr.” stands for bivariate correlations, “Mach. Learn.” stands for machine learning approach. Charts show 
the percent of comparisons between all pairs of the six approaches in which the Diebold-Mariano statistic (A-C) or a 
lower RMSE (D-F) indicates that the approach shown on the x-axis has statistically significantly better forecast 
performance. Futures prices and bilateral correlations are not evaluated beyond the 12-month horizon, as discussed in 
the text.  
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Table 3.A. Bias of commodity price forecasts 

(U.S. dollars per metric tonne unless otherwise specified) 

  
Source: World Bank.  
Note: Bias is defined as the difference between the actual price and the predicted price. The forecast period is 2015Q1-
2022Q1. Forecasts for OEM are only available at the semi-annual frequency; forecasts for all other approaches are 
available at the quarterly frequency. 

Commodity 
Horizon 

(months)
Consensus 

forecasts Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Oil 3 -3.1 -1.5 1.7 2.2 3.6 2.2
(U.S. dollars per barrel) 6 -2 -1.6 4.6 3.8 2.5 3.8

9 -1 -2 5.8 5.4 1.5 3.6
12 -0.1 -2.3 7.6 8 1.3 3.2
15 0.7 … … 10.7 1.3 2.6
18 1.3 … … 14.6 1.3 2.1
21 1.8 … … 17.3 1.5 2.3
24 2.3 … … 25.4 0 2.4

Aluminum 3 -6 354 6 -23 16 14
6 -3 355 10 -28 0 22
9 -3 363 114 -28 -9 22

12 -2 371 235 -2 -7 14
15 4 … … -49 -5 7
18 12 … … -17 7 4
21 19 … … 11 17 -6
24 30 … … 23 -7 -16

Copper 3 -121 8 133 -69 -73 -49
6 -112 29 527 -92 -92 -31
9 -107 43 875 -138 -103 -28

12 -93 52 1105 -95 -88 -30
15 -71 … … -298 -64 3
18 -36 … … -194 -12 43
21 4 … … -70 43 78
24 52 … … -119 117 104

Lead 3 -71 -39 -3 -49 -77 -115
6 -75 -36 138 -68 -85 -124
9 -76 -34 211 -82 -89 -125

12 -76 -32 222 -50 -81 -119
15 -78 … … -68 -88 -100
18 -81 … … -35 -76 -78
21 -79 … … 69 -68 -88
24 -78 … … 103 -21 -87

Nickel 3 -546 -221 -125 -309 -222 -1279
6 -344 -193 1123 -267 -127 -1090
9 -167 -162 1057 -333 -128 -1143

12 22 -132 1950 -155 23 -1276
15 181 … … -393 253 -1371
18 296 … … -371 442 -1407
21 425 … … 624 685 -1387
24 598 … … 1136 477 -1315

Tin 3 -910 -479 197 -1092 21 -38
6 -1168 -675 691 -1636 -245 151
9 -1357 -814 1542 -2614 -497 290

12 -1402 -939 2622 -3149 -661 436
15 -1422 … … -4092 -831 683
18 -1430 … … -4287 -839 890
21 -1381 … … -4028 -17103 1102
24 -1380 … … -4202 -901 1347

Zinc 3 -98 -45 -20 -102 -55 -56
6 -103 -52 130 -130 -64 -34
9 -125 -62 227 -127 -73 -16

12 -131 -75 331 -106 -84 2
15 -135 … … -177 -86 27
18 -141 … … -161 -75 57
21 -147 … … -105 -69 68
24 -157 … … -110 12 70
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Table 3.B. Root mean squared error of commodity price forecasts  

(U.S. dollars per metric tonne unless otherwise specified) 

 
Source: World Bank.

Commodity 
Horizon 

(months)
Consensus 

forecasts Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Oil 3 6 4 4 13 9 4
(U.S. dollars per barrel) 6 7 5 8 16 8 6

9 8 6 7 21 7 10
12 9 7 7 27 8 16
15 10 … … 31 8 21
18 11 … … 33 9 24
21 12 … … 34 10 25
24 13 … … 33 11 24

Aluminum 3 170 147 47 232 110 67
6 176 133 37 266 109 75
9 190 123 265 315 133 96

12 203 117 567 306 175 133
15 218 … … 410 209 173
18 233 … … 373 221 206
21 246 … … 354 232 233
24 249 … … 358 276 258

Copper 3 441 145 74 790 334 277
6 477 146 866 872 362 387
9 551 149 1212 1166 407 684

12 637 153 1190 1282 477 1062
15 701 … … 1791 528 1386
18 769 … … 1732 577 1637
21 841 … … 1630 604 1806
24 859 … … 1722 729 1925

Lead 3 154 104 106 253 95 134
6 157 100 304 267 105 126
9 165 97 300 337 131 150

12 176 95 241 358 167 208
15 188 … … 361 204 278
18 194 … … 339 224 331
21 195 … … 353 236 364
24 204 … … 371 200 379

Nickel 3 1443 878 990 2763 959 2327
6 1700 828 3134 2934 742 2380
9 2044 794 2064 3307 763 2635

12 2337 769 2520 3662 1221 2884
15 2529 … … 4033 1601 3053
18 2756 … … 4016 1784 3162
21 2886 … … 3196 2000 3208
24 3011 … … 3377 2233 3173

Tin 3 2171 1425 1576 2410 1959 1805
6 2537 1280 1723 3242 1167 1969
9 3021 1217 2377 4907 1395 2887

12 3457 1181 3081 5482 1989 4114
15 3743 … … 6794 2672 5243
18 3956 … … 7066 3277 6103
21 4077 … … 6696 2369 6640
24 4188 … … 6632 4023 6880

Zinc 3 214 151 146 402 206 202
6 213 146 313 389 190 200
9 226 142 327 395 210 243

12 255 142 343 419 260 341
15 282 … … 538 282 455
18 309 … … 553 298 559
21 330 … … 492 303 634
24 357 … … 426 290 686
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Table 3.C. Direction of commodity price forecasts errors  

(Percent of forecast quarters) 

 
Source: World Bank.  

Commodity 
Horizon 

(months)
Consensus 

forecasts Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Oil 3 69 97 97 61 86 83
(U.S. dollars per barrel) 6 76 97 90 50 79 83

9 76 93 97 29 86 76
12 76 93 93 39 86 62
15 66 … … 39 86 59
18 79 … … 54 79 55
21 83 … … 57 79 48
24 79 … … 57 46 55

Aluminum 3 86 72 86 79 100 97
6 86 79 97 86 100 100
9 83 83 90 79 100 100

12 86 79 93 71 93 97
15 83 … … 79 93 93
18 83 … … 82 93 93
21 86 … … 86 93 93
24 83 … … 82 55 83

Copper 3 55 86 97 50 86 83
6 55 86 93 61 93 79
9 55 86 93 54 93 76

12 52 86 93 43 86 72
15 55 … … 54 86 48
18 52 … … 57 86 41
21 59 … … 50 86 41
24 66 … … 61 55 41

Lead 3 59 83 93 54 79 72
6 62 83 86 50 64 76
9 59 83 83 46 79 76

12 52 79 86 50 64 76
15 48 … … 50 64 62
18 52 … … 61 64 45
21 66 … … 54 64 41
24 48 … … 61 46 45

Nickel 3 72 93 97 50 93 86
6 72 93 93 57 86 86
9 72 93 93 61 86 72

12 59 93 93 54 86 72
15 59 … … 54 79 59
18 55 … … 61 79 52
21 59 … … 57 79 52
24 59 … … 68 64 48

Tin 3 69 86 100 68 100 86
6 69 90 100 68 93 72
9 66 90 90 64 93 72

12 69 93 93 57 93 62
15 72 … … 68 93 52
18 69 … … 68 86 31
21 72 … … 64 33 24
24 66 … … 71 64 31

Zinc 3 72 86 100 50 86 79
6 69 86 93 54 93 76
9 72 86 90 46 100 76

12 72 83 90 50 100 69
15 72 … … 54 100 69
18 76 … … 61 100 72
21 79 … … 61 100 69
24 59 … … 68 64 69

Percent of quarters with correctly forecast direction of change
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Table 3.D. Directional accuracy: Pesaran and Timmerman (2009) test 

 
Source: World Bank.  
Note: Test statistics indicate statistically significantly accurate forecast directions for the model indicated in columns. 
*** indicates statistically significantly more accurate model in the row at the 0.1 percent significance level, ** at the 
1 percent level, * at the 5 percent level, and † at the 10 percent level. 
 

