Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
skip to main content
research-article

A Review on Outlier/Anomaly Detection in Time Series Data

Published: 17 April 2021 Publication History

Abstract

Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide a structured and comprehensive state-of-the-art on unsupervised outlier detection techniques in the context of time series. To this end, a taxonomy is presented based on the main aspects that characterize an outlier detection technique.

References

[1]
C. Aggarwal. 2016. Outlier Analysis (2nd ed.). Springer.
[2]
H. Aguinis, R. K. Gottfredson, and H. Joo. 2013. Best-practice recommendations for defining, identifying, and handling outliers. Organiz. Res. Methods 16, 2 (2013), 270--301.
[3]
S. Ahmad, A. Lavin, S. Purdy, and Z. Agha. 2017. Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262 (2017), 134--147.
[4]
H. N. Akouemo and R. J. Povinelli. 2014. Time series outlier detection and imputation. In Proceedings of the IEEE PES General Meeting—Conference Exposition, 1--5.
[5]
H. N. Akouemo and R. J. Povinelli. 2016. Probabilistic anomaly detection in natural gas time series data. Int. J. Forecast. 32, 3 (2016), 948--956.
[6]
H. N. Akouemo and R. J. Povinelli. 2017. Data improving in time series using ARX and ANN models. IEEE Trans. Power Syst. 32, 5 (2017), 3352--3359.
[7]
F. Angiulli and F. Fassetti. 2007. Detecting distance-based outliers in streams of data. In Proceedings of the 16th ACM Conference on Information and Knowledge Management (CIKM’07). ACM, 811--820.
[8]
F. Angiulli and F. Fassetti. 2010. Distance-based outlier queries in data streams: The novel task and algorithms. Data Min. Knowl. Discov. 20, 2 (2010), 290--324.
[9]
R. Baragona and F. Battaglia. 2007. Outliers detection in multivariate time series by independent component analysis. Neural Comput. 19, 7 (2007), 1962--1984.
[10]
S. Basu and M. Meckesheimer. 2007. Automatic outlier detection for time series: An application to sensor data. Knowl. Info. Syst. 11, 2 (2007), 137--154.
[11]
L. Beggel, B. X. Kausler, M. Schiegg, M. Pfeiffer, and B. Bischl. 2019. Time series anomaly detection based on shapelet learning. Comput. Stat. 34, 3 (2019), 945--976.
[12]
S. E. Benkabou, K. Benabdeslem, and B. Canitia. 2018. Unsupervised outlier detection for time series by entropy and dynamic time warping. Knowl. Info. Syst. 54, 2 (2018), 463--486.
[13]
Y. Bu, T. W. Leung, A. W. C. Fu, E. Keogh, J. Pei, and S. Meshkin. 2007. Wat: Finding top-k discords in time series database. In Proceedings of the 7th SIAM International Conference on Data Mining. SIAM, 449--454.
[14]
H. T. Q. Buu and D. T. Anh. 2011. Time series discord discovery based on iSAX symbolic representation. In Proceedings of the 3rd International Conference on Knowledge and Systems Engineering. IEEE, 11--18.
[15]
M Čampulová, J. Michálek, P. Mikuška, and D. Bokal. 2018. Nonparametric algorithm for identification of outliers in environmental data. J. Chemom. 32, 5 (2018), 1--17.
[16]
A. Carreño, I. Inza, and J. A. Lozano. 2020. Analyzing rare event, anomaly, novelty and outlier detection terms under the supervised classification framework. Artific. Intell. Rev. 53, 5 (2020), 3575--3594.
[17]
D. Carrera, B. Rossi, P. Fragneto, and G. Boracchi. 2019. Online anomaly detection for long-term ECG monitoring using wearable devices. Pattern Recogn. 88 (2019), 482--492.
[18]
D. Carrera, B. Rossi, D. Zambon, P. Fragneto, and G. Boracchi. 2016. ECG monitoring in wearable devices by sparse models. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Springer, 145--160.
[19]
K. M. Carter and W. W. Streilein. 2012. Probabilistic reasoning for streaming anomaly detection. In Proceedings of the IEEE Statistical Signal Processing Workshop (SSP’12), Vol. 1. IEEE, 1--4.
[20]
V. Chandola, A. Banerjee, and V. Kumar. 2007. Outlier Detection: A Survey. Technical Report. Technical Report TR 07-017. Department of Computer Science and Engineering, University of Minnesota.
[21]
V. Chandola, A. Banerjee, and V. Kumar. 2009. Anomaly detection: A survey. ACM Comput. Surv. 41, 3 (2009), 1--72.
