Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
skip to main content
Skip header Section
Hardness of Approximation Between P and NPMay 2019
Publisher:
  • Association for Computing Machinery and Morgan & Claypool
ISBN:978-1-947487-23-9
Published:30 May 2019
Pages:
320
Appears In:
ACMACM Books
Skip Bibliometrics Section
Bibliometrics
Skip Abstract Section
Abstract

Nash equilibrium is the central solution concept in Game Theory. Since Nash's original paper in 1951, it has found countless applications in modeling strategic behavior of traders in markets, (human) drivers and (electronic) routers in congested networks, nations in nuclear disarmament negotiations, and more. A decade ago, the relevance of this solution concept was called into question by computer scientists, who proved (under appropriate complexity assumptions) that computing a Nash equilibrium is an intractable problem. And if centralized, specially designed algorithms cannot find Nash equilibria, why should we expect distributed, selfish agents to converge to one? The remaining hope was that at least approximate Nash equilibria can be efficiently computed.

Understanding whether there is an efficient algorithm for approximate Nash equilibrium has been the central open problem in this field for the past decade. In this book, we provide strong evidence that even finding an approximate Nash equilibrium is intractable. We prove several intractability theorems for different settings (two-player games and many-player games) and models (computational complexity, query complexity, and communication complexity). In particular, our main result is that under a plausible and natural complexity assumption ("Exponential Time Hypothesis for PPAD"), there is no polynomial-time algorithm for finding an approximate Nash equilibrium in two-player games.

The problem of approximate Nash equilibrium in a two-player game poses a unique technical challenge: it is a member of the class PPAD, which captures the complexity of several fundamental total problems, i.e., problems that always have a solution; and it also admits a quasipolynomial time algorithm. Either property alone is believed to place this problem far below NP-hard problems in the complexity hierarchy; having both simultaneously places it just above P, at what can be called the frontier of intractability. Indeed, the tools we develop in this book to advance on this frontier are useful for proving hardness of approximation of several other important problems whose complexity lies between P and NP: Brouwer's fixed point, market equilibrium, CourseMatch (A-CEEI), densest k-subgraph, community detection, VC dimension and Littlestone dimension, and signaling in zero-sum games.

References

  1. S. Aaronson, R. Impagliazzo, and D. Moshkovitz. 2014. AM with multiple merlins. In Proceedings of the IEEE Twenty-Ninth Conference on Computational Complexity, June 2014, Vancouver, British Columbia, pp. 44--55. 13, 23, 149, 180, 184, 224Google ScholarGoogle Scholar
  2. A. V. Aho, J. D. Ullman, and M. Yannakakis. 1983. On notions of information transfer in VLSI circuits. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, April 1983, Boston, Massachusetts, pp. 133--139. 37Google ScholarGoogle Scholar
  3. N. Alon, L. Babai, and A. Itai. 1986. A fast and simple randomized parallel algorithm for the maximal independent set problem. Journal of Algorithms, 7(4): 567--583. 29Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. N. Alon, O. Goldreich, J. Hastad, and R. Peralta. 1992. Simple construction of almost k-wise independent random variables. Random Structures and Algorithms, 3(3): 289--304. 28Google ScholarGoogle ScholarCross RefCross Ref
  5. N. Alon, M. Krivelevich, and B. Sudakov. 1998. Finding a large hidden clique in a random graph. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, January 1998, San Francisco, California, pp. 594--598. <457::AID-RSA14>3.0.C0;2-W. 157Google ScholarGoogle Scholar
  6. N. Alon, A. Andoni, T. Kaufman, K. Matulef, R. Rubinfeld, and N. Xie. 2007. Testing k-wise and almost k-wise independence. In Proceedings of the 39th Annual ACM Symposium on the Theory of Computing, June 2007, San Diego, California, pp. 496--505. 157Google ScholarGoogle Scholar
  7. N. Alon, S. Arora, R. Manokaran, D. Moshkovitz, and O. Weinstein. 2011. In approximability of densest k-subgraph from average case hardness. Unpublished manuscript. http://www.cs.tau.ac.il/-nogaa/PDFS/dks8.pdf. 156, 157Google ScholarGoogle Scholar
  8. N. Alon, T. Lee, A. Shraibman, and S. Vempala. 2013. The approximate rank of a matrix and its algorithmic applications: Approximate rank. In Proceedings of the Symposium on Theory of Computing Conference, June 2013, Palo Alto, California, pp. 675--684. 13, 17, 223, 224Google ScholarGoogle Scholar
  9. I. Althofer. 1994. On sparse approximations to randomized strategies and convex combinations. Linear Algebra and Its Applications, 199: 339--355. 152, 216, 224, 230, 231, 270Google ScholarGoogle ScholarCross RefCross Ref
  10. Y. Anbalagan, S. Norin, R. Savani, and A. Vetta. 2013. Polylogarithmic supports are required for approximate well-supported nash equilibria below 2/3. In Proceedings of the Ninth International Conference on Web and Internet Economics, December 2013, Cambridge, Massachusetts, pp. 15--23. 224Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Y. Anbalagan, H. Huang, S. Lovett, S. Norin, A. Vetta, and H. Wu. 2015. Large supports are required for well-supported Nash equilibria. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, August 2015, Princeton, New Jersey, pp. 78--84. 224Google ScholarGoogle Scholar
  12. A. Anshu, N. B. Goud, R. Jain, S. Kundu, and P. Mukhopadhyay. 2017. Lifting randomized query complexity to randomized communication complexity. arXiv preprint arXiv:1703.07521. 37, 40Google ScholarGoogle Scholar
  13. S. Arora and B. Barak. 2009. Computational Complexity---A Modern Approach. Cambridge University Press. 227Google ScholarGoogle Scholar
  14. S. Arora and S. Safra. 1998. Probabilistic checking of proofs: A new characterization of NP. Journal of the ACM, 45(1): 70--122. 14, 155, 231Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. 1998. Proof verification and the hardness of approximation problems. Journal of the ACM, 45(3): 501--555. 14, 155Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. Arora, R. Ge, S. Sachdeva, and G. Schoenebeck. 2012. Finding overlapping communities in social networks: toward a rigorous approach. In Proceedings of the ACM Conference on Electronic Commerce, June 2012, Valencia, Spain, pp. 37--54. 12, 14, 15, 177, 178, 179Google ScholarGoogle Scholar
  17. M. Asteris, D. S. Papailiopoulos, A. Kyrillidis, and A. G. Dimakis. 2015. Sparse PCA via bipartite matchings. In Proceedings of the Twenty-Eighth International Conference on Neural Information Processing Systems, December 2015, Montreal, Quebec, pp. 766--774. http://papers.nips.cc/paper/5901-sparse-pca-via-bipartite-matchings. 13Google ScholarGoogle Scholar
  18. R. J. Aumann. 1987. Game theory. In J. Eatwell, M. Milgate, and P. Newman, eds., The New Palgrave: A Dictionary of Economics. Palgrave Macmillan. 3Google ScholarGoogle Scholar
