Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
skip to main content
research-article

Point registration via efficient convex relaxation

Published: 11 July 2016 Publication History
  • Get Citation Alerts
  • Abstract

    Point cloud registration is a fundamental task in computer graphics, and more specifically, in rigid and non-rigid shape matching. The rigid shape matching problem can be formulated as the problem of simultaneously aligning and labelling two point clouds in 3D so that they are as similar as possible. We name this problem the Procrustes matching (PM) problem. The non-rigid shape matching problem can be formulated as a higher dimensional PM problem using the functional maps method. High dimensional PM problems are difficult non-convex problems which currently can only be solved locally using iterative closest point (ICP) algorithms or similar methods. Good initialization is crucial for obtaining a good solution.
    We introduce a novel and efficient convex SDP (semidefinite programming) relaxation for the PM problem. The algorithm is guaranteed to return a correct global solution of the problem when matching two isometric shapes which are either asymmetric or bilaterally symmetric.
    We show our algorithm gives state of the art results on popular shape matching datasets. We also show that our algorithm gives state of the art results for anatomical classification of shapes. Finally we demonstrate the power of our method in aligning shape collections.

    Supplementary Material

    ZIP File (a73-maron-supp.zip)
    Supplemental files.
    MP4 File (a73.mp4)

    References

    [1]
    Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. (2005). SCAPE: shape completion and animation of people. In ACM Transactions on Graphics (TOG), volume 24, pages 408--416. ACM.
    [2]
    Aubry, M., Schlickewei, U., and Cremers, D. (2011). The wave kernel signature: A quantum mechanical approach to shape analysis. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on, pages 1626--1633. IEEE.
    [3]
    Babai, L., Grigoryev, D. Y., and Mount, D. M. (1982). Isomorphism of graphs with bounded eigenvalue multiplicity. In Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC '82, pages 310--324, New York, NY, USA. ACM.
    [4]
    Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural computation, 15(6):1373--1396.
    [5]
    Berg, A. C., Berg, T. L., and Malik, J. (2005). Shape matching and object recognition using low distortion correspondences. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 26--33. IEEE.
    [6]
    Besl, P. and McKay, N. (1992). A method for registration of 3d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):239--256.
    [7]
    Bogo, F., Romero, J., Loper, M., and Black, M. J. (2014). FAUST: Dataset and evaluation for 3D mesh registration. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 3794--3801. IEEE.
    [8]
    Boyer, D. M., Lipman, Y., Clair, E. S., Puente, J., Patel, B. A., Funkhouser, T., Jernvall, J., and Daubechies, I. (2011). Algorithms to automatically quantify the geometric similarity of anatomical surfaces. Proceedings of the National Academy of Sciences, 108(45):18221--18226.
    [9]
    Bronstein, A. M., Bronstein, M. M., and Kimmel, R. (2006). Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Sciences of the United States of America, 103(5):1168--1172.
    [10]
    Brown, B. J. and Rusinkiewicz, S. (2007). Global non-rigid alignment of 3-d scans. ACM Transactions on Graphics (TOG), 26(3):21.
    [11]
    Chen, Q. and Koltun, V. (2015). Robust nonrigid registration by convex optimization. In Proceedings of the IEEE International Conference on Computer Vision, pages 2039--2047.
    [12]
    Dym, N. and Lipman, Y. (2016). Exact recovery with symmetries for procrustes matching. Technical report.
    [13]
    Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y. Y. (1997). The farthest point strategy for progressive image sampling. Image Processing, IEEE Transactions on, 6(9):1305--1315.
    [14]
    Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381--395.
    [15]
    Fukuda, M., Kojima, M., Murota, K., and Nakata, K. (2000). Exploiting sparsity in semidefinite programming via matrix completion I: General framework. SIAM J. on Optimization, 11(3):647--674.
    [16]
    Gelfand, N., Mitra, N. J., Guibas, L. J., and Pottmann, H. (2005). Robust global registration. In Proceedings of the Third Eurographics Symposium on Geometry Processing, SGP '05, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
    [17]
    Giorgi, D., Biasotti, S., and Paraboschi, L. (2007). Shape retrieval contest 2007: Watertight models track. SHREC competition, 8.
    [18]
    Gower, J. C. and Dijksterhuis, G. B. (2004). Procrustes problems, volume 3. Oxford University Press Oxford.
    [19]
    Grone, R., Johnson, C. R., Sá, E. M., and Wolkowicz, H. (1984). Positive definite completions of partial Hermitian matrices. Linear algebra and its applications, 58:109--124.
    [20]
    Huang, Q., Wang, F., and Guibas, L. (2014). Functional map networks for analyzing and exploring large shape collections. ACM Trans. Graph., 33(4):36:1--36:11.
    [21]
    Jain, V., Zhang, H., and Van Kaick, O. (2007). Non-Rigid Spectral Correspondence of Triangle Meshes. International Journal of Shape Modeling, 13:101--124.
    [22]
    Kendall, D. G. (1984). Shape manifolds, Procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16(2):81--121.