[22]
V. Chandola, A. Banerjee, and V. Kumar. 2012. Anomaly detection for discrete sequences: A survey. IEEE Trans. Knowl. Data Eng. 24, 5 (2012), 823--839.
[23]
P. M. Chau, B. M. Duc, and D. T. Anh. 2018. Discord discovery in streaming time series based on an improved HOT SAX algorithm. In Proceedings of the 9th International Symposium on Information and Communication Technology. ACM, 24--30.
[24]
C. Chen and D. J. Cook. 2011. Energy outlier detection in smart environments. In Proceedings of the Workshops at the 25th AAAI Conference on Artificial Intelligence. AAAI Press, 9--14.
[25]
C. Chen, D. J. Cook, and A. S. Crandall. 2013. The user side of sustainability: Modeling behavior and energy usage in the home. Pervas. Mobile Comput. 9, 1 (2013), 161--175.
[26]
C. Chen and L. M. Liu. 1993. Joint estimation of model parameters and outlier effects in time series. J. Amer. Statist. Assoc. 88, 421 (1993), 284--297.
[27]
J. Chen, W. Li, A. Lau, J. Cao, and K. Wang. 2010. Automated load curve data cleansing in power systems. IEEE Trans. Smart Grid 1, 2 (2010), 213--221.
[28]
H. Cheng, P. N. Tan, C. Potter, and S. Klooster. 2008. A robust graph-based algorithm for detection and characterization of anomalies in noisy multivariate time series. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM’08). IEEE, 349--358.
[29]
H. Cheng, P. N. Tan, C. Potter, and S. Klooster. 2009. Detection and characterization of anomalies in multivariate time series. In Proceedings of the SIAM International Conference on Data Mining. SIAM, 413--424.
[30]
M. C. Dani, F. X. Jollois, M. Nadif, and C. Freixo. 2015. Adaptive threshold for anomaly detection using time series segmentation. In Proceedings of the 22nd International Conference on Neural Information Processing (ICONIP’15). Springer, Cham, 82--89.
[31]
P. Esling and C. Agon. 2012. Time-series data mining. ACM Comput. Surv. 45, 1 (2012), 1--34.
[32]
A. J. Fox. 1972. Outliers in time series. J. Roy. Stat. Soc.: Ser. B (Methodol.) 34, 3 (1972), 350--363.
[33]
A. W. C. Fu, O. T. W. Leung, E. Keogh, and J. Lin. 2006. Finding time series discords based on Haar transform. In Proceedings of the 2nd International Conference on Advanced Data Mining and Applications (ADMA’06). Springer, Berlin, 31--41.
[34]
T. C. Fu. 2011. A review on time series data mining. Eng. Appl. Artific. Intell. 24, 1 (2011), 164--181.
[35]
P. Galeano, D. Peña, and R. S. Tsay. 2006. Outlier detection in multivariate time series by projection pursuit. J. Amer. Statist. Assoc. 101, 474 (2006), 654--669.
[36]
J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia. 2014. A survey on concept drift adaptation. ACM Comput. Surv. 46, 4 (2014), 1--35.
[37]
M. Gupta, J. Gao, C. Aggarwal, and J. Han. 2014a. Outlier Detection for Temporal Data. Morgan & Claypool Publishers. 1--129 pages.
[38]
M. Gupta, J. Gao, C. Aggarwal, and J. Han. 2014b. Outlier detection for temporal data: A survey. IEEE Trans. Knowl. Data Eng. 26, 9 (2014), 2250--2267.
[39]
D. M. Hawkins. 1980. Identification of Outliers. Springer Netherlands.
[40]
D. J. Hill and B. S. Minsker. 2010. Anomaly detection in streaming environmental sensor data: A data-driven modeling approach. Environ. Model. Softw. 25, 9 (2010), 1014--1022.
[41]
J. Hochenbaum, O. S. Vallis, and A. Kejariwal. 2017. Automatic anomaly detection in the cloud via statistical learning. Retrieved from https://arXiv:1704.07706.
[42]
V. Hodge and J. Austin. 2004. A survey of outlier detection methodologies. Artific. Intell. Rev. 22, 2 (2004), 85--126.
[43]
J. Holešovský, M. Čampulová, and J. Michálek. 2018. Semiparametric outlier detection in nonstationary times series: Case study for atmospheric pollution in Brno, Czech Republic. Atmosph. Pollut. Res. 9, 1 (2018), 27--36.
[44]
M. Hu, X. Feng, Z. Ji, K. Yan, and S. Zhou. 2019. A novel computational approach for discord search with local recurrence rates in multivariate time series. Info. Sci. 477 (2019), 220--233.
[45]
K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom. 2018. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 387--395.