  19. P. Austrin, M. Braverman, and E. Chlamtac. 2013. Inapproximability of NP-complete variants of Nash equilibrium. Theory of Computing, 9: 117--142. 224Google ScholarGoogle ScholarCross RefCross Ref
  20. Y. Azar, R. Motwani, and J. Naor. 1998. Approximating probability distributions using small sample spaces. Combinatorica, 18(2): 151--171. 27, 28Google ScholarGoogle ScholarCross RefCross Ref
  21. L. Babai and L. Fortnow. 1991. Arithmetization: A new method in structural complexity theory. Computational Complexity, 1: 41--66. 229Google ScholarGoogle ScholarCross RefCross Ref
  22. L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. 1991. Checking computations in polylogarithmic time. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, May1 991, New Orleans, Louisiana, pp. 21--31. 231Google ScholarGoogle Scholar
  23. Y. Babichenko. 2012. Completely uncoupled dynamics and Nash equilibria. Games and Economic Behavior, 76(1): 1--14. 18, 33, 35Google ScholarGoogle ScholarCross RefCross Ref
  24. Y. Babichenko. 2016. Query complexity of approximate Nash equilibria. Journal of the ACM, 63(4): 36:1--36:24. 18, 34, 37, 38, 41, 43Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Y. Babichenko and S. Barman. 2015. Query complexity of correlated equilibrium. ACM Transactions on Economics and Computation, 3(4): 22. 39Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Y. Babichenko and A. Rubinstein. 2017. Communication complexity of approximate Nash equilibria. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, June 2017, Montreal, Quebec, pp. 878--889. xivGoogle ScholarGoogle Scholar
  27. Y. Babichenko, C. H. Papadimitriou, and A. Rubinstein. 2016. Can almost everybody be almost happy? In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, January 2016, Cambridge, Massachusetts, pp. 1--9. 13, 20, 22, 35, 224, 230, 231Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Badanidiyuru, C. H. Papadimitriou, A. Rubinstein, L. Seeman, and Y. Singer. 2016. Locally adaptive optimization: Adaptive seeding for monotone submodular functions. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, January 2016, Arlington, VA, pp. 414--429. 157Google ScholarGoogle ScholarCross RefCross Ref
  29. M. Balcan, C. Borgs, M. Braverman, J. T. Chayes, and S. Teng. 2013. Finding endogenously formed communities. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, January 2013, New Orleans, Louisiana, pp. 767--783. 15, 157, 177, 178Google ScholarGoogle ScholarCross RefCross Ref
  30. A. S. Bandeira, N. Boumal, and V. Voroninski. 2016. On the low-rank approach for semidefinite programs arising in synchronization and community detection. In Proceedings of the Twenty-Ninth Conference on Learning Theory, June 2016, New York, pp. 361--382. http://jmlr.org/proceedings/papers/v49/bandeira16.html. 179Google ScholarGoogle Scholar
  31. J. Banks, C. Moore, J. Neeman, and P. Netrapalli. 2016. Information-theoretic thresholds for community detection in sparse networks. In Proceedings of the Twenty-Ninth Conference on Learning Theory, June 2016, New York, pp. 383--416. http://jmlr.org/proceedings/papers/v49/banks16.html. 179Google ScholarGoogle Scholar
  32. B. Barak. 2004. Non-Black-Box Techniques in Cryptography. PhD thesis, Weizmann Institute of Science. 6Google ScholarGoogle Scholar
  33. B. Barak, S. B. Hopkins, J. Kelner, P. K. Kothari, A. Moitra, and A. Potechin. 2016. A nearly tight sum-of-squares lower bound for the planted clique problem. In Proceedings of the IEEE Fifty-Seventh Annual Symposium on Foundations of Computer Science, October 2016, New Brunswick, New Jersey, pp. 428--437. 157Google ScholarGoogle Scholar
  34. S. Barman. 2015. Approximating Nash equilibria and dense bipartite subgraphs via an approximate version of Caratheodory's theorem. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, June 2015, Portland, Oregon, pp. 361--369. 12, 17, 155, 156, 157, 223, 224Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. S. Barman, K. Ligett, and G. Piliouras. 2015. Approximating Nash equilibria in tree polymatrix games. In Algorithmic Game Theory---Eighth International Symposium, September 2015, Saarbrücken, Germany, pp. 285--296. 101Google ScholarGoogle ScholarCross RefCross Ref
  36. R. C. Battalio, J. H. Kagel, and C. A. Kogut. 1991. Experimental confirmation of the existence of a Giffen good. The American Economic Review, 81(4): 961--970. https://www.jstor.org/stable/2006656. 9Google ScholarGoogle Scholar
  37. C. Bazgan, F. Foucaud, and F. Sikora. 2016. On the approximability of partial VC dimension. In Proceedings of the Tenth International Conference on Combinatorial Optimization and Applications, December 2016, Hong Kong, pp. 92--106. 190Google ScholarGoogle ScholarCross RefCross Ref
  38. P. Beame, S. A. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi. 1998. The relative complexity of NP search problems. Journal of Computer System Sciences, 57(1): 3--19 223Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. S. Ben-David and M. Ackerman. 2008. Measures of clustering quality: A working set of axioms for clustering. In Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems, December 2018, Vancouver, British Columbia, pp. 121--128. http://papers.nips.cc/paper/3491-measures-of-clustering-quality-a-working-set-of-axioms-for-clustering. 179Google ScholarGoogle Scholar
  40. S. Ben-David, D. Pál, and S. Shalev-Shwartz. 2009. Agnostic online learning. In Proceedings of the Twenty-Second Conference on Learning Theory, June 2009, Montreal, Quebec. http://www.cs.mcgill.ca/~colt2009/papers/032.pdf#page=1. 25Google ScholarGoogle Scholar
  41. E. Ben-Sasson, M. Sudan, S. P. Vadhan, and A. Wigderson. 2003. Randomness-efficient low degree tests and short PCPs via epsilon-biased sets. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, June 2003, San Diego, California, pp. 612--621. 28, 228, 231Google ScholarGoogle Scholar
  42. E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. P. Vadhan. 2006. Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal on Computing, 36(4): 889--974. 229, 231Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Q. Berthet and P. Rigollet. 2013. Complexity theoretic lower bounds for sparse principal component detection. In Proceedings of the Twenty-Sixth Annual Conference on Learning Theory, June 2013, Princeton University, New Jersey, pp. 1046--1066. https://arxiv.org/abs/1304.0828. 157Google ScholarGoogle Scholar
  44. U. Bhaskar, Y. Cheng, Y. K. Ko, and C. Swamy. 2016. Hardness results for signaling in Bayesian zero-sum and network routing games. In Proceedings of the 2016 ACM Conference on Economics and Computation, July 2016, Maastricht, The Netherlands, pp. 479--496. 214Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. 2010. Detecting high log-densities: An O(n1/4) approximation for densest k-subgraph. In Proceedings of the Forty-Second ACM Symposium on Theory of Computing, June 2010, Cambridge, Massachusetts, pp. 201--210. 156Google ScholarGoogle Scholar
