Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Echo chambers and viral misinformation: Modeling fake news as complex contagion

Fig 1

Virality as a function of network polarization.

For parameters, see Table 1. This figure shows the effects of the echo chamber with Po = 0, i.e. without opinion polarization (implying no difference in activation threshold between the cluster and the overall network.) The results are shown for different average threshold levels. As can be seen, the cluster increases the virality until the network polarization passes 0.6, from which it starts having a negative impact on virality. The lower graph shows the effects of varying the number of nodes in the network. The lower graph shows the variance for network polarization with θ = 0.27 for varying node counts, to show that the results are robust for varying network sizes. As can be seen, the virality falls with larger network sizes, however, the effects of having a cluster present seems to possibly increase with network size. The lower graph was averaged over 300 iterations, with degree 8, and 20% of nodes in cluster. (Runs performed with opinion polarization showed the same result).

Fig 1

doi: https://doi.org/10.1371/journal.pone.0203958.g001