[46]
R. J. Hyndman, E. Wang, and N. Laptev. 2015. Large-scale unusual time series detection. In Proceedings of the 15th IEEE International Conference on Data Mining Workshop (ICDMW’15). IEEE, 1616--1619.
[47]
V. Ishimtsev, A. Bernstein, E. Burnaev, and I. Nazarov. 2017. Conformal k-NN anomaly detector for univariate data streams. In Proceedings of the 6th Workshop on Conformal and Probabilistic Prediction and Applications, Vol. 60. PMLR, 213--227.
[48]
A. Iturria, J. Carrasco, S. Charramendieta, A. Conde, and F. Herrera. 2020. OTSAD: A package for online time-series anomaly detectors. Neurocomputing 374 (2020), 49--53.
[49]
H. Izakian and W. Pedrycz. 2013. Anomaly detection in time series data using a fuzzy c-means clustering. In Proceedings of the Joint IFSA World Congress and NAFIPS Annual Meeting. IEEE, 1513--1518.
[50]
H.V. Jagadish, N. Koudas, and S. Muthukrishnan. 1999. Mining deviants in a time series database. In Proceedings of the 25th International Conference on Very Large Data Bases. Morgan Kaufmann Publishers, 102--113.
[51]
M. Jones, D. Nikovski, M. Imamura, and T. Hirata. 2014. Anomaly detection in real-valued multidimensional time series. In Proceedings of the International Conference on Bigdata/Socialcom/Cybersecurity. Citeseer.
[52]
M. Jones, D. Nikovski, M. Imamura, and T. Hirata. 2016. Exemplar learning for extremely efficient anomaly detection in real-valued time series. Data Min. Knowl. Discov. 30, 6 (2016), 1427--1454.
[53]
E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. 2001. Dimensionality reduction for fast similarity search in large time series databases. Knowl. Info. Syst. 3, 3 (2001), 263--286.
[54]
E. Keogh and J. Lin. 2005. Clustering of time-series subsequences is meaningless: Implications for previous and future research. Knowl. Info. Syst. 8, 2 (2005), 154--177.
[55]
E. Keogh, J. Lin, and A. Fu. 2005. HOT SAX: Efficiently finding the most unusual time series subsequence. In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM’05). IEEE, 226--233.
[56]
E. Keogh, J. Lin, S. H. Lee, and H. van Herle. 2007. Finding the most unusual time series subsequence: Algorithms and applications. Knowl. Info. Syst. 11, 1 (2007), 1--27.
[57]
E. Keogh, S. Lonardi, and B. Y. C. Chiu. 2002. Finding surprising patterns in a time series database in linear time and space. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’02). ACM, 550--556.
[58]
T. Kieu, B. Yang, and C. S. Jensen. 2018. Outlier detection for multidimensional time series using deep neural networks. In Proceedings of the 19th IEEE International Conference on Mobile Data Management. IEEE, 125--134.
[59]
N. Kumar, N. Lolla, E. Keogh, S. Lonardi, and C. A. Ratanamahatana. 2005. Time-series bitmaps: A practical visualization tool for working with large time series databases. In Proceedings of the 5th SIAM International Conference on Data Mining. SIAM, 531--535.
[60]
N. Laptev, S. Amizadeh, and I. Flint. 2015. Generic and scalable framework for automated time-series anomaly detection. In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’15). ACM, 1939--1947.
[61]
J. A. Lara, D. Lizcano, V. Rampérez, and J. Soriano. 2020. A method for outlier detection based on cluster analysis and visual expert criteria. Expert Syst. 37, 5 (2020), 1--23.
[62]
G. Li, O. Bräysy, L. Jiang, Z. Wu, and Y. Wang. 2013. Finding time series discord based on bit representation clustering. Knowl.-Based Syst. 54 (2013), 243--254.
[63]
X. Li, Z. Li, J. Han, and J. G. Lee. 2009. Temporal outlier detection in vehicle traffic data. In Proceedings of the IEEE 25th International Conference on Data Engineering. IEEE, 1319--1322.
[64]
J. Lin, E. Keogh, A. Fu, and H. Van Herle. 2005. Approximations to magic: Finding unusual medical time series. In Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems. IEEE, 329--334.
[65]
Y. Liu, X. Chen, F. Wang, and J. Yin. 2009. Efficient detection of discords for time series stream. In Proceedings of the Joint International Conferences on Advances in Data and Web Management. Springer, Berlin, 629--634.
[66]