  46. A. Bhaskara, M. Charikar, A. Vijayaraghavan, V. Guruswami, and Y. Zhou. 2012. Polynomial integrality gaps for strong SDP relaxations of densest k-subgraph. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, January 2012, Kyoto, Japan, pp. 388--405. http://dl.acm.org/citation.cfm?id=2095116.2095150. 156Google ScholarGoogle ScholarCross RefCross Ref
  47. B. E. Birnbaum, N. R. Devanur, and L. Xiao. 2011. Distributed algorithms via gradient descent for fisher markets. In Proceedings of the Twelfth ACM Conference on Electronic Commerce (EC-2011), June 2011, San Jose, California, pp. 127--136. 9Google ScholarGoogle Scholar
  48. N. Bitansky, O. Paneth, and A. Rosen. 2015. On the cryptographic hardness of finding a nash equilibrium. In Proceedings of the IEEE Fifty-Sixth Annual Symposium on Foundations of Computer Science, October 2015, Berkeley, California, pp. 1480--1498. 6Google ScholarGoogle Scholar
  49. A. Blum. 1994. Separating distribution-free and mistake-bound learning models over the Boolean domain. SIAM Journal on Computing, 23(5): 990--1000. 190Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. C. Borgs, J. T. Chayes, A. Marple, and S. Teng. 2016. An axiomatic approach to community detection. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, January 2016, Cambridge, Massachusetts, pp. 135--146. 14, 177, 179Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. H. Bosse, J. Byrka, and E. Markakis. 2010. New algorithms for approximate Nash equilibria in bimatrix games. Theoretical Computer Science, 411(1): 164--173. 17, 223Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. W. C. Brainard and H. Scarf. 2000. How to compute equilibrium prices in 1891. Cowles Foundation Discussion Papers 1272, Cowles Foundation for Research in Economics, Yale University. http://cowles.yale.edu/sites/default/files/files/pub/d12/d1272.pdf. 4Google ScholarGoogle Scholar
  53. M. Braverman, Y. Kun-Ko, and O. Weinstein. 2015. Approximating the best Nash equilibrium in nO(log n)-time breaks the exponential time hypothesis. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, January 2015, San Diego, California, pp. 970--982. 17, 150, 151, 158, 213, 224Google ScholarGoogle ScholarCross RefCross Ref
  54. M. Braverman, Y. Kun-Ko, A. Rubinstein, and O. Weinstein. 2017. ETH hardness for densest-k-subgraph with perfect completeness. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, January 2017, Barcelona, Spain, pp. 1326--1341. xiv, 15, 23Google ScholarGoogle Scholar
  55. G. W. Brown. 1951. Iterative solutions of games by fictitious play. In Activity Analysis of Production and Allocation. T. C. Koopmans (ed.) New York: Wiley, pp. 374--376. 4Google ScholarGoogle Scholar
  56. E. Budish. 2011. The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes. Journal of Political Economy, 119(6): 1061--1103. 11, 131, 132, 133, 139, 140, 142, 143, 144, 145Google ScholarGoogle ScholarCross RefCross Ref
  57. E. Budish, G. P. Cachon, J. Kessler, and A. Othman, 2014. Course Match: A large-scale implementation of approximate competitive equilibrium from equal incomes for combinatorial allocation. Working paper. 11, 131Google ScholarGoogle Scholar
  58. C. Calabro, R. Impagliazzo, and R. Paturi. 2009. The complexity of satisfiability of small depth circuits. In Parameterized and Exact Computation, 4th International Workshop, September 2009, Copenhagen, Denmark, pp. 75--85. 224Google ScholarGoogle Scholar
  59. M. L. Carmosino, J. Gao, R. Impagliazzo, I. Mihajlin, R. Paturi, and S. Schneider. 2016. Nondeterministic extensions of the strong exponential time hypothesis and consequences for non-reducibility. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, January 2016, Cambridge, Massachusetts, pp. 261--270. 224Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. S. O. Chan, D. Papailliopoulos, and A. Rubinstein. 2016. On the approximability of sparse PCA. In Proceedings of the Twenty-Ninth Conference on Learning Theory, June 2016, New York, pp. 623--646. http://jmlr.org/proceedings/papers/v49/chan16.html. 13Google ScholarGoogle Scholar
  61. W. Chen, F. Li, T. Lin, and A. Rubinstein. 2015. Combining traditional marketing and viral marketing with amphibious influence maximization. In Proceedings of the Sixteenth ACM Conference on Economics and Computation, June 2015, Portland, Oregon, pp. 779--796. 157Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. X. Chen and X. Deng. 2009. On the complexity of 2D discrete fixed point problem. Theoretical Computer Science, 410(44): 4448--4456. 8Google ScholarGoogle ScholarCross RefCross Ref
  63. X. Chen, D. Dai, Y. Du, and S.-H. Teng. 2009a. Settling the complexity of Arrow-Debreu equilibria in markets with additively separable utilities. In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, October 2009, Atlanta, Georgia, pp. 273--282. 9, 117, 125Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. X. Chen, X. Deng, and S.-H. Teng. 2009b. Settling the complexity of computing two-player Nash equilibria. Journal of the ACM, 56(3). 4, 7, 8, 80, 83, 84, 85, 86, 88, 223Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. X. Chen, D. Paparas, and M. Yannakakis. 2013. The complexity of non-monotone markets. In Symposium on Theory of Computing Conference, June 2013, Palo Alto, California, pp. 181--190. 9, 10, 115, 116, 117, 118, 121, 125, 127Google ScholarGoogle Scholar
  66. X. Chen, Y. Cheng, and B. Tang. 2017. Well-supported versus approximate Nash equilibria: Query complexity of large games. https://dblp.uni-trier.de/rec/bibtex/conf/innovations/ChenCT17 18, 34, 38Google ScholarGoogle Scholar
  67. Y. Chen, G. M. Kamath, C. Suh, and D. Tse. 2016. Community recovery in graphs with locality. In Proceedings of the Thirty-Third International Conference on Machine Learning, June 2016, New York City, pp. 689--698. http://jmlr.org/proceedings/papers/v48/chena16.html. 179Google ScholarGoogle Scholar
  68. Y. Cheng, H. Y. Cheung, S. Dughmi, E. Emamjomeh-Zadeh, L. Han, and S. Teng. 2015. Mixture selection, mechanism design, and signaling. In Proceedings of the IEEE Fifty-Sixth Annual Symposium on Foundations of Computer Science, October 2015, Berkeley, California, pp. 1426--1445. 16, 17, 213Google ScholarGoogle Scholar
  69. B. Codenotti, B. McCune, and K. Varadarajan. 2005. Market equilibrium via the excess demand function. In Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, May 2005, New York, pp. 74--83. 9, 116Google ScholarGoogle Scholar
  70. R. Cole and L. Fleischer. 2008. Fast-converging tâtonnement algorithms for one-time and ongoing market problems. In Proceedings of the Fortieth Annual ACM Symposium on the Theory of Computing, May 2008, Victoria, British Columbia, pp. 315--324. 9Google ScholarGoogle Scholar
  71. V. Conitzer and T. Sandholm. 2004. Communication complexity as a lower bound for learning in games. In Proceedings of the Twenty-First International Conference on Machine Learning, July 2004, Banff, Alberta, p. 24. 35, 38Google ScholarGoogle Scholar
  72. T. M. Cover and J. A. Thomas. 2012. Elements of Information Theory. John Wiley & Sons. 25Google ScholarGoogle Scholar