    [23]
    Kezurer, I., Kovalsky, S. Z., Basri, R., and Lipman, Y. (2015). Tight relaxation of quadratic matching. Computer Graphics Forum, 34(5):115--128.
    [24]
    Kim, V. G., Lipman, Y., and Funkhouser, T. (2011). Blended intrinsic maps. ACM Transactions on Graphics, 30(4):1.
    [25]
    Leordeanu, M. and Hebert, M. (2005). A spectral technique for correspondence problems using pairwise constraints. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, volume 2, pages 1482--1489. IEEE.
    [26]
    Li, H., Sumner, R. W., and Pauly, M. (2008). Global correspondence optimization for non-rigid registration of depth scans. In Computer Graphics Forum, volume 27, pages 1421--1430. Wiley Online Library.
    [27]
    Lipman, Y. and Funkhouser, T. (2009). Möbius voting for surface correspondence. In ACM Transactions on Graphics (TOG), volume 28, page 72. ACM.
    [28]
    Luo, Z.-Q., Ma, W.-k., So, A. M.-C., Ye, Y., and Zhang, S. (2010). Semidefinite relaxation of quadratic optimization problems. Signal Processing Magazine, IEEE, 27(3):20--34.
    [29]
    Mémoli, F. and Sapiro, G. (2004). Comparing point clouds. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP '04, pages 32--40, New York, NY, USA. ACM.
    [30]
    Mitteroecker, P. and Gunz, P. (2009). Advances in geometric mor-phometrics. Evolutionary Biology, 36(2):235--247.
    [31]
    MOSEK (2015). The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 49).
    [32]
    Nguyen, A., Ben-Chen, M., Welnicka, K., Ye, Y., and Guibas, L. (2011). An optimization approach to improving collections of shape maps. Computer Graphics Forum, 30(5):1481--1491.
    [33]
    Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., and Guibas, L. (2012). Functional maps: a flexible representation of maps between shapes. ACM Transactions on Graphics (TOG), 31(4):30.
    [34]
    Ovsjanikov, M., Mérigot, Q., Mémoli, F., and Guibas, L. (2010). One point isometric matching with the heat kernel. In Computer Graphics Forum, volume 29, pages 1555--1564. Wiley Online Library.
    [35]
    Ovsjanikov, M., Sun, J., and Guibas, L. (2008). Global intrinsic symmetries of shapes. In Computer Graphics Forum, volume 27, pages 1341--1348. Wiley Online Library.
    [36]
    Pinkall, U. and Polthier, K. (1993). Computing discrete minimal surfaces and their conjugates. Experimental mathematics, 2(1):15--36.
    [37]
    Pokrass, J., Bronstein, A. M., Bronstein, M. M., Sprechmann, P., and Sapiro, G. (2013). Sparse modeling of intrinsic correspondences. Computer Graphics Forum, 32(2 PART4):459--468.
    [38]
    Poljak, S., Rendl, F., and Wolkowicz, H. (1995). A recipe for semidefinite relaxation for (0, 1)-quadratic programming. Journal of Global Optimization, 7(1):51--73.
    [39]
    Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants of the ICP algorithm. Proceedings Third International Conference on 3-D Digital Imaging and Modeling, pages 145--152.
    [40]
    Rustamov, R. M. (2007). Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP '07, pages 225--233, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
    [41]
    Saunderson, J., Parrilo, P. A., and Willsky, A. S. (2014). Semidefinite descriptions of the convex hull of rotation matrices. arXiv preprint arXiv:1403.4914.
    [42]
    Singer, A. and Wu, H.-T. (2012). Vector diffusion maps and the connection laplacian. Communications on Pure and Applied Mathematics, 65(8):1067--1144.
    [43]
    Tam, G. K., Cheng, Z.-Q., Lai, Y.-K., Langbein, F. C., Liu, Y., Marshall, D., Martin, R. R., Sun, X.-F., and Rosin, P. L. (2013). Registration of 3D point clouds and meshes: a survey from rigid to nonrigid. Visualization and Computer Graphics, IEEE Transactions on, 19(7):1199--1217.
    [44]
    Tevs, A., Bokeloh, M., Wand, M., Schilling, A., and Seidel, H.-P. (2009). Isometric registration of ambiguous and partial data. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1185--1192. IEEE.
    [45]
    Van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. (2011). A survey on shape correspondence. In Computer Graphics Forum, volume 30, pages 1681--1707. Wiley Online Library.
    [46]
    Waki, H., Kim, S., Kojima, M., and Muramatsu, M. (2006). Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM Journal on Optimization, 17:218--242.
    [47]
    Wand, M., Chang, W., Li, H., Mitra, N., Pauly, M., and Rusinkiewicz, S. (2011). Computing correspondences in geometric data sets tutorial. http://resources.mpi-inf.mpg.de/deformableShapeMatching/EG2011_Tutorial/.
    [48]
    Wei, L., Huang, Q., Ceylan, D., Vouga, E., and Li, H. (2015). Dense Human Body Correspondences Using Convolutional Networks.
    [49]
    Yang, J., Li, H., and Jia, Y. (2013). Go-ICP: Solving 3D Registration Efficiently and Globally Optimally. 2013 IEEE International Conference on Computer Vision, pages 1457--1464.
    [50]
    Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., and Paragios, N. (2010). Dense non-rigid surface registration using high-order graph matching. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 382--389. IEEE.
    [51]
    Zhao, Q., Karisch, S. E., Rendl, F., and Wolkowicz, H. (1998). Semidefinite programming relaxations for the quadratic assignment problem. Journal of Combinatorial Optimization, 2(1):71--109.
    [52]
    Zuffi, S. and Black, M. J. (2015). The stitched puppet: A graphical model of 3D human shape and pose. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3537--3546.