M. Longoni, D. Carrera, B. Rossi, P. Fragneto, M. Pessione, and G. Boracchi. 2018. A wearable device for online and long-term ECG monitoring. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI’18). International Joint Conferences on Artificial Intelligence, 5838--5840.
[67]
V. Losing, B. Hammer, and H. Wersing. 2018. Incremental on-line learning: A review and comparison of state of the art algorithms. Neurocomputing 275 (2018), 1261--1274.
[68]
H. Lu, Y. Liu, Z. Fei, and C. Guan. 2018. An outlier detection algorithm based on cross-correlation analysis for time series dataset. IEEE Access 6 (2018), 53593--53610.
[69]
S. Mehrang, E. Helander, M. Pavel, A. Chieh, and I. Korhonen. 2015. Outlier detection in weight time series of connected scales. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM’15). IEEE, 1489--1496.
[70]
H. D. K. Moonesinghe and P. N. Tan. 2006. Outlier detection using random walks. In Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’06). IEEE, 532--539.
[71]
U. Mori, A. Mendiburu, and J. A. Lozano. 2016. Similarity measure selection for clustering time series databases. IEEE Trans. Knowl. Data Eng. 28, 1 (2016), 181--195.
[72]
M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A deep learning approach for unsupervised anomaly detection in time series. IEEE Access 7 (2019), 1991--2005.
[73]
S. Muthukrishnan, R. Shah, and J. S. Vitter. 2004. Mining deviants in time series data streams. In Proceedings of the 16th International Conference on Scientific and Statistical Database Management. IEEE, 41--50.
[74]
S. Papadimitriou, J. Sun, and C. Faloutsos. 2005. Streaming pattern discovery in multiple time-series. In Proceedings of the 31st International Conference on Very Large Data Bases (VLDB’05). ACM, 697--708.
[75]
F. Rasheed and R. Alhajj. 2014. A framework for periodic outlier pattern detection in time-series sequences. IEEE Trans. Cybernet. 44, 5 (2014), 569--582.
[76]
F. Rasheed, M. Alshalalfa, and R. Alhajj. 2011. Efficient periodicity mining in time series databases using suffix trees. IEEE Trans. Knowl. Data Eng. 23, 1 (2011), 79--94.
[77]
C. A. Ratanamahatana, J. Lin, D. Gunopulos, E. Keogh, M. Vlachos, and G. Das. 2010. Mining time series data. In Data Mining and Knowledge Discovery Handbook (2nd ed.), Oded Maimon and Lior Rokach (Eds.). Springer US, 1049--1077.
[78]
U. Rebbapragada, P. Protopapas, C. E. Brodley, and C. Alcock. 2009. Finding anomalous periodic time series: An application to catalogs of periodic variable stars. Mach. Learn. 74, 3 (2009), 281--313.
[79]
A. Reddy, M. Ordway-West, M. Lee, M. Dugan, J. Whitney, R. Kahana, B. Ford, J. Muedsam, A. Henslee, and M. Rao. 2017. Using Gaussian mixture models to detect outliers in seasonal univariate network traffic. In Proceedings of the IEEE Security and Privacy Workshops (SPW’17). IEEE, 229--234.
[80]
H. Ren, M. Liu, Z. Li, and W. Pedrycz. 2017. A piecewise aggregate pattern representation approach for anomaly detection in time series. Knowl.-Based Syst. 135 (2017), 29--39.
[81]
M. Sakurada and T. Yairi. 2014. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In Proceedings of the 2nd Workshop on Machine Learning for Sensory Data Analysis (MLSDA’14). ACM, 4--12.
[82]
H. Sanchez and B. Bustos. 2014. Anomaly detection in streaming time series based on bounding boxes. In Proceedings of the 7th International Conference on Similarity Search and Applications (SISAP’14). Springer, Cham, 201--213.
[83]
P. Senin. 2018. jmotif: Time Series Analysis Toolkit Based on Symbolic Aggregate Dicretization, i.e., SAX. Retrieved from https://cran.r-project.org/package=jmotif.
[84]
P. Senin, J. Lin, X. Wang, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen, and S. Frankenstein. 2015. Time series anomaly discovery with grammar-based compression. In Proceedings of 18th International Conference on Extending Database Technology (EDBT’15). OpenProceedings.org, 481--492.
[85]
P. Senin, J. Lin, X. Wang, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen, and S. Frankenstein. 2018. GrammarViz 3.0: Interactive discovery of variable-length time series patterns. ACM Trans. Knowl. Discov. Data 12, 1 (2018), 1--28.