  73. M. Cygan, M. Pilipczuk, and M. Pilipczuk. 2016. Known algorithms for edge clique cover are probably optimal. SIAM Journal on Computing, 45(1): 67--83. 224Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. A. Czumaj, A. Deligkas, M. Fasoulakis, J. Fearnley, M. Jurdzinski, and R. Savani. 2015. Distributed methods for computing approximate equilibria. CoRR, abs/1512.03315. https://dblp.uni-trier.de/rec/bibtex/journals/algorithmica/CzumajDFFJS19. 38Google ScholarGoogle Scholar
  75. A. Daniely. 2016. Complexity theoretic limitations on learning halfspaces. In Proceedings of the Forty-Eighth Annual ACM SIGACT Symposium on Theory of Computing, June 2016, Cambridge, Massachusetts, pp. 105--117. 190Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. A. Daniely and S. Shalev-Shwartz. 2016. Complexity theoretic limitations on learning DNF's. In Proceedings of the Twenty-Ninth Conference on Learning Theory, June 2016, New York, pp. 815--830. http://jmlr.org/proceedings/papers/v49/daniely16.html. 190Google ScholarGoogle Scholar
  77. C. Daskalakis. 2008. The Complexity of Nash Equilibria. PhD thesis, University of California, Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-107.pdf 18Google ScholarGoogle Scholar
  78. C. Daskalakis. 2013. On the complexity of approximating a Nash equilibrium. ACM Transactions on Algorithms, 9(3): 23. 224Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. C. Daskalakis and C. H. Papadimitriou. 2009. On oblivious PTAS's for Nash equilibrium. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, May 31-June 2, 2009, Bethesda, Maryland, pp. 75--84. Full version available at http://arxiv.org/abs/1102.2280. 17, 29, 223, 224Google ScholarGoogle Scholar
  80. C. Daskalakis and C. H. Papadimitriou. 2015. Approximate Nash equilibria in anonymous games. J. Economic Theory, 156: 207--245. 101Google ScholarGoogle ScholarCross RefCross Ref
  81. C. Daskalakis, A. Mehta, and C. H. Papadimitriou. 2007. Progress in approximate nash equilibria. In Proceedings of the Eighth ACM Conference on Electronic Commerce, June 2007, San Diego, California, pp. 355--358. 17, 223Google ScholarGoogle Scholar
  82. C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. 2009a. The complexity of computing a Nash equilibrium. SIAM Journal on Computing, 39(1): 195--259. DOI: 10.1137/ 070699652. 4, 6, 7, 8, 33, 80, 84, 85, 86, 99, 101, 102, 106, 223, 230, 269Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. C. Daskalakis, A. Mehta, and C. H. Papadimitriou. 2009b. A note on approximate Nash equilibria. Theoretical Computer Science, 410(17): 1581--1588. 17, 223Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. G. Debreu and K. J. Arrow. 1954. Existence of an equilibrium for a competitive economy. Econometrica, 22(3): 265--90. 9Google ScholarGoogle ScholarCross RefCross Ref
  85. Y. Dekel, O. Gurel-Gurevich, and Y. Peres. 2010. Finding hidden cliques in linear time with high probability. CoRR, abs/1010.2997. https://dblp.org/rec/bibtex/journals/cpc/DekelGP14. 157Google ScholarGoogle Scholar
  86. A. Deligkas, J. Fearnley, R. Savani, and P. G. Spirakis. 2017. Computing approximate Nash equilibria in polymatrix games. Algorithmica, 77(2): 487--514. 224Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. H. Dell, T. Husfeldt, D. Marx, N. Taslaman, and M. Wahlen. 2014. Exponential time complexity of the permanent and the Tutte polynomial. ACM Transactions on Algorithms, 10(4): 21:1--21:32. 22Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. X. Deng and Y. Du. 2008. The computation of approximate competitive equilibrium is PPAD-hard. Information Processing Letters, 108(6): 369--373. 9Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Y. Deshpande and A. Montanari. 2015. Improved sum-of-squares lower bounds for hidden clique and hidden submatrix problems. CoRR, abs/1502.06590. https://dblp.org/rec/bibtex/conf/colt/DeshpandeM15. 157Google ScholarGoogle Scholar
  90. N. R. Devanur, C. H. Papadimitriou, A. Saberi, and V. V. Vazirani. Nov. 2008. Market equilibrium via a primal-dual algorithm for a convex program. Journal of the ACM, 55(5): 22:1--22:18. 9, 11Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. I. Dinur. 2007. The PCP theorem by gap amplification. Journal of the ACM, 54(3): 12. 23Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. I. Dinur and P. Harsha. 2013. Composition of low-error 2-query PCPs using decodable PCPs. SIAM Journal on Computing, 42(6): 2452--2486. 228Google ScholarGoogle ScholarCross RefCross Ref
  93. S. Dughmi. 2014. On the hardness of signaling. In Proceedings of the Figty-Fifth IEEE Annual Symposium on Foundations of Computer Science, October 2014, Philadelphia, Pennsylvania, pp. 354--363. 16, 17, 213, 215Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. S. Dughmi, N. Immorlica, and A. Roth. 2013. Constrained signaling for welfare and revenue maximization. SIGecom Exchanges, 12(1): 53--56. 16, 213Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. F. Y. Edgeworth. 1909. Review of free trade in being. Economic Journal, 19: 104--105. 9Google ScholarGoogle ScholarCross RefCross Ref
  96. Y. Emek, M. Feldman, I. Gamzu, R. P. Leme, and M. Tennenholtz. 2014. Signaling schemes for revenue maximization. ACM Transactions on Economics and Computing, 2(2): 5. 16, 213Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. K. Etessami and M. Yannakakis. 2010. On the complexity of Nash equilibria and other fixed points. SIAM Journal on Computing, 39(6): 2531--2597. 7Google ScholarGoogle ScholarCross RefCross Ref
  98. J. Fearnley, M. Gairing, P. W. Goldberg, and R. Savani. 2013. Learning equilibria of games via payoff queries. In Proceedings of the Fourteenth ACM Conference on Electronic Commerce, June 2013, Philadelphia, Pennsylvania, pp. 397--414. 18, 34Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. T. Feder, H. Nazerzadeh, and A. Saberi. 2007. Approximating Nash equilibria using small-support strategies. In Proceedings of the Eighth ACM Conference on Electronic Commerce, June 2007, San Diego, California, pp. 352--354. 224Google ScholarGoogle Scholar
  100. U. Feige. 2002. Relations between average case complexity and approximation complexity. In Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, Montreal Quebec, May 2002, New York, pp. 534--543. 156Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. U. Feige and R. Krauthgamer. 2000. Finding and certifying a large hidden clique in a semirandom graph. Random Structures and Algorithms, 16(2): 195--208. <195::AID-RSA5>3.0.C0;2-A. 157Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. U. Feige and M. Seltser. 1997. On the densest k-subgraph problem. Citeseer. DOI: 10.1.1.37.9962. 14, 155, 156Google ScholarGoogle Scholar
  103. U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. 1996. Interactive proofs and the hardness of approximating cliques. Journal of the ACM (JACM), 43(2): 268--292. 14, 155, 180, 184Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. U. Feige, G. Kortsarz, and D. Peleg. 2001. The dense k-subgraph problem. Algorithmica, 29(3): 410--421. 156Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. J. Feigenbaum, D. Koller, and P. W. Shor. 1995. A game-theoretic classification of interactive complexity classes. In Proceedings of the Structure in Complexity Theory Conference, June 1995, Minneapolis, Minnesota, pp. 227--237. 79Google ScholarGoogle Scholar