Commodity 
Horizon 

(months)
Consensus 

forecasts Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Oil 3 1.7* 5.2*** 5.2*** 1.4† 3** 3.6***
(U.S. dollars per barrel) 6 2.6** 5.2*** 4.3*** -0.1 2.3* 3.6***

9 2.6** 4.7*** 5.2*** -2.2 3** 2.9**
12 2.7** 4.7*** 4.8*** -1.1 3** 1.7*
15 1.6† … … -1.3 3** 1.5†
18 3.1** … … 0.4 2.9** 1.2
21 3.6*** … … 0.7 2.9** 0.3
24 3.2*** … … 0.7 2.1* 0.9

Aluminum 3 4*** 2.4** 4*** 3.1*** 4*** 5.2***
6 4*** 3.3*** 5.2*** 3.9*** 4*** 5.6***
9 3.6*** 3.7*** 4.4*** 3.1*** 4*** 5.6***

12 4*** 3.3*** 4.8*** 2.3* 3.5*** 5.2***
15 3.6*** … … 3.1*** 3.5*** 4.8***
18 3.6*** … … 3.5*** 3.5*** 4.8***
21 4*** … … 3.9*** 3.5*** 4.8***
24 3.6*** … … 3.4*** 2.3* 3.6***

Copper 3 0.5 4.1*** 5.2*** 0 3** 3.6***
6 0.5 4.1*** 4.8*** 1.1 3.5*** 3.3***
9 0.4 4.1*** 4.8*** 0.3 3.5*** 3**

12 0.1 4.1*** 4.8*** -1 2.8** 2.5**
15 0.4 … … 0.4 2.8** -0.1
18 0.1 … … 0.8 2.8** -0.8
21 0.8 … … 0 2.8** -0.9
24 1.7* … … 1.2 2.1* -0.9

Lead 3 0.9 3.7*** 4.8*** 0.4 2.3* 2.5**
6 1.3† 3.7*** 4*** 0 1.3† 2.9**
9 0.9 3.7*** 3.6*** -0.4 2.3* 2.9**

12 0.2 3.3*** 4*** 0 1.8* 2.9**
15 -0.2 … … 0 1.7* 1.5†
18 0.2 … … 1.2 1.7* -0.5
21 1.7* … … 0.4 1.7* -1
24 -0.1 … … 1.2 0.7 -0.6

Nickel 3 2.5** 4.8*** 5.2*** 0 3.5*** 4.1***
6 2.5** 4.8*** 4.8*** 0.8 2.9** 4.1***
9 2.5** 4.8*** 4.8*** 1.2 2.9** 2.5**

12 0.9 4.8*** 4.8*** 0.4 2.9** 2.5**
15 0.9 … … 0.4 2.3* 0.9
18 0.5 … … 1.2 2.3* 0.1
21 0.9 … … 0.8 2.3* 0.1
24 0.9 … … 1.9* 3.5*** -0.3

Tin 3 2.1* 4.2*** 5.6*** 2* 4*** 4.2***
6 2.2* 4.5*** 5.6*** 2* 3.4*** 2.8**
9 1.8* 4.5*** 4.4*** 1.6† 3.4*** 2.6**

12 2.3* 4.8*** 4.8*** 0.8 3.4*** 1.5†
15 2.6** … … 2* 3.4*** 0.3
18 2.3* … … 2* 2.7** -2.1
21 2.6** … … 1.6† -0.4 -2.9
24 1.8* … … 2.4** 2.8** -2.1

Zinc 3 2.4** 4.1*** 5.6*** 0.1 3** 3**
6 2.1* 4.1*** 4.7*** 0 3.5*** 2.7**
9 2.4** 4.1*** 4.3*** -0.8 4*** 2.7**

12 2.4** 3.8*** 4.3*** -0.2 4*** 2.1*
15 2.4** … … 0 4*** 2.1*
18 2.5** … … 0.9 4*** 2.7**
21 3** … … 0.9 4*** 2.5**
24 1 … … 1.8* 2* 2.1*
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Table 4.A. Model comparison: Bias of oil price forecasts 
(U.S. dollars per barrel) 

 
Source: World Bank.  
Note: Bias is defined as the difference between the actual price and the predicted price. The forecast period is 2015Q1-
2022Q1. Forecasts for OEM are only available at the semi-annual frequency; forecasts for all other approaches are 
available at the quarterly frequency. Diagonal entries indicate estimates of average bias for the respective approach. * 
indicates significant difference between the forecasts of any pair of approaches, at the 5 percent significance level 
according to a t-test (bias).   

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM Machine learning
Consensus 3 -3.1 … … … … …
Futures 3 -1.5 … … … …
Bivariate correlations 3 1.7 … … …
BVAR 3 2.2 … …
OEM 3 3.6 …
Machine learning 3 2.2

Consensus 6 -2 … … … … …
Futures 6 -1.6 … … … …
Bivariate correlations 6 4.6 … … …
BVAR 6 3.8 … …
OEM 6 2.5 …
Machine learning 6 3.8

Consensus 9 -1 … … … … …
Futures 9 -2 … … … …
Bivariate correlations 9 * * 5.8 … … …
BVAR 9 5.4 … …
OEM 9 1.5 …
Machine learning 9 3.6

Consensus 12 -0.1 … … … … …
Futures 12 -2.3 … … … …
Bivariate correlations 12 * * 7.6 … … …
BVAR 12 8 … …
OEM 12 * 1.3 …
Machine learning 12 3.2

Consensus 15 0.7 … … … … …
Futures 15 … … … … … …
Bivariate correlations 15 … … … … … …
BVAR 15 … … 10.7 …
OEM 15 … … 1.3 …
Machine learning 15 … … 2.6

Consensus 18 1.3 … … … … …
Futures 18 … … … … … …
Bivariate correlations 18 … … … … … …
BVAR 18 * … … 14.6 … …
OEM 18 … … * 1.3 …
Machine learning 18 … … 2.1

Consensus 21 1.8 … … … … …
Futures 21 … … … … … …
Bivariate correlations 21 … … … … … …
BVAR 21 * … … 17.3 … …
OEM 21 … … * 1.5 …
Machine learning 21 … … 2.3

Consensus 24 2.3 … … … … …
Futures 24 … … … … … …
Bivariate correlations 24 … … … … … …
BVAR 24 * … … 25.4 … …
OEM 24 … … * 0 …
Machine learning 24 … … * 2.4
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Table 4.B. Model comparison: Root mean squared error of oil price forecasts  

(U.S. dollars per barrel) 

  
Source: World Bank.  
Note: The forecast period is 2015Q1-2022Q1. Forecasts for OEM are only available at the semi-annual frequency; 
forecasts for all other approaches are available at the quarterly frequency. Diagonal entries indicate average RMSE 
estimates for the respective approach. * indicates significant difference between the forecasts of any pair of 
approaches, at the 5 percent significance level according to an F-test (RMSE).  