[86]
M. S. Shahriar, D. Smith, A. Rahman, M. Freeman, J. Hills, R. Rawnsley, D. Henry, and G. Bishop-Hurley. 2016. Detecting heat events in dairy cows using accelerometers and unsupervised learning. Comput. Electron. Agric. 128 (2016), 20--26.
[87]
A. Siffer, P. A. Fouque, A. Termier, and C. Largouët. 2017. Anomaly detection in streams with extreme value theory. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’17). ACM, 1067--1075.
[88]
J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. De Carvalho, and J. Gama. 2013. Data stream clustering: A survey. Comput. Surveys 46, 1 (2013), 1--37.
[89]
S. Song, A. Zhang, J. Wang, and P. S. Yu. 2015. SCREEN: Stream data cleaning under speed constraints. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 827--841.
[90]
Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei. 2019. Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’19). 2828--2837.
[91]
R. S. Tsay. 1988. Outliers, level shifts, and variance changes in time series. J. Forecast. 7 (1988), 1--20.
[92]
R. S. Tsay, D. Peña, and A. E. Pankratz. 2000. Outliers in multivariate time series. Biometrika 87, 4 (2000), 789--804.
[93]
A. Tsymbal. 2004. The Problem of Concept Drift: Definitions and Related Work. Technical Report. Department of Computer Science, Trinity College: Dublin.
[94]
X. Wang, J. Lin, N. Patel, and M. Braun. 2018. Exact variable-length anomaly detection algorithm for univariate and multivariate time series. Data Min. Knowl. Discov. 32, 6 (2018), 1806--1844.
[95]
L. Wei, N. Kumar, V. Lolla, E. Keogh, S. Lonardi, and C. Ann. 2005. Assumption-free anomaly detection in time series. In Proceedings of the 17th International Conference on Scientific and Statistical Database Management (SSDBM’05). Lawrence Berkeley Laboratory, 237--240.
[96]
X. Xu, H. Liu, and M. Yao. 2019. Recent progress of anomaly detection. Complexity 2019 (2019), 1--11.
[97]
Z. Xu, K. Kersting, and L. von Ritter. 2016. Adaptive streaming anomaly analysis. In Proceedings of NIPS Workshop on Artificial Intelligence for Data Science.
[98]
Z. Xu, K. Kersting, and L. von Ritter. 2017. Stochastic online anomaly analysis for streaming time series. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17). International Joint Conferences on Artificial Intelligence, 3189--3195.
[99]
J. Yang, W. Wang, and P. S. Yu. 2001. InfoMiner: Mining surprising periodic patterns. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’01). ACM, 395--400.
[100]
J. Yang, W. Wang, and P. S. Yu. 2004. Mining surprising periodic patterns. Data Min. Knowl. Discov. 9 (2004), 189--216.
[101]
L. Ye and E. Keogh. 2009. Time series shapelets: A new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’09). ACM, 947--956.
[102]
A. Zhang, S. Song, and J. Wang. 2016. Sequential data cleaning: A statistical approach. In Proceedings of the International Conference on Management of Data (SIGMOD’16). ACM, 909--924.
[103]
Y. Zhang, N. A. S. Hamm, N. Meratnia, A. Stein, M. van de Voort, and P. J. M. Havinga. 2012. Statistics-based outlier detection for wireless sensor networks. Int. J. Geogr. Info. Sci. 26, 8 (2012), 1373--1392.
[104]
Y. Zhou, R. Arghandeh, and C. J. Spanos. 2016. Online learning of Contextual Hidden Markov Models for temporal-spatial data analysis. In Proceedings of the IEEE 55th Conference on Decision and Control (CDC). IEEE, Las Vegas, NV, USA, 6335--6341.
[105]
Y. Zhou, R. Arghandeh, H. Zou, and C. J. Spanos. 2019. Nonparametric event detection in multiple time series for power distribution networks. IEEE Trans. Industr. Electron. 66, 2 (2019), 1619--1628.
[106]
Y. Zhou, R. Qin, H. Xu, S. Sadiq, and Y. Yu. 2018a. A data quality control method for seafloor observatories: The application of observed time series data in the East China Sea. Sensors 18, 8 (2018), 2628.
[107]
Y. Zhou, H. Zou, R. Arghandeh, W. Gu, and C. J. Spanos. 2018b. Non-parametric outliers detection in multiple time series a case study: Power grid data analysis. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence. AAAI Press, 4605--4612.