    Cited By

    View all
    • (2024)Quatro++International Journal of Robotics Research10.1177/0278364923120765443:5(685-715)Online publication date: 1-Apr-2024
    • (2024)Match Normalization: Learning-Based Point Cloud Registration for 6D Object Pose Estimation in the Real WorldIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2024.335519846:6(4489-4503)Online publication date: Jun-2024
    • (2024)PointDifformer: Robust Point Cloud Registration With Neural Diffusion and TransformerIEEE Transactions on Geoscience and Remote Sensing10.1109/TGRS.2024.335128662(1-15)Online publication date: 2024
    • Show More Cited By

    Index Terms

    1. Point registration via efficient convex relaxation

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      ACM Transactions on Graphics  Volume 35, Issue 4
      July 2016
      1396 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2897824
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 11 July 2016
      Published in TOG Volume 35, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. convex relaxation
      2. point registration
      3. shape matching

      Qualifiers

      • Research-article

      Funding Sources

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)55
      • Downloads (Last 6 weeks)2
      Reflects downloads up to 03 Aug 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Quatro++International Journal of Robotics Research10.1177/0278364923120765443:5(685-715)Online publication date: 1-Apr-2024
      • (2024)Match Normalization: Learning-Based Point Cloud Registration for 6D Object Pose Estimation in the Real WorldIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2024.335519846:6(4489-4503)Online publication date: Jun-2024
      • (2024)PointDifformer: Robust Point Cloud Registration With Neural Diffusion and TransformerIEEE Transactions on Geoscience and Remote Sensing10.1109/TGRS.2024.335128662(1-15)Online publication date: 2024
      • (2024)OKR-Net: Overlapping Keypoints Registration Network for Large-Scale LiDAR Point CloudsIEEE Robotics and Automation Letters10.1109/LRA.2023.33426709:2(1254-1261)Online publication date: Feb-2024
      • (2024)Local feature matching from detector-based to detector-free: a surveyApplied Intelligence10.1007/s10489-024-05330-354:5(3954-3989)Online publication date: 1-Mar-2024
      • (2024)ReferencesNear Extensions and Alignment of Data in ℝ n10.1002/9781394196814.biblio(149-156)Online publication date: 21-Jan-2024
      • (2023)A Speedy Point Cloud Registration Method Based on Region Feature Extraction in Intelligent Driving SceneSensors10.3390/s2309450523:9(4505)Online publication date: 5-May-2023
      • (2023)Scalable and Efficient Functional Map Computations on Dense MeshesComputer Graphics Forum10.1111/cgf.1474642:2(89-101)Online publication date: 23-May-2023
      • (2023)HRegNet: A Hierarchical Network for Efficient and Accurate Outdoor LiDAR Point Cloud RegistrationIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2023.328489645:10(11884-11897)Online publication date: 12-Jun-2023
      • (2023)Partial Point Cloud Registration With Deep Local FeatureIEEE Transactions on Artificial Intelligence10.1109/TAI.2022.32015054:5(1317-1327)Online publication date: Oct-2023
      • Show More Cited By

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media