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 6 … … … … …
Futures 3 * 3.5 … … … …
Bivariate correlations 3 * 3.5 … … …
BVAR 3 * * * 13.1 … …
OEM 3 * * 8.5 …
Machine learning 3 * * * 4.1

Consensus 6 6.6 … … … … …
Futures 6 5 … … … …
Bivariate correlations 6 * 7.5 … … …
BVAR 6 * * * 15.7 … …
OEM 6 * 7.7 …
Machine learning 6 * 5.6

Consensus 9 7.9 … … … … …
Futures 9 6.2 … … … …
Bivariate correlations 9 6.5 … … …
BVAR 9 * * * 21.1 … …
OEM 9 * 7.4 …
Machine learning 9 * * * 10.1

Consensus 12 9.2 … … … … …
Futures 12 7.2 … … … …
Bivariate correlations 12 6.6 … … …
BVAR 12 * * * 26.6 … …
OEM 12 * 8.1 …
Machine learning 12 * * * * * 16.1

Consensus 15 10.3 … … … … …
Futures 15 … … … … … …
Bivariate correlations 15 … … … … … …
BVAR 15 * … … 31 …
OEM 15 … … * 8.4 …
Machine learning 15 * … … * 21.4

Consensus 18 11.1 … … … … …
Futures 18 … … … … … …
Bivariate correlations 18 … … … … … …
BVAR 18 * … … 32.7 … …
OEM 18 … … * 8.9 …
Machine learning 18 * … … * 24.2

Consensus 21 11.9 … … … … …
Futures 21 … … … … … …
Bivariate correlations 21 … … … … … …
BVAR 21 * … … 34.4 … …
OEM 21 … … * 9.5 …
Machine learning 21 * … … * 24.6

Consensus 24 12.8 … … … … …
Futures 24 … … … … … …
Bivariate correlations 24 … … … … … …
BVAR 24 * … … 33.1 … …
OEM 24 … … * 10.8 …
Machine learning 24 * … … * 23.7
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Table 5.A. Model comparison: Bias of aluminum price forecasts 

(U.S. dollars per metric tonne) 

  
Source: World Bank.  
Note: Bias is defined as the difference between the actual price and the predicted price. The forecast period is 2015Q1-
2022Q1. Forecasts for OEM are only available at the semi-annual frequency; forecasts for all other approaches are 
available at the quarterly frequency. Diagonal entries indicate estimates of average bias for the respective approach. * 
indicates significant difference between the forecasts of any pair of approaches, at the 5 percent significance level 
according to a t-test (bias).  

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 -6.1 … … … … …
Futures 3 * 353.8 … … … …
Bivariate correlations 3 * 5.8 … … …
BVAR 3 * -23.3 … …
OEM 3 * 15.9 …
Machine learning 3 * 14.2

Consensus 6 -2.7 … … … … …
Futures 6 * 354.7 … … … …
Bivariate correlations 6 * 10.2 … … …
BVAR 6 * -27.9 … …
OEM 6 * -0.3 …
Machine learning 6 * 22.4

Consensus 9 -2.6 … … … … …
Futures 9 * 362.7 … … … …
Bivariate correlations 9 * 113.7 … … …
BVAR 9 * -27.5 … …
OEM 9 * -9.4 …
Machine learning 9 * 21.8

Consensus 12 -1.9 … … … … …
Futures 12 * 370.8 … … … …
Bivariate correlations 12 * 235.3 … … …
BVAR 12 * -2.2 … …
OEM 12 * -7.3 …
Machine learning 12 * * 13.5

Consensus 15 3.9 … … … … …
Futures 15 … … … … … …
Bivariate correlations 15 … … … … … …
BVAR 15 … … -49 …
OEM 15 … … -4.6 …
Machine learning 15 … … 7.4

Consensus 18 11.8 … … … … …
Futures 18 … … … … … …
Bivariate correlations 18 … … … … … …
BVAR 18 … … -16.9 … …
OEM 18 … … 6.8 …
Machine learning 18 … … 4.1

Consensus 21 18.9 … … … … …
Futures 21 … … … … … …
Bivariate correlations 21 … … … … … …
BVAR 21 … … 11.2 … …
OEM 21 … … 16.6 …
Machine learning 21 … … -5.7

Consensus 24 30.1 … … … … …
Futures 24 … … … … … …
Bivariate correlations 24 … … … … … …
BVAR 24 … … 22.8 … …
OEM 24 … … -7.3 …
Machine learning 24 … … -15.7
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Table 5.B. Model comparison: Root mean squared error of aluminum price forecasts 

(U.S. dollar per metric tonne) 

Source: World Bank.  
Note: The forecast period is 2015Q1-2022Q1. Forecasts for OEM are only available at the semi-annual frequency; 
forecasts for all other approaches are available at the quarterly frequency. Diagonal entries indicate average RMSE 
estimates for the respective approach. * indicates significant difference between the forecasts of any pair of 
approaches, at the 5 percent significance level according to an F-test (RMSE).   

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 170.3 … … … … …
Futures 3 146.6 … … … …
Bivariate correlations 3 * * 47.1 … … …
BVAR 3 * * 232.4 … …
OEM 3 * * 109.5 …
Machine learning 3 * * * * 67.3

Consensus 6 175.8 … … … … …
Futures 6 133.1 … … … …
Bivariate correlations 6 * * 37.3 … … …
BVAR 6 * * * 265.8 … …
OEM 6 * * 109.3 …
Machine learning 6 * * * * 75.1

Consensus 9 190.4 … … … … …
Futures 9 * 123 … … … …
Bivariate correlations 9 * 265.3 … … …
BVAR 9 * * 314.5 … …
OEM 9 * * 133 …
Machine learning 9 * * * 96.3

Consensus 12 202.6 … … … … …
Futures 12 * 117.3 … … … …
Bivariate correlations 12 * * 567.4 … … …
BVAR 12 * * * 305.7 … …
OEM 12 * * 174.7 …
Machine learning 12 * * * 133.4

Consensus 15 218.1 … … … … …
Futures 15 … … … … … …
Bivariate correlations 15 … … … … … …
BVAR 15 * … … 409.8 …
OEM 15 … … * 209.2 …
Machine learning 15 … … * 173

Consensus 18 232.9 … … … … …
Futures 18 … … … … … …
Bivariate correlations 18 … … … … … …
BVAR 18 * … … 373.3 … …
OEM 18 … … 221 …
Machine learning 18 … … * 205.5

Consensus 21 246 … … … … …
Futures 21 … … … … … …
Bivariate correlations 21 … … … … … …
BVAR 21 … … 353.8 … …
OEM 21 … … 232 …
Machine learning 21 … … * 232.6

Consensus 24 249.3 … … … … …
Futures 24 … … … … … …
Bivariate correlations 24 … … … … … …
BVAR 24 … … 358.1 … …
OEM 24 … … 275.7 …
Machine learning 24 … … 257.8
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Table 6.A. Model comparison: Bias of copper price forecasts 

(U.S. dollars per metric tonne) 
 

 
Source: World Bank.  
Note: Bias is defined as the difference between the actual price and the predicted price. The forecast period is 2015Q1-
2022Q1. Forecasts for OEM are only available at the semi-annual frequency; forecasts for all other approaches are 
available at the quarterly frequency. Diagonal entries indicate estimates of average bias for the respective approach. * 
indicates significant difference between the forecasts of any pair of approaches, at the 5 percent significance level 
according to a t-test (bias).   

