Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 25, 2020

Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS): basics and clinical applications

  • Muhammad Zubair Israr EMAIL logo , Dennis Bernieh , Andrea Salzano , Shabana Cassambai , Yoshiyuki Yazaki and Toru Suzuki ORCID logo EMAIL logo

Abstract

Background

Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS) has been used for more than 30 years. Compared with other analytical techniques, it offers ease of use, high throughput, robustness, cost-effectiveness, rapid analysis and sensitivity. As advantages, current clinical techniques (e.g. immunoassays) are unable to directly measure the biomarker; rather, they measure secondary signals. MALDI-MS has been extensively researched for clinical applications, and it is set for a breakthrough as a routine tool for clinical diagnostics.

Content

This review reports on the principles of MALDI-MS and discusses current clinical applications and the future clinical prospects for MALDI-MS. Furthermore, the review assesses the limitations currently experienced in clinical assays, the advantages and the impact of MALDI-MS to transform clinical laboratories.

Summary

MALDI-MS is widely used in clinical microbiology for the screening of microbial isolates; however, there is scope to apply MALDI-MS in the diagnosis, prognosis, therapeutic drug monitoring and biopsy imaging in many diseases.

Outlook

There is considerable potential for MALDI-MS in clinic as a tool for screening, profiling and imaging because of its high sensitivity and specificity over alternative techniques.


Corresponding authors: Dr. Muhammad Zubair Israr and Prof. Toru Suzuki, Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK, Phone: (0044) 116 204 4741

Acknowledgments

Salzano received research grant support from Cardiopath, UniNA and Compagnia di San Paolo as part of the Programme STAR.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Karas M, Bachmann D, Hillenkamp F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem 1985;57:2935–9.10.1021/ac00291a042Search in Google Scholar

2. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 1988;2:151–3.10.1002/rcm.1290020802Search in Google Scholar

3. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988;60:2299–301.10.1021/ac00171a028Search in Google Scholar

4. Karas M, Bachmann D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom 1987;78:53–68.10.1016/0168-1176(87)87041-6Search in Google Scholar

5. Hillenkamp F. Laser desorption mass spectrometry. A review. In: Secondary Ion Mass Spectrometry SIMS V. Berlin: Springer-Verlag; 1986: 471–5.10.1007/978-3-642-82724-2_125Search in Google Scholar

6. Dreisewerd K, Schürenberg M, Karas M, Hillenkamp F. Influence of the laser intensity and spot size on the desorption of molecules and ions in matrix-assisted laser desorption/ionization with a uniform beam profile. Int J Mass Spectrom 1995;141:127–48.10.1016/0168-1176(94)04108-JSearch in Google Scholar

7. Zenobi R, Knochenmuss R. Ion formation in MALDI mass spectrometry. Mass Spectrom Rev 1998;17:337–66.10.1002/(SICI)1098-2787(1998)17:5<337::AID-MAS2>3.0.CO;2-SSearch in Google Scholar

8. Liu B-H, Charkin OP, Klemenko N, Chen CW, Wang Y-S. Initial ionization reaction in matrix-assisted laser desorption/ionization. J Phys Chem B 2010;114:10853–9.10.1021/jp104178mSearch in Google Scholar

9. Lai Y-H, Wang Y-S. Matrix-assisted laser desorption/ionization mass spectrometry: mechanistic studies and methods for improving the structural identification of carbohydrates. Mass Spectrom 2017;6:S0072–S.10.5702/massspectrometry.S0072Search in Google Scholar

10. Dreisewerd K. The desorption process in MALDI. Chem Rev 2003;103:395–426.10.1021/cr010375iSearch in Google Scholar

11. Jaskolla TW, Karas M, Roth U, Steinert K, Menzel C, Reihs K. Comparison between vacuum sublimed matrices and conventional dried droplet preparation in MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 2009;20:1104–14.10.1016/j.jasms.2009.02.010Search in Google Scholar

12. Marvin LF, Roberts MA, Fay LB. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clin Chim Acta 2003;337:11–21.10.1016/j.cccn.2003.08.008Search in Google Scholar

13. Knochenmuss R, Zenobi R. MALDI ionization: the role of in-plume processes. Chem Rev 2003;103:441–52.10.1021/cr0103773Search in Google Scholar

14. Moon JH, Shin YS, Bae YJ, Kim MS. Ion yields for some salts in MALDI: mechanism for the gas-phase ion formation from preformed ions. J Am Soc Mass Spectrom 2012;23:162–70.10.1007/s13361-011-0278-6Search in Google Scholar

15. Ehring H, Karas M, Hillenkamp F. Role of photoionization and photochemistry in ionization processes of organic molecules and relevance for matrix-assisted laser desorption ionization mass spectrometry. Org Mass Spectrom 1992;27:472–80.10.1002/oms.1210270419Search in Google Scholar