Cited By

View all
  • (2025)Using Multi-Scale Convolution Fusion and Memory-Augmented Adversarial Autoencoder to Detect Diverse Anomalies in Multivariate Time SeriesTsinghua Science and Technology10.26599/TST.2023.901009530:1(234-246)Online publication date: Feb-2025
  • (2024)Anomaly Detection in Medical Time Series with Generative Adversarial Networks: A Selective ReviewAnomaly Detection - Recent Advances, AI and ML Perspectives and Applications10.5772/intechopen.112582Online publication date: 17-Jan-2024
  • (2024)Anomaly Detection in Time Series: Current Focus and Future ChallengesAnomaly Detection - Recent Advances, AI and ML Perspectives and Applications10.5772/intechopen.111886Online publication date: 17-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

ACM Computing Surveys  Volume 54, Issue 3
April 2022
836 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/3461619
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 April 2021
Accepted: 01 December 2020
Revised: 01 July 2020
Received: 01 January 2020
Published in CSUR Volume 54, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Outlier detection
  2. anomaly detection
  3. data mining
  4. software
  5. taxonomy
  6. time series

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • Basque Government through the research group
  • Spanish Ministry of Science, Innovation, and Universities: BCAM Severo Ochoa accreditation
  • Basque Government through the BERC 2018-2021 program and research group
  • Elkartek program under the DIGITAL project of the Basque Government

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4,412
  • Downloads (Last 6 weeks)400
Reflects downloads up to 22 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2025)Using Multi-Scale Convolution Fusion and Memory-Augmented Adversarial Autoencoder to Detect Diverse Anomalies in Multivariate Time SeriesTsinghua Science and Technology10.26599/TST.2023.901009530:1(234-246)Online publication date: Feb-2025
  • (2024)Anomaly Detection in Medical Time Series with Generative Adversarial Networks: A Selective ReviewAnomaly Detection - Recent Advances, AI and ML Perspectives and Applications10.5772/intechopen.112582Online publication date: 17-Jan-2024
  • (2024)Anomaly Detection in Time Series: Current Focus and Future ChallengesAnomaly Detection - Recent Advances, AI and ML Perspectives and Applications10.5772/intechopen.111886Online publication date: 17-Jan-2024
  • (2024)Trend detection in time series of measurement data in solving problems in space geodynamics and other research areasMetascience in Aerospace10.3934/mina.20240121:3(268-291)Online publication date: 2024
  • (2024)Persistent homology of featured time series data and its applicationsAIMS Mathematics10.3934/math.202413159:10(27028-27057)Online publication date: 2024
  • (2024)UBO-EREX: Uncertainty Bayesian-Optimized Extreme Recurrent EXpansion for Degradation Assessment of Wind Turbine BearingsElectronics10.3390/electronics1312241913:12(2419)Online publication date: 20-Jun-2024
  • (2024)Insider Threat Detection Model Enhancement Using Hybrid Algorithms between Unsupervised and Supervised LearningElectronics10.3390/electronics1305097313:5(973)Online publication date: 3-Mar-2024
  • (2024)Energy Consumption Outlier Detection with AI Models in Modern Cities: A Case Study from North-Eastern MexicoAlgorithms10.3390/a1708032217:8(322)Online publication date: 24-Jul-2024
  • (2024)Improved Quantile Convolutional and Recurrent Neural Networks for Electric Vehicle Battery Temperature PredictionBig Data Mining and Analytics10.26599/BDMA.2023.90200287:2(512-530)Online publication date: Jun-2024
  • (2024)Comparison of outlier detection approaches in a Smart Cities sensor data contextInternational Journal on Smart Sensing and Intelligent Systems10.2478/ijssis-2024-000417:1Online publication date: 14-Feb-2024
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media