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 -121 … … … … …
Futures 3 7.8 … … … …
Bivariate correlations 3 * 132.6 … … …
BVAR 3 -69 … …
OEM 3 -73.1 …
Machine learning 3 -49.1

Consensus 6 -111.6 … … … … …
Futures 6 29.1 … … … …
Bivariate correlations 6 * * 526.8 … … …
BVAR 6 -91.9 … …
OEM 6 * -92.1 …
Machine learning 6 * -30.8

Consensus 9 -106.5 … … … … …
Futures 9 43.1 … … … …
Bivariate correlations 9 * * 875.4 … … …
BVAR 9 * -137.8 … …
OEM 9 * -103.4 …
Machine learning 9 * -27.8

Consensus 12 -93.4 … … … … …
Futures 12 52.1 … … … …
Bivariate correlations 12 * * 1105.1 … … …
BVAR 12 * -95.2 … …
OEM 12 * -88.3 …
Machine learning 12 * -29.5

Consensus 15 -70.9 … … … … …
Futures 15 … … … … … …
Bivariate correlations 15 … … … … … …
BVAR 15 … … -297.6 …
OEM 15 … … -64.1 …
Machine learning 15 … … 3.4

Consensus 18 -36.3 … … … … …
Futures 18 … … … … … …
Bivariate correlations 18 … … … … … …
BVAR 18 … … -193.7 … …
OEM 18 … … -12 …
Machine learning 18 … … 43

Consensus 21 4.2 … … … … …
Futures 21 … … … … … …
Bivariate correlations 21 … … … … … …
BVAR 21 … … -69.9 … …
OEM 21 … … 43.4 …
Machine learning 21 … … 78.1

Consensus 24 51.6 … … … … …
Futures 24 … … … … … …
Bivariate correlations 24 … … … … … …
BVAR 24 … … -119.4 … …
OEM 24 … … 116.6 …
Machine learning 24 … … 103.6
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Table 6.B. Model comparison: Root mean squared error of copper price forecasts 

(U.S. dollars per metric tonne) 

 
Source: World Bank.  
Note: The forecast period is 2015Q1-2022Q1. Forecasts for OEM are only available at the semi-annual frequency; 
forecasts for all other approaches are available at the quarterly frequency. Diagonal entries indicate average RMSE 
estimates for the respective approach. * indicates significant difference between the forecasts of any pair of 
approaches, at the 5 percent significance level according to an F-test (RMSE).   

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 440.6 … … … … …
Futures 3 * 145.2 … … … …
Bivariate correlations 3 * * 74 … … …
BVAR 3 * * * 789.8 … …
OEM 3 * * * 334.2 …
Machine learning 3 * * * * 277.1

Consensus 6 477.2 … … … … …
Futures 6 * 146.2 … … … …
Bivariate correlations 6 * * 865.8 … … …
BVAR 6 * * 872 … …
OEM 6 * * * 362.2 …
Machine learning 6 * * * 387.1

Consensus 9 551.4 … … … … …
Futures 9 * 148.7 … … … …
Bivariate correlations 9 * * 1212.2 … … …
BVAR 9 * * 1165.7 … …
OEM 9 * * * 406.7 …
Machine learning 9 * * * 684.4

Consensus 12 637.1 … … … … …
Futures 12 * 152.9 … … … …
Bivariate correlations 12 * * 1189.7 … … …
BVAR 12 * * 1281.9 … …
OEM 12 * * * 476.6 …
Machine learning 12 * * * 1062.3

Consensus 15 701.3 … … … … …
Futures 15 … … … … … …
Bivariate correlations 15 … … … … … …
BVAR 15 * … … 1791 …
OEM 15 … … * 528.1 …
Machine learning 15 * … … * 1385.7

Consensus 18 768.7 … … … … …
Futures 18 … … … … … …
Bivariate correlations 18 … … … … … …
BVAR 18 * … … 1731.8 … …
OEM 18 … … * 576.5 …
Machine learning 18 * … … * 1637

Consensus 21 841.1 … … … … …
Futures 21 … … … … … …
Bivariate correlations 21 … … … … … …
BVAR 21 * … … 1629.9 … …
OEM 21 … … * 604 …
Machine learning 21 * … … * 1805.7

Consensus 24 858.6 … … … … …
Futures 24 … … … … … …
Bivariate correlations 24 … … … … … …
BVAR 24 * … … 1721.9 … …
OEM 24 … … * 728.7 …
Machine learning 24 * … … * 1924.5
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Table 7.A. Model comparison: Bias of lead price forecasts 

(U.S. dollars per metric tonne) 

  
Source: World Bank.  
Note: Bias is defined as the difference between the actual price and the predicted price. The forecast period is 2015Q1-
2022Q1. Forecasts for OEM are only available at the semi-annual frequency; forecasts for all other approaches are 
available at the quarterly frequency. Diagonal entries indicate estimates of average bias for the respective approach. * 
indicates significant difference between the forecasts of any pair of approaches, at the 5 percent significance level 
according to a t-test (bias).  
 

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 -70.6 … … … … …
Futures 3 -39.3 … … … …
Bivariate correlations 3 -3.1 … … …
BVAR 3 -48.7 … …
OEM 3 * -77.1 …
Machine learning 3 * * -115.2

Consensus 6 -74.6 … … … … …
Futures 6 -36.3 … … … …
Bivariate correlations 6 138 … … …
BVAR 6 -68.1 … …
OEM 6 -84.9 …
Machine learning 6 * -124.3

Consensus 9 -76.3 … … … … …
Futures 9 -34 … … … …
Bivariate correlations 9 * * 211.2 … … …
BVAR 9 -81.6 … …
OEM 9 -89.1 …
Machine learning 9 * -125.1

Consensus 12 -76.1 … … … … …
Futures 12 -32.3 … … … …
Bivariate correlations 12 * * 221.9 … … …
BVAR 12 * -49.9 … …
OEM 12 * -81.3 …
Machine learning 12 * -119.4

Consensus 15 -77.7 … … … … …
Futures 15 … … … … … …
Bivariate correlations 15 … … … … … …
BVAR 15 … … -67.8 …
OEM 15 … … -87.7 …
Machine learning 15 … … -100.2

Consensus 18 -81.0 … … … … …
Futures 18 … … … … … …
Bivariate correlations 18 … … … … … …
BVAR 18 … … -35 … …
OEM 18 … … -75.5 …
Machine learning 18 … … -78

Consensus 21 -79.2 … … … … …
Futures 21 … … … … … …
Bivariate correlations 21 … … … … … …
BVAR 21 … … 68.6 … …
OEM 21 … … -67.8 …
Machine learning 21 … … -87.5

Consensus 24 -78.4 … … … … …
Futures 24 … … … … … …
Bivariate correlations 24 … … … … … …
BVAR 24 … … 103 … …
OEM 24 … … -21.4 …
Machine learning 24 … … -87.2
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Table 7.B. Model comparison: Root mean squared error of lead price forecasts 

(U.S. dollars per metric tonne) 

 
Source: World Bank.  
Note: The forecast period is 2015Q1-2022Q1. Forecasts for OEM are only available at the semi-annual frequency; 
forecasts for all other approaches are available at the quarterly frequency. Diagonal entries indicate average RMSE 
estimates for the respective approach. * indicates significant difference between the forecasts of any pair of 
approaches, at the 5 percent significance level according to an F-test (RMSE).   