16. Knochenmuss R. MALDI and related methods: a solved problem or still a mystery? Mass Spectrom 2013;2(Special_Issue):S0006-S.10.5702/massspectrometry.S0006Search in Google Scholar

17. Jaskolla TW, Karas M. Compelling evidence for lucky survivor and gas phase protonation: the unified MALDI analyte protonation mechanism. J Am Soc Mass Spectrom 2011;22:976–88.10.1007/s13361-011-0093-0Search in Google Scholar

18. Holle A, Haase A, Kayser M, Hoehndorf J. Optimizing UV laser focus profiles for improved MALDI performance. J Mass Spectrom 2006;41:705–16.10.1002/jms.1041Search in Google Scholar

19. Menzel C, Dreisewerd K, Berkenkamp S, Hillenkamp F. The role of the laser pulse duration in infrared matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 2002;13:975–84.10.1016/S1044-0305(02)00397-5Search in Google Scholar

20. Berkenkamp S, Kirpekar F, Hillenkamp F. Infrared MALDI mass spectrometry of large nucleic acids. Science 1998;281:260–2.10.1126/science.281.5374.260Search in Google Scholar PubMed

21. Pirkl A, Soltwisch J, Draude F, Dreisewerd K. Infrared matrix-assisted laser desorption/ionization orthogonal-time-of-flight mass spectrometry employing a cooling stage and water ice as a matrix. Anal Chem 2012;84:5669–76.10.1021/ac300840bSearch in Google Scholar

22. Glückmann M, Pfenninger A, Krüger R, Thierolf M, Karasa M, Horneffer V, et al. Mechanisms in MALDI analysis: surface interaction or incorporation of analytes? Int J Mass Spectrom 2001;210:121–32.10.1016/S1387-3806(01)00450-XSearch in Google Scholar

23. Baldwin MA. Mass spectrometers for the analysis of biomolecules. Methods Enzymol 2005;402:3–48.10.1016/S0076-6879(05)02001-XSearch in Google Scholar

24. Bae YJ, Moon JH, Kim MS. Expansion cooling in the matrix plume is under-recognized in MALDI mass spectrometry. J Am Soc Mass Spectrom 2011;22:1070–8.10.1007/s13361-011-0115-ySearch in Google Scholar

25. Kong Y, Zhu Y, Zhang JY. Ionization mechanism of oligonucleotides in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2001;15:57–64.10.1002/1097-0231(20010115)15:1<57::AID-RCM192>3.0.CO;2-7Search in Google Scholar

26. Vermillion-Salsbury RL, Hercules DM. 9-Aminoacridine as a matrix for negative mode matrix-assisted laser desorption/ionization. Rapid Commun Mass Spectrom 2002;16:1575–81.10.1002/rcm.750Search in Google Scholar

27. Castleberry CM, Chou CW, Limbach PA. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of oligonucleotides. Curr Protoc Nucleic Acid Chem 2008;33:10.1. 1–.1. 21.10.1002/0471142700.nc1001s33Search in Google Scholar

28. Fuchs B, Schiller J. Application of MALDI-TOF mass spectrometry in lipidomics. Eur J Lipid Sci Tech 2009;111:83–98.10.1002/ejlt.200800223Search in Google Scholar

29. Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009–2010. Mass Spectrom Rev 2015;34:268–422.10.1002/mas.21411Search in Google Scholar

30. Sauer S, Lehrach H, Reinhardt R. MALDI mass spectrometry analysis of single nucleotide polymorphisms by photocleavage and charge-tagging. Nucleic Acids Res 2003;31:e63–e.10.1093/nar/gng062Search in Google Scholar

31. Kim K-J, Park H-G, Hwang C-H, Ann D-H, Song W-S, Choi K-Y, et al. Quantitative targeted metabolomics for 15d-deoxy-Δ 12, 14-PGJ 2 (15d-PGJ 2) by MALDI-MS. Biotechnol Bioproc E 2017;22:100–6.10.1007/s12257-016-0558-xSearch in Google Scholar

32. Kim K-J, Kim H-J, Park H-G, Hwang C-H, Sung C, Jang K-S, et al. A MALDI-MS-based quantitative analytical method for endogenous estrone in human breast cancer cells. Sci Rep 2016;6:24489.10.1038/srep24489Search in Google Scholar

33. Ng EW, Wong MY, Poon TC. Advances in MALDI mass spectrometry in clinical diagnostic applications. Top Curr Chem 2014;336:139–75.10.1007/128_2012_413Search in Google Scholar

34. Segawa S, Sawai S, Murata S, Nishimura M, Beppu M, Sogawa K, et al. Direct application of MALDI-TOF mass spectrometry to cerebrospinal fluid for rapid pathogen identification in a patient with bacterial meningitis. Clin Chim Acta 2014;435:59–61.10.1016/j.cca.2014.04.024Search in Google Scholar