  106. V. Feldman, P. Gopalan, S. Khot, and A. K. Ponnuswami. 2006. New results for learning noisy parities and halfspaces. In Proceedings of the Forty-Seventh Annual IEEE Symposium on Foundations of Computer Science, October 2006, Berkeley, California, pp. 563--574. 190Google ScholarGoogle Scholar
  107. V. Feldman, E. Grigorescu, L. Reyzin, S. Vempala, and Y. Xiao. 2013. Statistical algorithms and a lower bound for detecting planted cliques. In Symposium on Theory of Computing Conference, June 2013, Palo Alto, California, pp. 655--664. 157Google ScholarGoogle Scholar
  108. L. Florescu and W. Perkins. 2016. Spectral thresholds in the bipartite stochastic block model. In Proceedings of the 29th Conference on Learning Theory, June 2013, New York, pp. 943--959. http://jmlr.org/proceedings/papers/v49/florescu16.html. 179Google ScholarGoogle Scholar
  109. D. Foley. 1967. Resource allocation and the public sector. Yale Economic Essays, 7(1): 45--98. 10Google ScholarGoogle Scholar
  110. L. Fortnow, R. Impagliazzo, V. Kabanets, and C. Umans. 2008. On the complexity of succinct zero-sum games. Computational Complexity, 17(3): 353--376. 79Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. S. Fortunato. 2010. Community detection in graphs. Physics Reports, 486: 75--174. 14, 177Google ScholarGoogle ScholarCross RefCross Ref
  112. D. P. Foster and H. P. Young. Sept. 2006. Regret testing: learning to play Nash equilibrium without knowing you have an opponent. Theoretical Economics, 1(3): 341--367. http://econtheory.org/ojs/index.php/te/article/view/20060341. 4, 35Google ScholarGoogle Scholar
  113. M. Frances and A. Litman. 1998. Optimal mistake bound learning is hard. Information and Computation, 144(1): 66--82. 16, 187, 190Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. A. Ganor and Karthik. 2017. Communication complexity of correlated equilibrium in two-player games. arXiv preprint arXiv:1704.01104. 60Google ScholarGoogle Scholar
  115. J. Garg, R. Mehta, M. A. Sohoni, and V. V. Vazirani. 2015. A complementary pivot algorithm for market equilibrium under separable, piecewise-linear concave utilities. SIAM Journal on Computing, 44(6): 1820--1847. 9Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. J. Garg, R. Mehta, V. V. Vazirani, and S. Yazdanbod. 2017. Settling the complexity of Leontief and PLC exchange markets under exact and approximate equilibria. In Proceedings of the Forty-Ninth Annual ACM SIGACT Symposium on Theory of Computing, June 2017, Montreal, Quebec, pp. 890--901. 9Google ScholarGoogle Scholar
  117. R. Garg and S. Kapoor. 2006. Auction algorithms for market equilibrium. Math. Oper. Res., 31(4): 714--729. 9Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. S. Garg, O. Pandey, and A. Srinivasan. 2016. Revisiting the cryptographic hardness of finding a nash equilibrium. In Advances in Cryptology: Proceedings of the Thirty-Sixth Annual International Cryptology Conference, August 2016, Santa Barbara, California, Part II, pp. 579--604. 6Google ScholarGoogle Scholar
  119. F. Germano and G. Lugosi. 2007. Global Nash convergence of Foster and Young's regret testing. Games and Economic Behavior, 60(1): 135--154. 35Google ScholarGoogle ScholarCross RefCross Ref
  120. A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. 2011. Dominant resource fairness: Fair allocation of multiple resource types. In Proceedings of the Eighth USENIX Conference on Networked Systems Design and Implementation, March 30-April 1, 2011, Boston, Massachusetts, pp. 323--336. http://dl.acm.org/citation.cfm?id=1972457.1972490. 11Google ScholarGoogle Scholar
  121. I. Gilboa and E. Zemel. 1989. Nash and correlated equilibria: Some complexity considerations. https://www.sciencedirect.com/science/article/pii/0899825689900067 150Google ScholarGoogle Scholar
  122. P. W. Goldberg and A. Pastink. 2014. On the communication complexity of approximate Nash equilibria. Games and Economic Behavior, 85: 19--31. 38Google ScholarGoogle ScholarCross RefCross Ref
  123. P. W. Goldberg and A. Roth. 2016. Bounds for the query complexity of approximate equilibria. ACM Transactions on Economics and Computing, 4(4): 24:1--24:25. 38, 39, 101Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. O. Goldreich, ed. 2010. Property Testing---Current Research and Surveys [outgrowth of a workshop at the Institute for Computer Science (ITCS) at Tsinghua University, January 2010], volume 6390 of Lecture Notes in Computer Science. Springer. 228Google ScholarGoogle Scholar
  125. M. Göös, T. Pitassi, and T. Watson. 2017. Query-to-communication lifting for BPP. 30, 37, 40Google ScholarGoogle Scholar
  126. V. Guruswami and A. Rudra. 2005. Tolerant locally testable codes. In Approximation, Randomization and Combinatorial Optimization, Algorithms and Techniques, Proceedings of the Eighth International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, and Ninth International Workshop on Randomization and Computation, August 2005, Berkeley, California, pp. 306--317. 228Google ScholarGoogle Scholar
  127. B. E. Hajek, Y. Wu, and J. Xu. 2016. Semidefinite programs for exact recovery of a hidden community. In Proceedings of the Twenty-Ninth Conference on Learning Theory, June 2016, New York, pp. 1051--1095. http://jmlr.org/proceedings/papers/v49/hajek16.html. 179Google ScholarGoogle Scholar
  128. S. Hart and Y. Mansour. 2010. How long to equilibrium? The communication complexity of uncoupled equilibrium procedures. Games and Economic Behavior, 69(1): 107--126. 18, 33, 34, 38, 39, 60Google ScholarGoogle ScholarCross RefCross Ref
  129. S. Hart and A. Mas-Colell. 2003. Uncoupled dynamics do not lead to nash equilibrium. American Economic Review, 93(5): 1830--1836. DOI: 10.12571000282803322655581. 4, 33, 35Google ScholarGoogle ScholarCross RefCross Ref
  130. S. Hart and A. Mas-Colell. 2006. Stochastic uncoupled dynamics and Nash equilibrium. Games and Economic Behavior, 57(2): 286--303. 33, 35Google ScholarGoogle ScholarCross RefCross Ref
  131. S. Hart and A. Mas-Colell. 2013. Simple adaptive strategies: From regret-matching to uncoupled dynamics, volume 4. World Scientific. 35Google ScholarGoogle Scholar
  132. S. Hart and N. Nisan. 2013. The query complexity of correlated equilibria. CoRR, abs/1305.4874. https://dblp.uni-trier.de/rec/bibtex/journals/geb/HartN18. 18, 34, 38, 39Google ScholarGoogle Scholar
  133. J. Håstad. 1999. Clique is hard to approximate within n1-. Acta Mathematica, 182(1): 105--142. 14, 155Google ScholarGoogle ScholarCross RefCross Ref
  134. E. Hazan and R. Krauthgamer. 2011. How hard is it to approximate the best Nash equilibrium? SIAM Journal on Computing, 40(1): 79--91. 224Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. M. D. Hirsch, C. H. Papadimitriou, and S. A. Vavasis. 1989. Exponential lower bounds for finding Brouwer fix points. J. Complexity, 5(4): 379--416. 37, 38, 62, 63, 65, 69, 85, 223, 225Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. P. W. Holland, K. B. Laskey, and S. Leinhardt. 1983. Stochastic blockmodels: First steps. Social Networks, 5: 109--137. 179Google ScholarGoogle ScholarCross RefCross Ref