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 153.8 … … … … …
Futures 3 * 103.7 … … … …
Bivariate correlations 3 105.7 … … …
BVAR 3 * * * 252.9 … …
OEM 3 * 94.5 …
Machine learning 3 * 133.8

Consensus 6 156.9 … … … … …
Futures 6 * 99.8 … … … …
Bivariate correlations 6 * * 303.5 … … …
BVAR 6 * * 266.5 … …
OEM 6 * * 104.7 …
Machine learning 6 * * 125.8

Consensus 9 164.5 … … … … …
Futures 9 * 97.1 … … … …
Bivariate correlations 9 * * 300.2 … … …
BVAR 9 * * 336.8 … …
OEM 9 * * 131.2 …
Machine learning 9 * * * 149.9

Consensus 12 176 … … … … …
Futures 12 * 94.7 … … … …
Bivariate correlations 12 * 241 … … …
BVAR 12 * * * 358.1 … …
OEM 12 * * 166.5 …
Machine learning 12 * * 208.1

Consensus 15 187.8 … … … … …
Futures 15 … … … … … …
Bivariate correlations 15 … … … … … …
BVAR 15 * … … 360.7 …
OEM 15 … … * 204.4 …
Machine learning 15 * … … 278.3

Consensus 18 194 … … … … …
Futures 18 … … … … … …
Bivariate correlations 18 … … … … … …
BVAR 18 * … … 338.8 … …
OEM 18 … … 224.4 …
Machine learning 18 * … … 331.3

Consensus 21 195.1 … … … … …
Futures 21 … … … … … …
Bivariate correlations 21 … … … … … …
BVAR 21 * … … 352.7 … …
OEM 21 … … 236 …
Machine learning 21 * … … 364.3

Consensus 24 204 … … … … …
Futures 24 … … … … … …
Bivariate correlations 24 … … … … … …
BVAR 24 * … … 370.8 … …
OEM 24 … … * 200.2 …
Machine learning 24 * … … * 379.2
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Table 8.A. Model comparison: Bias of nickel price forecasts 

(U.S. dollars per metric tonne) 

 
Source: World Bank.  
Note: Bias is defined as the difference between the actual price and the predicted price. The forecast period is 2015Q1-
2022Q1. Forecasts for OEM are only available at the semi-annual frequency; forecasts for all other approaches are 
available at the quarterly frequency. Diagonal entries indicate estimates of average bias for the respective approach. * 
indicates significant difference between the forecasts of any pair of approaches, at the 5 percent significance level 
according to a t-test (bias).  
 

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 -545.8 … … … … …
Futures 3 -221 … … … …
Bivariate correlations 3 -125.2 … … …
BVAR 3 -309.1 … …
OEM 3 -222 …
Machine learning 3 * * * -1279.4

Consensus 6 -343.7 … … … … …
Futures 6 -193.4 … … … …
Bivariate correlations 6 1122.9 … … …
BVAR 6 -266.7 … …
OEM 6 -126.6 …
Machine learning 6 -1089.7

Consensus 9 -167.4 … … … … …
Futures 9 -161.6 … … … …
Bivariate correlations 9 * 1056.8 … … …
BVAR 9 -333 … …
OEM 9 * -127.5 …
Machine learning 9 -1143.2

Consensus 12 21.6 … … … … …
Futures 12 -131.9 … … … …
Bivariate correlations 12 * * 1950 … … …
BVAR 12 * -154.6 … …
OEM 12 * 22.6 …
Machine learning 12 * -1276.2

Consensus 15 180.7 … … … … …
Futures 15 … … … … … …
Bivariate correlations 15 … … … … … …
BVAR 15 … … -393 …
OEM 15 … … 252.5 …
Machine learning 15 … … -1371.1

Consensus 18 295.9 … … … … …
Futures 18 … … … … … …
Bivariate correlations 18 … … … … … …
BVAR 18 … … -371 … …
OEM 18 … … 441.9 …
Machine learning 18 … … -1407.3

Consensus 21 425.4 … … … … …
Futures 21 … … … … … …
Bivariate correlations 21 … … … … … …
BVAR 21 … … 623.9 … …
OEM 21 … … 685.3 …
Machine learning 21 … … -1386.5

Consensus 24 597.6 … … … … …
Futures 24 … … … … … …
Bivariate correlations 24 … … … … … …
BVAR 24 … … 1136.4 … …
OEM 24 … … 477.3 …
Machine learning 24 … … -1314.8
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Table 8.B. Model comparison: Root mean squared error of nickel price forecasts 

(U.S. dollars per metric tonne) 

 
Source: World Bank.  
Note: The forecast period is 2015Q1-2022Q1. Forecasts for OEM are only available at the semi-annual frequency; 
forecasts for all other approaches are available at the quarterly frequency. Diagonal entries indicate average RMSE 
estimates for the respective approach. * indicates significant difference between the forecasts of any pair of 
approaches, at the 5 percent significance level according to an F-test (RMSE).  

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 1442.5 … … … … …
Futures 3 * 877.7 … … … …
Bivariate correlations 3 989.6 … … …
BVAR 3 * * * 2763 … …
OEM 3 * 958.8 …
Machine learning 3 * * * * 2327.3

Consensus 6 1699.8 … … … … …
Futures 6 * 828.2 … … … …
Bivariate correlations 6 * * 3134.4 … … …
BVAR 6 * * 2933.8 … …
OEM 6 * * * 741.8 …
Machine learning 6 * * 2380.1

Consensus 9 2044.1 … … … … …
Futures 9 * 793.7 … … … …
Bivariate correlations 9 * 2064 … … …
BVAR 9 * * * 3307.3 … …
OEM 9 * * * 762.6 …
Machine learning 9 * * 2634.6

Consensus 12 2336.7 … … … … …
Futures 12 * 769.3 … … … …
Bivariate correlations 12 * 2519.9 … … …
BVAR 12 * * 3662.1 … …
OEM 12 * * * * 1220.5 …
Machine learning 12 * * 2883.9

Consensus 15 2528.9 … … … … …
Futures 15 … … … … … …
Bivariate correlations 15 … … … … … …
BVAR 15 * … … 4032.9 …
OEM 15 … … * 1600.7 …
Machine learning 15 … … * 3052.6

Consensus 18 2755.7 … … … … …
Futures 18 … … … … … …
Bivariate correlations 18 … … … … … …
BVAR 18 … … 4015.5 … …
OEM 18 … … * 1783.7 …
Machine learning 18 … … * 3161.7

Consensus 21 2886.1 … … … … …
Futures 21 … … … … … …
Bivariate correlations 21 … … … … … …
BVAR 21 … … 3196.3 … …
OEM 21 … … 1999.8 …
Machine learning 21 … … 3208.3

Consensus 24 3011 … … … … …
Futures 24 … … … … … …
Bivariate correlations 24 … … … … … …
BVAR 24 … … 3376.5 … …
OEM 24 … … 2233 …
Machine learning 24 … … 3173.2
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Table 9.A. Model comparison: Bias of tin price forecasts 

(U.S. dollars per metric tonne) 

   

Source: World Bank.  
Note: Bias is defined as the difference between the actual price and the predicted price. The forecast period is 2015Q1-
2022Q1. Forecasts for OEM are only available at the semi-annual frequency; forecasts for all other approaches are 
available at the quarterly frequency. Diagonal entries indicate estimates of average bias for the respective approach. * 
indicates significant difference between the forecasts of any pair of approaches, at the 5 percent significance level 
according to a t-test (bias) or F-test (RMSE).  

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 -910.2 … … … … …
Futures 3 -478.9 … … … …
Bivariate correlations 3 197.4 … … …
BVAR 3 -1091.5 … …
OEM 3 21.4 …
Machine learning 3 -37.7

Consensus 6 -1168.2 … … … … …
Futures 6 -675.4 … … … …
Bivariate correlations 6 691 … … …
BVAR 6 -1636.4 … …
OEM 6 * -244.5 …
Machine learning 6 * 150.8

Consensus 9 -1357.1 … … … … …
Futures 9 -814.1 … … … …
Bivariate correlations 9 1541.5 … … …
BVAR 9 -2613.5 … …
OEM 9 * -497.3 …
Machine learning 9 * 290

Consensus 12 -1402.1 … … … … …
Futures 12 -939.4 … … … …
Bivariate correlations 12 * 2621.6 … … …
BVAR 12 * -3148.8 … …
OEM 12 * * -661.4 …
Machine learning 12 * * 435.5

Consensus 15 -1422.2 … … … … …
Futures 15 … … … … … …
Bivariate correlations 15 … … … … … …
BVAR 15 … … -4091.6 …
OEM 15 … … * -831.2 …
Machine learning 15 … … * 682.9

Consensus 18 -1430.2 … … … … …
Futures 18 … … … … … …
Bivariate correlations 18 … … … … … …
BVAR 18 … … -4286.7 … …
OEM 18 … … * -838.7 …
Machine learning 18 … … 890.3

Consensus 21 -1380.7 … … … … …
Futures 21 … … … … … …
Bivariate correlations 21 … … … … … …
BVAR 21 … … -4027.8 … …
OEM 21 * … … * -17103 …
Machine learning 21 … … * 1102.4

Consensus 24 -1379.6 … … … … …
Futures 24 … … … … … …
Bivariate correlations 24 … … … … … …
BVAR 24 … … -4202 … …
OEM 24 … … -901.2 …
Machine learning 24 … … 1346.6
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Table 9.B. Model comparison: Root mean squared error of tin price forecasts 

(U.S. dollars per metric tonne) 

  
Source: World Bank.  
Note: The forecast period is 2015Q1-2022Q1. Forecasts for OEM are only available at the semi-annual frequency; 
forecasts for all other approaches are available at the quarterly frequency. Diagonal entries indicate average RMSE 
estimates for the respective approach. * indicates significant difference between the forecasts of any pair of 
approaches, at the 5 percent significance level according to an F-test (RMSE). 