  137. S. B. Hopkins, P. Kothari, A. H. Potechin, P. Raghavendra, and T. Schramm. 2016. On the integrality gap of degree-4 sum of squares for planted clique. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, January 2016, Arlington, Virginia, pp. 1079--1095. 157Google ScholarGoogle ScholarCross RefCross Ref
  138. P. Hubácek and E. Yogev. 2017. Hardness of continuous local search: Query complexity and cryptographic lower bounds. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, January 2017, Barcelona, Spain, pp. 1352--1371. 6Google ScholarGoogle Scholar
  139. R. Iemhoff. 2016. Intuitionism in the philosophy of mathematics. In E. N. Zalta, ed., The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2016. 7Google ScholarGoogle Scholar
  140. R. Impagliazzo and R. Paturi. 2001. On the complexity of k-SAT. Journal of Computer System Sciences, 62(2): 367--375. 224Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. R. Impagliazzo, R. Paturi, and F. Zane. 2001. Which problems have strongly exponential complexity? Journal of Computer System Sciences, 63(4): 512--530. 5, 13, 17, 22, 224Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. K. Jain. 2004. A polynomial time algorithm for computing the Arrow-Debreu market equilibrium for linear utilities. In Proceedings of the Forty-Fifth Symposium on Foundations of Computer Science, October 2004, Rome, Italy, pp. 286--294. 9Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. K. Jain and V. V. Vazirani. 2010. Eisenberg-Gale markets: Algorithms and game-theoretic properties. Games and Economic Behavior, 70(1): 84--106. 9Google ScholarGoogle ScholarCross RefCross Ref
  144. M. Jerrum. 1992. Large cliques elude the metropolis process. Random Struct. Algorithms, 3(4): 347--360. 157Google ScholarGoogle ScholarCross RefCross Ref
  145. W. S. Jevons. 1866. Brief account of a general mathematical theory of political economy. History of Economic Thought Articles, 29: 282--287. http://EconPapers.repec.org/RePEc:hay:hetart:jevons1866. 8Google ScholarGoogle Scholar
  146. A. X. Jiang and K. Leyton-Brown. 2015. Polynomial-time computation of exact correlated equilibrium in compact games. Games and Economic Behavior, 91: 347--359. 39, 60Google ScholarGoogle ScholarCross RefCross Ref
  147. A. T. Kalai, A. R. Klivans, Y. Mansour, and R. A. Servedio. 2008. Agnostically learning halfspaces. SIAM Journal on Computing, 37(6): 1777--1805. 190Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. E. Kalai and E. Lehrer. 1993. Rational learning leads to Nash equilibrium. Econometrica, 61(5): 1019--1045. 4, 35Google ScholarGoogle ScholarCross RefCross Ref
  149. R. Kannan and T. Theobald. 2007. Games of fixed rank: A hierarchy of bimatrix games. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 2007, New Orleans, Louisiana, pp. 1124--1132. http://dl.acm.org/citation.cfm?id=1283383.1283504. 17, 223, 224Google ScholarGoogle Scholar
  150. M. Karchmer, R. Raz, and A. Wigderson. 1995. Super-logarithmic depth lower bounds via the direct sum in communication complexity. Computational Complexity, 5(3-4): 191--204. 37Google ScholarGoogle ScholarCross RefCross Ref
  151. R. M. Karp. 1972. Reducibility among combinatorial problems. In Proceedings of a Symposium on the Complexity of Computer Computations, March 1972, Yorktown Heights, New York, pp. 85--103. http://www.cs.berkeley.edu/~luca/cs172/karp.pdf. 14, 155Google ScholarGoogle ScholarCross RefCross Ref
  152. M. Karpinski and W. Schudy. 2010. Faster algorithms for feedback arc set tournament, kemeny rank aggregation and betweenness tournament. In Algorithms and Computation: Proceedings of the Twenty-First International Symposium, December 2010, Jeju Island, Korea, Part I, pp. 3--14. 224Google ScholarGoogle ScholarCross RefCross Ref
  153. M. Kearns. 2007. Graphical games, chapter 7, pp. 159--180. Cambridge University Press. 79Google ScholarGoogle Scholar
  154. M. J. Kearns and L. G. Valiant. 1994. Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the ACM, 41(1): 67--95. 190Google ScholarGoogle ScholarDigital LibraryDigital Library
  155. M. Kharitonov. 1993. Cryptographic hardness of distribution-specific learning. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 1993, San Diego, California, pp. 372--381. 190Google ScholarGoogle ScholarDigital LibraryDigital Library
  156. M. Kharitonov. 1995. Cryptographic lower bounds for learnability of Boolean functions on the uniform distribution. Journal of Computer System Sciences, 50(3): 600--610. 190Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. S. Khot. 2001. Improved inapproximability results for MaxClique, chromatic number and approximate graph coloring. In Proceedings of the Forty-Second Annual Symposium on Foundations of Computer Science, October 2001, Las Vegas, Nevada, pp. 600--609. 14, 155Google ScholarGoogle ScholarCross RefCross Ref
  158. S. Khot. 2006. Ruling out PTAs for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM Journal on Computing, 36(4): 1025--1071. 157Google ScholarGoogle ScholarDigital LibraryDigital Library
  159. J. M. Kleinberg. 2002. An impossibility theorem for clustering. In Proceedings of the Advances in Neural Information Processing Systems 15, December 2002, Vancouver, British Columbia, pp. 446--453. http://papers.nips.cc/paper/2340-an-impossibility-theorem-for-clustering. 179Google ScholarGoogle Scholar
  160. A. R. Klivans. 2016. Cryptographic hardness of learning. In Encyclopedia of Algorithms, pp. 475--477. Springer. 190Google ScholarGoogle Scholar
  161. A. R. Klivans and A. A. Sherstov. 2009. Cryptographic hardness for learning intersections of halfspaces. Journal of Computer System Sciences, 75(1): 2--12. 190Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. P. Koiran and A. Zouzias. 2011. On the certification of the restricted isometry property. CoRR, abs/1103.4984. http://arxiv.org/abs/1103.4984. 157Google ScholarGoogle Scholar
  163. S. C. Kontogiannis, P. N. Panagopoulou, and P. G. Spirakis. 2009. Polynomial algorithms for approximating Nash equilibria of bimatrix games. Theoretical Computer Science, 410(17): 1599--1606. 17, 223Google ScholarGoogle ScholarDigital LibraryDigital Library
  164. L. Kucera. 1995. Expected complexity of graph partitioning problems. Discrete Applied Mathematics, 57(2-3): 193--212. 157Google ScholarGoogle ScholarDigital LibraryDigital Library
  165. F. T. Leighton. 1992. Introduction to Parallel Algorithms and Architectures: Array, Trees, Hypercubes. Morgan Kaufmann Publishers Inc. 239Google ScholarGoogle Scholar
  166. C. E. Lemke and J. T. Howson. 1964. Equilibrium points of bimatrix games. Journal of the Society for Industrial and Applied Mathematics, 12(2): 413--423. 4, 223Google ScholarGoogle ScholarCross RefCross Ref
  167. N. Linial, Y. Mansour, and R. L. Rivest. 1991. Results on learnability and the Vapnik-Chervonenkis dimension. Information and Computation, 90(1): 33--49. 190, 191Google ScholarGoogle ScholarDigital LibraryDigital Library