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 2171 … … … … …
Futures 3 * 1425.1 … … … …
Bivariate correlations 3 1575.7 … … …
BVAR 3 * * 2409.7 … …
OEM 3 1959.1 …
Machine learning 3 1805.3

Consensus 6 2537.4 … … … … …
Futures 6 * 1280.3 … … … …
Bivariate correlations 6 * 1722.6 … … …
BVAR 6 * * 3241.5 … …
OEM 6 * * 1166.9 …
Machine learning 6 * * 1969.2

Consensus 9 3021.2 … … … … …
Futures 9 * 1217.4 … … … …
Bivariate correlations 9 * 2376.8 … … …
BVAR 9 * * * 4907.3 … …
OEM 9 * * * 1395.1 …
Machine learning 9 * * * 2887

Consensus 12 3456.8 … … … … …
Futures 12 * 1180.5 … … … …
Bivariate correlations 12 * 3080.5 … … …
BVAR 12 * * * 5481.7 … …
OEM 12 * * * 1989.4 …
Machine learning 12 * * 4114.3

Consensus 15 3742.7 … … … … …
Futures 15 … … … … … …
Bivariate correlations 15 … … … … … …
BVAR 15 * … … 6794.4 …
OEM 15 … … * 2672.3 …
Machine learning 15 … … * 5243.3

Consensus 18 3955.5 … … … … …
Futures 18 … … … … … …
Bivariate correlations 18 … … … … … …
BVAR 18 * … … 7065.7 … …
OEM 18 … … * 3277 …
Machine learning 18 * … … * 6103.1

Consensus 21 4077.3 … … … … …
Futures 21 … … … … … …
Bivariate correlations 21 … … … … … …
BVAR 21 * … … 6695.9 … …
OEM 21 * … … * 2368.6 …
Machine learning 21 * … … * 6639.7

Consensus 24 4188.2 … … … … …
Futures 24 … … … … … …
Bivariate correlations 24 … … … … … …
BVAR 24 * … … 6632.2 … …
OEM 24 … … 4022.5 …
Machine learning 24 * … … * 6879.6
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Table 10.A. Model comparison: Bias of zinc price forecasts 

(U.S. dollars per metric tonne) 

  
Source: World Bank.  
Note: Bias is defined as the difference between the actual price and the predicted price. The forecast period is 2015Q1-
2022Q1. Forecasts for OEM are only available at the semi-annual frequency; forecasts for all other approaches are 
available at the quarterly frequency. Diagonal entries indicate estimates of average bias for the respective approach. * 
indicates significant difference between the forecasts of any pair of approaches, at the 5 percent significance level 
according to a t-test (bias) or F-test (RMSE).   

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 -98.1 … … … … …
Futures 3 -44.7 … … … …
Bivariate correlations 3 -19.7 … … …
BVAR 3 -102.3 … …
OEM 3 -54.6 …
Machine learning 3 -55.9

Consensus 6 -103.2 … … … … …
Futures 6 -52 … … … …
Bivariate correlations 6 129.5 … … …
BVAR 6 -130.1 … …
OEM 6 -64.1 …
Machine learning 6 -34.2

Consensus 9 -124.6 … … … … …
Futures 9 -61.7 … … … …
Bivariate correlations 9 * 227.3 … … …
BVAR 9 -126.8 … …
OEM 9 -73.2 …
Machine learning 9 * -16.3

Consensus 12 -130.6 … … … … …
Futures 12 -75.4 … … … …
Bivariate correlations 12 * * 331.2 … … …
BVAR 12 * -105.6 … …
OEM 12 * -83.8 …
Machine learning 12 * 1.6

Consensus 15 -134.5 … … … … …
Futures 15 … … … … … …
Bivariate correlations 15 … … … … … …
BVAR 15 … … -176.8 …
OEM 15 … … -86.2 …
Machine learning 15 … … 27.2

Consensus 18 -140.6 … … … … …
Futures 18 … … … … … …
Bivariate correlations 18 … … … … … …
BVAR 18 … … -161.3 … …
OEM 18 … … -75.2 …
Machine learning 18 … … 57

Consensus 21 -146.9 … … … … …
Futures 21 … … … … … …
Bivariate correlations 21 … … … … … …
BVAR 21 … … -105.1 … …
OEM 21 … … -68.9 …
Machine learning 21 … … 68.3

Consensus 24 -157.2 … … … … …
Futures 24 … … … … … …
Bivariate correlations 24 … … … … … …
BVAR 24 … … -109.5 … …
OEM 24 … … 12.1 …
Machine learning 24 … … 70.2
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Table 10.B. Model comparison: Root mean squared error of zinc price forecasts 

(U.S. dollars per metric tonne) 

 
Source: World Bank.  
Note: The forecast period is 2015Q1-2022Q1. Forecasts for OEM are only available at the semi-annual frequency; 
forecasts for all other approaches are available at the quarterly frequency. Diagonal entries indicate average RMSE 
estimates for the respective approach. * indicates significant difference between the forecasts of any pair of 
approaches, at the 5 percent significance level according to an F-test (RMSE).  
 

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 213.6 … … … … …
Futures 3 150.5 … … … …
Bivariate correlations 3 * 146.1 … … …
BVAR 3 * * * 401.9 … …
OEM 3 * 205.9 …
Machine learning 3 * 202.1

Consensus 6 212.7 … … … … …
Futures 6 146 … … … …
Bivariate correlations 6 * * 312.8 … … …
BVAR 6 * * 389.4 … …
OEM 6 * 190.3 …
Machine learning 6 * * 199.6

Consensus 9 225.9 … … … … …
Futures 9 * 142 … … … …
Bivariate correlations 9 * 327 … … …
BVAR 9 * * 394.8 … …
OEM 9 * 210.4 …
Machine learning 9 * * 243.1

Consensus 12 254.7 … … … … …
Futures 12 * 141.9 … … … …
Bivariate correlations 12 * 342.7 … … …
BVAR 12 * * 418.5 … …
OEM 12 * 259.7 …
Machine learning 12 * 341.3

Consensus 15 281.7 … … … … …
Futures 15 … … … … … …
Bivariate correlations 15 … … … … … …
BVAR 15 * … … 537.9 …
OEM 15 … … * 281.6 …
Machine learning 15 * … … 455

Consensus 18 308.9 … … … … …
Futures 18 … … … … … …
Bivariate correlations 18 … … … … … …
BVAR 18 * … … 553.4 … …
OEM 18 … … * 297.7 …
Machine learning 18 * … … * 558.6

Consensus 21 330.1 … … … … …
Futures 21 … … … … … …
Bivariate correlations 21 … … … … … …
BVAR 21 * … … 492.3 … …
OEM 21 … … 303.2 …
Machine learning 21 * … … * 633.9

Consensus 24 356.8 … … … … …
Futures 24 … … … … … …
Bivariate correlations 24 … … … … … …
BVAR 24 … … 425.9 … …
OEM 24 … … 290 …
Machine learning 24 * … … * * 686
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Table 11.A. Model comparison: Diebold and Mariano (1995) test for oil prices 

 
Source: World Bank.  
Note: Diebold Mariano statistic tests whether the forecasts in the model indicated in the row is more accurate than 
the forecast of the model indicated in the column. *** indicates statistically significantly more accurate model in 
the row at the 0.1 percent significance level, ** at the 1 percent level, * at the 5 percent level, and † at the 10 
percent level. 