  168. R. J. Lipton, E. Markakis, and A. Mehta. 2003. Playing large games using simple strategies. In Proceedings of the Fourth ACM Conference on Electronic Commerce, June 2003, San Diego, California, pp. 36--41. 12, 17, 36, 39, 79, 150, 223, 224Google ScholarGoogle Scholar
  169. N. Littlestone. 1987. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2(4): 285--318. 16, 24, 25, 187Google ScholarGoogle ScholarDigital LibraryDigital Library
  170. D. Lokshtanov, D. Marx, and S. Saurabh. 2011. Lower bounds based on the exponential time hypothesis. Bulletin of the EATCS, 105: 41--72. http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/96. 224Google ScholarGoogle Scholar
  171. K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. 2016. Learning communities in the presence of errors. In Proceedings of the Twenty-Ninth Conference on Learning Theory, June 2016, New York, pp. 1258--1291. http://jmlr.org/proceedings/papers/v49/makarychev16.html. 179Google ScholarGoogle Scholar
  172. P. Manurangsi. 2017. Almost-polynomial ratio ETH-hardness of approximating densest k-subgraph. In Proceedings of the Forty-Ninth Annual ACM Symposium on Theory of Computing. 158, 159, 189Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. P. Manurangsi and P. Raghavendra. 2016. A birthday repetition theorem and complexity of approximating dense CSPs. CoRR, abs/1607.02986. https://dblp.org/rec/bibtex/conf/icalp/ManurangsiR17. 189Google ScholarGoogle Scholar
  174. P. Manurangsi and A. Rubinstein. 2017. Inapproximability of VC dimension and Littlestone's dimension. In Proceedings of the Thirtieth Conference on Learning Theory, July 2017, Amsterdam, The Netherlands, pp. 1432--1460. http://proceedings.mlr.press/v65/manurangsi17a.html. xivGoogle ScholarGoogle Scholar
  175. A. Marshall. 1895. Principles of Economics. Number III. Macmillan. 9Google ScholarGoogle Scholar
  176. R. R. Maxfield. 1997. General equilibrium and the theory of directed graphs. Journal of Mathematical Economics, 27(1): 23--51. 123Google ScholarGoogle ScholarCross RefCross Ref
  177. A. McLennan and R. Tourky. 2005. From imitation games to Kakutani. Manuscript, available at http://www.econ.umn.edu/mclennan/Papers/papers.html. 37, 41Google ScholarGoogle Scholar
  178. N. Megiddo and C. H. Papadimitriou. 1991. On total functions, existence theorems and computational complexity. Theoretical Computer Science, 81(2): 317--324. 6Google ScholarGoogle ScholarDigital LibraryDigital Library
  179. R. Meka, A. Potechin, and A. Wigderson. 2015. Sum-of-squares lower bounds for planted clique. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, June 2015, Portland, Oregon, pp. 87--96. 157Google ScholarGoogle Scholar
  180. C. Menger. 1871. Principles of Economics. Ludwig von Mises Institute. 8Google ScholarGoogle Scholar
  181. P. B. Miltersen and O. Sheffet. 2012. Send mixed signals: earn more, work less. In ACM Conference on Electronic Commerce, June 2012, Valencia, Spain, pp. 234--247. 16, 213Google ScholarGoogle Scholar
  182. N. Mishra, R. Schreiber, I. Stanton, and R. E. Tarjan. 2008. Finding strongly knit clusters in social networks. Volume 5, pp. 155--174. https://dblp.uni-trier.de/rec/bibtex/journals/im/MishraSST08 15, 177, 178Google ScholarGoogle Scholar
  183. A. Moitra, W. Perry, and A. S. Wein. 2016. How robust are reconstruction thresholds for community detection? In Proceedings of the Forty-Eighth Annual ACM SIGACT Symposium on Theory of Computing, June 2016, Cambridge, Massachusetts, pp. 828--841. 179Google ScholarGoogle Scholar
  184. T. Morioka. 2003. The relative complexity of local search heuristics and the iteration principle. Electronic Colloquium on Computational Complexity (ECCC), (051). http://eccc.hpi-web.de/eccc-reports/2003/TR03-051/index.html. 6Google ScholarGoogle Scholar
  185. D. Moshkovitz and R. Raz. 2010. Two-query PCP with subconstant error. Journal of the ACM, 57(5): 29:1--29:29. 24, 228Google ScholarGoogle ScholarDigital LibraryDigital Library
  186. E. Mossel and C. Umans. 2002. On the complexity of approximating the VC dimension. Journal of Computer System Sciences, 65(4): 660--671. 190Google ScholarGoogle ScholarDigital LibraryDigital Library
  187. E. Mossel and J. Xu. 2016. Density evolution in the degree-correlated stochastic block model. In Proceedings of the Twenty-Ninth Conference on Learning Theory, June 2016, New York, pp. 1319--1356. http://jmlr.org/proceedings/papers/v49/mossel16.html. https://dblp.uni-trier.de/rec/bibtex/conf/colt/MosselX16. 179Google ScholarGoogle Scholar
  188. J. Nash. 1951. Non-cooperative games. The Annals of Mathematics, 54: 286--295. 3, 35Google ScholarGoogle ScholarCross RefCross Ref
  189. N. Nisan. 2009a. Communication complexity of mixed-Nash equilibria. https://agtb.wordpress.com/2009/09/28/communication-complexity-of-mixed-nash-equilibria/. 18, 34Google ScholarGoogle Scholar
  190. N. Nisan. 2009b. Economists and complexity. https://agtb.wordpress.com/2009/11/27/economists-and-complexity/. 9, 33Google ScholarGoogle Scholar
  191. A. Othman, T. Sandholm, and E. Budish. 2010. Finding approximate competitive equilibria: efficient and fair course allocation. In Ninth International Conference on Autonomous Agents and Multiagent Systems, May 2010, Toronto, Canada, Volume 1--3, pp. 873--880. 11Google ScholarGoogle Scholar
  192. A. Othman, C. H. Papadimitriou, and A. Rubinstein. 2016. The complexity of fairness through equilibrium. ACM Transactions on Economics and Computing, 4(4): 20. xivGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  193. C. H. Papadimitriou. 1994. On the complexity of the parity argument and other inefficient proofs of existence. Journal of Computer System Sciences, 48(3): 498--532. 5, 6, 143, 223Google ScholarGoogle ScholarDigital LibraryDigital Library
  194. C. H. Papadimitriou and T. Roughgarden. 2008. Computing correlated equilibria in multiplayer games. Journal of the ACM, 55(3), Article 14. 39, 60Google ScholarGoogle Scholar
  195. C. H. Papadimitriou and M. Yannakakis. 1986. A note on succinct representations of graphs. Information and Control, 71(3): 181--185. 16Google ScholarGoogle ScholarDigital LibraryDigital Library
  196. C. H. Papadimitriou and M. Yannakakis. 1996. On limited nondeterminism and the complexity of the V-C dimension. Journal of Computer System Sciences, 53(2): 161--170. 16, 187, 190Google ScholarGoogle ScholarDigital LibraryDigital Library
  197. M. Parnas, D. Ron, and R. Rubinfeld. 2006. Tolerant property testing and distance approximation. Journal of Computer System Sciences, 72(6): 1012--1042. 228Google ScholarGoogle ScholarDigital LibraryDigital Library
  198. A. Polishchuk and D. A. Spielman. 1994. Nearly linear size holographic proofs. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, May 1994, Montreal, Quebec, pp. 194--203. 229, 231Google ScholarGoogle Scholar
  199. P. Raghavendra and D. Steurer. 2010. Graph expansion and the unique games conjecture. In Proceedings of the Forty-Second ACM Symposium on Theory of Computing, June 2010, Cambridge, Massachusetts, pp. 755--764. 156Google ScholarGoogle Scholar
  200. R. Raz and P. McKenzie. 1999. Separation of the monotone NC hierarchy. Combinatorica, 19(3): 403--435. 37Google ScholarGoogle ScholarDigital LibraryDigital Library
  201. R. Raz and A. Wigderson. 1990. Monotone circuits for matching require linear depth. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, May 1990, Baltimore, Maryland, pp. 287--292. 37Google ScholarGoogle Scholar
  202. J. Robinson. 1951. An iterative method of solvinga game. Annals of Mathematics, 54: 296--301. 4Google ScholarGoogle ScholarCross RefCross Ref
  203. T. Roughgarden. 2014. Barriers to near-optimal equilibria. In Fifty-Fifth IEEE Annual Symposium on Foundations of Computer Science, October 2014, Philadelphia, Pennsylvania, pp. 71--80. 39Google ScholarGoogle ScholarDigital LibraryDigital Library
  204. T. Roughgarden and O. Weinstein. 2016. On the communication complexity of approximate fixed points. In Electronic Colloquium on Computational Complexity (ECCC), volume 23, p. 55. 7, 18, 39Google ScholarGoogle Scholar
  205. A. Rubinstein. 2015. Inapproximability of Nash equilibrium. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, June 2015, Portland, Oregon, pp. 409--418. xiv, 224Google ScholarGoogle ScholarDigital LibraryDigital Library
  206. A. Rubinstein. 2016. Settling the complexity of computing approximate two-player Nash equilibria. In Proceedings of the IEEE Fifty-Seventh Annual Symposium on Foundations of Computer Science, October 2016, New Brunswick, NewJersey, pp. 258--265. xiv, 41, 44Google ScholarGoogle ScholarCross RefCross Ref
  207. A. Rubinstein. 2017a. Detecting communities is hard and counting them is even harder. https://dblp.uni-trier.de/rec/bibtex/conf/innovations/Rubinstein17. xivGoogle ScholarGoogle Scholar
  208. A. Rubinstein. 2017b. Honest signaling in zero-sum games is hard, and lying is even harder. In Forty-Fourth International Colloquium on Automata, Languages, and Programming, July 2017, Warsaw, Poland, pp. 77:1--77:13. xiv, 214Google ScholarGoogle Scholar
  209. A. Rubinstein. 2017c. Hardness of Approximation Between P and NP. PhD thesis, University of California at Berkeley, USA. https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-146.pdf. xivGoogle ScholarGoogle Scholar
  210. H. Scarf. 1967. The approximation of fixed points of a continuous mapping. SIAM Journal of Applied Mathematics, 15: 1328--1343. 4, 8Google ScholarGoogle ScholarCross RefCross Ref
  211. M. Schaefer. 1999. Deciding the Vapnik-Červonenkis dimension is Σp3-complete. Journal of Computer System Sciences, 58(1): 177--182. 190Google ScholarGoogle ScholarDigital LibraryDigital Library
  212. M. Schaefer. 2000. Deciding the k-dimension is PSPACE-complete. In Proceedings of the Fifteenth Annual IEEE Conference on Computational Complexity, July 2000, Florence, Italy, pp. 198--203. 190Google ScholarGoogle ScholarCross RefCross Ref
  213. J. P. Schmidt, A. Siegel, and A. Srinivasan. 1995. Chernoff-Hoeffding bounds for applications with limited independence. SIAM J. Discrete Math., 8(2): 223--250. 27Google ScholarGoogle ScholarDigital LibraryDigital Library
  214. G. Schoenebeck and S. P. Vadhan. 2012. The computational complexity of Nash equilibria in concisely represented games. ACM Transactions on Computation Theory, 4(2): 4. 79Google ScholarGoogle ScholarDigital LibraryDigital Library
  215. A. Shamir. 1992. IP = PSPACE. Journal of the ACM, 39(4): 869--877. 229Google ScholarGoogle ScholarDigital LibraryDigital Library
  216. L. S. Shapley. 1964. Some topics in two-person games. Annals of Mathematical Studies, 52: 1--28. https://apps.dtic.mil/dtic/tr/fulltext/u2/407345.pdf. 4Google ScholarGoogle Scholar
  217. E. Shmaya. 2012. Brouwer implies Nash implies Brouwer. http://theoryclass.wordpress.com/2012/01/05/brouwer-implies-nash-implies-brouwer/. 37, 41Google ScholarGoogle Scholar
  218. S. P. Singh, V. Soni, and M. P. Wellman. 2004. Computing approximate Bayes-Nash equilibria in tree-games of incomplete information. In Proceedings of the Fifth ACM Conference on Electronic Commerce, May 2004, New York, pp. 81--90. 111Google ScholarGoogle ScholarDigital LibraryDigital Library
  219. D. A. Spielman. 1995. Computationally Efficient Error-Correcting Codes and Holographic Proofs. PhD thesis, Massachusetts Institute of Technology. 229, 231Google ScholarGoogle Scholar
  220. G. J. Stigler. 1947. Notes on the history of the Giffen paradox. Journal of Political Economy, 55(2): 152--156. https://www.jstor.org/stable/1825304. 9Google ScholarGoogle ScholarCross RefCross Ref
  221. W. Thomson and H. Varian. 1985. Theories of justice based on symmetry. Social Goals and Social Organizations: Essays in Memory of Elisha Pazner. Cambridge University Press. 10Google ScholarGoogle Scholar
  222. N. Tremblay, G. Puy, R. Gribonval, and P. Vandergheynst. 2016. Compressive spectral clustering. In Proceedings of the Thirty-Third International Conference on Machine Learning, June 2016, New York City, pp. 1002--1011. http://jmlr.org/proceedings/papers/v48/tremblay16.html. 179Google ScholarGoogle Scholar
  223. H. Tsaknakis and P. G. Spirakis. 2008. An optimization approach for approximate Nash equilibria. Internet Mathematics, 5(4): 365--382. 17, 223, 224Google ScholarGoogle ScholarCross RefCross Ref
  224. T. van Laarhoven and E. Marchiori. 2014. Axioms for graph clustering quality functions. Journal of Machine Learning Research, 15(1): 193--215. http://dl.acm.org/citation.cfm?id=2627441. 179Google ScholarGoogle ScholarDigital LibraryDigital Library
  225. V. N. Vapnik and A. Y. Chervonenkis. 1971. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability & Its Applications, 16(2): 264--280. 16, 24Google ScholarGoogle ScholarCross RefCross Ref
  226. H. Varian. 1974. Equity, envy, and efficiency. Journal of Economic Theory, 9(1): 63--91. 10, 11Google ScholarGoogle ScholarCross RefCross Ref
  227. V. V. Vazirani and M. Yannakakis. 2011. Market equilibrium under separable, piecewise-linear, concave utilities. Journal of the ACM, 58(3): 10. 9, 10, 117, 125Google ScholarGoogle ScholarDigital LibraryDigital Library
  228. M. Viderman. 2015. A combination of testability and decodability by tensor products. Random Struct. Algorithms, 46(3): 572--598. 245Google ScholarGoogle ScholarDigital LibraryDigital Library
  229. L. Walras. 1874. Éléments d'économie politique pure, ou, Théorie de la richesse sociale. L. Corbaz Lausanne. 8Google ScholarGoogle Scholar
  230. E. B. Yanovskaya. 1968. Equilibrium points in polymatrix games. Litovskii Matematicheskii Sbornik, 8: 381--384. 79Google ScholarGoogle Scholar
  231. H. P. Young. 2004. Strategic learning and its limits. Oxford University Press. 35Google ScholarGoogle Scholar
  232. H. P. Young. 2009. Learning by trial and error. Games and economic behavior, 65(2): 626--643. 35Google ScholarGoogle Scholar
  233. D. Zuckerman. 2007. Linear degree extractors and the inapproximability of Max Clique and chromatic number. Theory of Computing, 3(1): 103--128. 14, 155Google ScholarGoogle ScholarCross RefCross Ref
Contributors
  • Stanford University

Recommendations