 

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 … *
Futures 3 * … * *
Bivariate correlations 3 † … *
BVAR 3 …
OEM 3 …
Machine learning 3 † * † …

Consensus 6 … *
Futures 6 † … * †
Bivariate correlations 6 … **
BVAR 6 …
OEM 6 * …
Machine learning 6 * …

Consensus 9 … † †
Futures 9 * … * *
Bivariate correlations 9 … *
BVAR 9 …
OEM 9 * …
Machine learning 9 † …

Consensus 12 … † **
Futures 12 * … † **
Bivariate correlations 12 … * *
BVAR 12 …
OEM 12 † * … *
Machine learning 12 † …

Consensus 15 … … … † ***
Futures 15 … … … … … …
Bivariate correlations 15 … …
BVAR 15 … … …
OEM 15 † … … ** … **
Machine learning 15 … … …

Consensus 18 … … … * ***
Futures 18 … … … … … …
Bivariate correlations 18 … …
BVAR 18 … … …
OEM 18 * … … *** … ***
Machine learning 18 … … † …

Consensus 21 … … … * ***
Futures 21 … … … … … …
Bivariate correlations 21 … …
BVAR 21 … … …
OEM 21 * … … … ***
Machine learning 21 … … † …

Consensus 24 … … … ** ***
Futures 24 … … … … … …
Bivariate correlations 24 … …
BVAR 24 … … …
OEM 24 * … … … ***
Machine learning 24 … … * …
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Table 11.B. Model comparison: Diebold and Mariano (1995) test for aluminum prices 

 
Source: World Bank.  
Note: Diebold Mariano statistic tests whether the forecasts in the model indicated in the row is more accurate than 
the forecast of the model indicated in the column. *** indicates statistically significantly more accurate model in 
the row at the 0.1 percent significance level, ** at the 1 percent level, * at the 5 percent level, and † at the 10 
percent level. 

 

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 … *** **
Futures 3 …
Bivariate correlations 3 ** *** … ** † †
BVAR 3 *** …
OEM 3 *** † …
Machine learning 3 * *** ** † …

Consensus 6 … ***
Futures 6 …
Bivariate correlations 6 ** *** … † * *
BVAR 6 † …
OEM 6 † *** …
Machine learning 6 * *** † * …

Consensus 9 … *** †
Futures 9 …
Bivariate correlations 9 …
BVAR 9 …
OEM 9 † *** † …
Machine learning 9 * *** † …

Consensus 12 … *** †
Futures 12 …
Bivariate correlations 12 …
BVAR 12 † …
OEM 12 * * † …
Machine learning 12 * *** * *** …

Consensus 15 … … … †
Futures 15 … … … … … …
Bivariate correlations 15 … … … … … …
BVAR 15 … … …
OEM 15 ** … … † …
Machine learning 15 ** … … † † …

Consensus 18 … … … †
Futures 18 … … … … … …
Bivariate correlations 18 … … … … … …
BVAR 18 … … …
OEM 18 ** … … * …
Machine learning 18 … … * …

Consensus 21 … … … *
Futures 21 … … … … … …
Bivariate correlations 21 … … … … … …
BVAR 21 … … …
OEM 21 ** … … ** …
Machine learning 21 … … * …

Consensus 24 … … … *
Futures 24 … … … … … …
Bivariate correlations 24 … … … … … …
BVAR 24 … … …
OEM 24 … … … *
Machine learning 24 … … ** …
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Table 11.C. Model comparison: Diebold and Mariano (1995) test for copper prices 

 
Source: World Bank.  
Note: Diebold Mariano statistic tests whether the forecasts in the model indicated in the row is more accurate than 
the forecast of the model indicated in the column. *** indicates statistically significantly more accurate model in 
the row at the 0.1 percent significance level, ** at the 1 percent level, * at the 5 percent level, and † at the 10 
percent level. 

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 … ***
Futures 3 *** … *** * *
Bivariate correlations 3 *** … *** * †
BVAR 3 …
OEM 3 † ** …
Machine learning 3 ** *** * …

Consensus 6 … *
Futures 6 *** … ** † *
Bivariate correlations 6 …
BVAR 6 …
OEM 6 * * …
Machine learning 6 * …

Consensus 9 … †
Futures 9 ** … * * **
Bivariate correlations 9 …
BVAR 9 …
OEM 9 *** † † … **
Machine learning 9 † …

Consensus 12 … † * *
Futures 12 ** … † * ** **
Bivariate correlations 12 …
BVAR 12 …
OEM 12 ** * * … **
Machine learning 12 † …

Consensus 15 … … … † **
Futures 15 … … … … … …
Bivariate correlations 15 … …
BVAR 15 … … …
OEM 15 *** … … * … **
Machine learning 15 … … …

Consensus 18 … … … * ***
Futures 18 … … … … … …
Bivariate correlations 18 … …
BVAR 18 … … …
OEM 18 ** … … * … ***
Machine learning 18 … … …

Consensus 21 … … … * ***
Futures 21 … … … … … …
Bivariate correlations 21 … …
BVAR 21 … … …
OEM 21 *** … … *** … ***
Machine learning 21 … … …

Consensus 24 … … … * ***
Futures 24 … … … … … …
Bivariate correlations 24 … …
BVAR 24 … … …
OEM 24 … … …
Machine learning 24 … … …
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Table 11.D. Model comparison: Diebold and Mariano (1995) test for lead prices 

 
Source: World Bank.  
Note: Diebold Mariano statistic tests whether the forecasts in the model indicated in the row is more accurate than 
the forecast of the model indicated in the column. *** indicates statistically significantly more accurate model in 
the row at the 0.1 percent significance level, ** at the 1 percent level, * at the 5 percent level, and † at the 10 
percent level. 

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 … **
Futures 3 * … ** ***
Bivariate correlations 3 * … ** ***
BVAR 3 …
OEM 3 † * … **
Machine learning 3 * …

Consensus 6 … **
Futures 6 † … ** **
Bivariate correlations 6 …
BVAR 6 …
OEM 6 ** … †
Machine learning 6 * …

Consensus 9 … **
Futures 9 † … *** †
Bivariate correlations 9 …
BVAR 9 …
OEM 9 * ** … *
Machine learning 9 ** …

Consensus 12 … **
Futures 12 * … † *** † †
Bivariate correlations 12 …
BVAR 12 …
OEM 12 * … *
Machine learning 12 † …

Consensus 15 … … … ** *
Futures 15 … … … … … …
Bivariate correlations 15 … …
BVAR 15 … … …
OEM 15 … … * …
Machine learning 15 … … …

Consensus 18 … … … *** ***
Futures 18 … … … … … …
Bivariate correlations 18 … …
BVAR 18 … … …
OEM 18 … … *** …
Machine learning 18 … … …

Consensus 21 … … … *** ***
Futures 21 … … … … … …
Bivariate correlations 21 … …
BVAR 21 … … …
OEM 21 … … *** …
Machine learning 21 … … …

Consensus 24 … … … *** ***
Futures 24 … … … … … …
Bivariate correlations 24 … …
BVAR 24 … … …
OEM 24 … … …
Machine learning 24 … … …
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Table 11.E. Model comparison: Diebold and Mariano (1995) test for nickel prices 

 
Source: World Bank.  
Note: Diebold Mariano statistic tests whether the forecasts in the model indicated in the row is more accurate than 
the forecast of the model indicated in the column. *** indicates statistically significantly more accurate model in 
the row at the 0.1 percent significance level, ** at the 1 percent level, * at the 5 percent level, and † at the 10 
percent level. 
 

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 … ** **
Futures 3 * … *** ***
Bivariate correlations 3 * … *** ***
BVAR 3 …
OEM 3 * † * … **
Machine learning 3 …

Consensus 6 … ** *
Futures 6 ** … ** ***
Bivariate correlations 6 …
BVAR 6 …
OEM 6 * * … **
Machine learning 6 …

Consensus 9 … ** *
Futures 9 ** … † ** ***
Bivariate correlations 9 … †
BVAR 9 …
OEM 9 ** † * … **
Machine learning 9 …

Consensus 12 … ** **
Futures 12 ** … † ** * ***
Bivariate correlations 12 …
BVAR 12 …
OEM 12 *** † *** … **
Machine learning 12 …

Consensus 15 … … … ** **
Futures 15 … … … … … …
Bivariate correlations 15 … …
BVAR 15 … … …
OEM 15 ** … … ** … ***
Machine learning 15 … … † …

Consensus 18 … … … *** **
Futures 18 … … … … … …
Bivariate correlations 18 … …
BVAR 18 … … …
OEM 18 ** … … ** …
Machine learning 18 … … † …

Consensus 21 … … … *** *
Futures 21 … … … … … …
Bivariate correlations 21 … …
BVAR 21 … … …
OEM 21 ** … … *** …
Machine learning 21 … … …

Consensus 24 … … … *** *
Futures 24 … … … … … …
Bivariate correlations 24 … …
BVAR 24 … … …
OEM 24 … … …
Machine learning 24 … … ** …
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Table 11.F. Model comparison: Diebold and Mariano (1995) test for tin prices 

 
Source: World Bank.  
Note: Diebold Mariano statistic tests whether the forecasts in the model indicated in the row is more accurate than 
the forecast of the model indicated in the column. *** indicates statistically significantly more accurate model in 
the row at the 0.1 percent significance level, ** at the 1 percent level, * at the 5 percent level, and † at the 10 
percent level. 
 

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 … †
Futures 3 * … ***
Bivariate correlations 3 * … ***
BVAR 3 …
OEM 3 † …
Machine learning 3 * * …

Consensus 6 …
Futures 6 * … †
Bivariate correlations 6 * … *
BVAR 6 …
OEM 6 † …
Machine learning 6 † …

Consensus 9 …
Futures 9 † … † † †
Bivariate correlations 9 …
BVAR 9 …
OEM 9 † … †
Machine learning 9 …

Consensus 12 …
Futures 12 † … † † *
Bivariate correlations 12 …
BVAR 12 …
OEM 12 † † † … *
Machine learning 12 …

Consensus 15 … … … †
Futures 15 … … … … … …
Bivariate correlations 15 … …
BVAR 15 … … …
OEM 15 * … … † … **
Machine learning 15 … … …

Consensus 18 … … … † *
Futures 18 … … … … … …
Bivariate correlations 18 … …
BVAR 18 … … …
OEM 18 * … … * … ***
Machine learning 18 … … …

Consensus 21 … … … * ***
Futures 21 … … … … … …
Bivariate correlations 21 … …
BVAR 21 … … …
OEM 21 … … …
Machine learning 21 … … *** …

Consensus 24 … … … * ***
Futures 24 … … … … … …
Bivariate correlations 24 … …
BVAR 24 … … …
OEM 24 *** … … …
Machine learning 24 … … …
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Table 11.G. Model comparison: Diebold and Mariano (1995) test for zinc prices 

 
Source: World Bank.  
Note: Diebold Mariano statistic tests whether the forecasts in the model indicated in the row is more accurate than 
the forecast of the model indicated in the column. *** indicates statistically significantly more accurate model in 
the row at the 0.1 percent significance level, ** at the 1 percent level, * at the 5 percent level, and † at the 10 
percent level. 

  

Approach Horizon Consensus Futures
Bivariate 

correlations BVAR OEM
Machine 
learning

Consensus 3 … ***
Futures 3 * … *** † *
Bivariate correlations 3 * … *** † *
BVAR 3 …
OEM 3 ** …
Machine learning 3 *** …

Consensus 6 … **
Futures 6 * … *** *
Bivariate correlations 6 …
BVAR 6 …
OEM 6 ** …
Machine learning 6 *** …

Consensus 9 … ***
Futures 9 ** … *** **
Bivariate correlations 9 …
BVAR 9 …
OEM 9 ** ** …
Machine learning 9 *** …

Consensus 12 … *** †
Futures 12 *** … † *** * ***
Bivariate correlations 12 …
BVAR 12 …
OEM 12 …
Machine learning 12 ** …

Consensus 15 … … … ** **
Futures 15 … … … … … …
Bivariate correlations 15 … …
BVAR 15 … … …
OEM 15 … … * … **
Machine learning 15 … … …

Consensus 18 … … … ** ***
Futures 18 … … … … … …
Bivariate correlations 18 … …
BVAR 18 … … …
OEM 18 … … ** … ***
Machine learning 18 … … …

Consensus 21 … … … *** ***
Futures 21 … … … … … …
Bivariate correlations 21 … …
BVAR 21 … … …
OEM 21 *** … … *** …
Machine learning 21 … … …

Consensus 24 … … … * ***
Futures 24 … … … … … …
Bivariate correlations 24 … …
BVAR 24 … … …
OEM 24 … … …
Machine learning 24 … … …
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Table 12. Approaches with lowest bias and RMSEs  
 

Quarters 

Commodity 1 2 3 4 5+ 

Aluminum Bivariate 
correlations 

Bivariate 
correlation

s 

OEM and machine 
learning techniques 

OEM and machine 
learning techniques 

OEM, consensus, 
machine learning 

techniques 

Copper Bivariate 
correlations 

Futures Futures Futures OEM and consensus 

Lead Bivariate 
correlations 

OEM and 
futures 

OEM and futures Futures OEM and consensus 

Nickel Futures and 
bivariate 

correlations 

OEM and 
futures 

OEM and futures Futures OEM and consensus 

Oil Futures Futures Futures Futures OEM and consensus 

Tin Bivariate 
correlations 
or futures  

Any 
except 
BVAR 

Any except BVAR Any except BVAR OEM 

Zinc Any except 
BVAR 

Futures Futures Futures OEM and consensus 

Note: BVAR (Bayesian Vector Autoregression); OEM (Oxford Economic Model). 
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Table 13. Features of approaches  

 Forecasting approach RMSE and bias Appropriate for 
scenario analysis 

Data requirements 

Futures For most commodities (except 
aluminum), lowest RMSEs or bias for 
forecasts up to four quarters but reliable 
data unavailable for longer horizons 

No Low 

Consensus forecasts For most commodities (except tin and 
zinc), lowest RMSEs or bias for 
forecasts of more than a year but poorer 
short-term performance 

No Low 

Bivariate correlations For metal commodities, lowest RMSE 
or bias but only at the very shortest 
horizon 

No Medium 

BVAR For all commodities at all horizons, 
higher bias and RMSE than other 
approaches 

Yes Medium 

OEM For all commodities, lowest RMSEs or 
bias for forecast horizons above one 
year 

Yes High 

Machine learning 
techniques 

For all commodities (except for nickel), 
intermediate bias and RMSEs.   

No Medium 

Note: BVAR (Bayesian Vector Autoregression); OEM (Oxford Economic Model); RMSE (Root Mean Squared Error). 
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