35. Sun X, Huang X, Tan X, Si Y, Wang X, Chen F, et al. Salivary peptidome profiling for diagnosis of severe early childhood caries. J Transl Med 2016;14:240.10.1186/s12967-016-0996-4Search in Google Scholar

36. González N, Iloro I, Soria J, Duran JA, Santamaría A, Elortza F, et al. Human tear peptide/protein profiling study of ocular surface diseases by SPE-MALDI-TOF mass spectrometry analyses. EuPA Open Proteomics 2014;3:206–15.10.1016/j.euprot.2014.02.016Search in Google Scholar

37. Kałuża A, Jarząb A, Gamian A, Kratz EM, Zimmer M, Ferens-Sieczkowska M. Preliminary MALDI-TOF-MS analysis of seminal plasma N-glycome of infertile men. Carbohydr Res 2016;435:19–25.10.1016/j.carres.2016.09.009Search in Google Scholar

38. Schiller J, Hammerschmidt S, Wirtz H, Arnhold J, Arnold K. Lipid analysis of bronchoalveolar lavage fluid (BAL) by MALDI-TOF mass spectrometry and 31P NMR spectroscopy. Chem Phy Lipids 2001;112:67–79.10.1016/S0009-3084(01)00163-3Search in Google Scholar

39. Wang F, Chen F-F, Gao W-B, Wang H-Y, Zhao N-W, Xu M, et al. Identification of citrullinated peptides in the synovial fluid of patients with rheumatoid arthritis using LC-MALDI-TOF/TOF. Clin Rheumatol 2016;35:2185–94.10.1007/s10067-016-3247-4Search in Google Scholar PubMed PubMed Central

40. Guinan T, Abdelmaksoud H, Voelcker N. Rapid detection of nicotine from breath using desorption ionisation on porous silicon. Chem Commun 2017;53:5224–6.10.1039/C7CC00243BSearch in Google Scholar

41. Vogliardi S, Favretto D, Frison G, Ferrara SD, Seraglia R, Traldi P. A fast screening MALDI method for the detection of cocaine and its metabolites in hair. J Mass Spectrom 2009;44:18–24.10.1002/jms.1463Search in Google Scholar PubMed

42. Dutkiewicz EP, Urban PL. Quantitative mass spectrometry of unconventional human biological matrices. Philos T Roy Soc A 2016;374:20150380.10.1098/rsta.2015.0380Search in Google Scholar

43. Bonnel D, Legouffe R, Eriksson AH, Mortensen RW, Pamelard F, Stauber J, et al. MALDI imaging facilitates new topical drug development process by determining quantitative skin distribution profiles. Anal Bioanal Chem 2018;410:2815–28.10.1007/s00216-018-0964-3Search in Google Scholar

44. Cazares LH, Troyer DA, Wang B, Drake RR, Semmes OJ. MALDI tissue imaging: from biomarker discovery to clinical applications. Anal Bioanal Chem. 2011;401(1):17-27.10.1007/s00216-011-5003-6Search in Google Scholar

45. Cohen LH, Gusev AI. Small molecule analysis by MALDI mass spectrometry. Anal Bioanal Chem 2002;373:571–86.10.1007/s00216-002-1321-zSearch in Google Scholar

46. Albrethsen J. Reproducibility in protein profiling by MALDI-TOF mass spectrometry. Clin Chem 2007;53:852–8.10.1373/clinchem.2006.082644Search in Google Scholar

47. Westblade LF, Garner OB, MacDonald K, Bradford C, Pincus DH, Mochon AB, et al. Assessment of reproducibility of matrix-assisted laser desorption ionization–time of flight mass spectrometry for bacterial and yeast identification. J Clin Microbiol 2015;53:2349–52.10.1128/JCM.00187-15Search in Google Scholar

48. Williams TL, Andrzejewski D, Lay JO, Musser SM. Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells. J Am Soc Mass Spectrom 2003;14:342–51.10.1016/S1044-0305(03)00065-5Search in Google Scholar

49. Dekker L, Dalebout J, Jenster G, Siccama I, Smitt PS, Luider T. Reproducibility of MALDI-TOF mass spectrometry measurements on complex biofluids. AACR 2004;67:817.Search in Google Scholar

50. El-Aneed A, Cohen A, Banoub J. Mass spectrometry, review of the basics: electrospray, MALDI, and commonly used mass analyzers. Appl Spectros Rev 2009;44:210–30.10.1080/05704920902717872Search in Google Scholar

51. Wang P, Giese RW. Recommendations for quantitative analysis of small molecules by matrix-assisted laser desorption ionization mass spectrometry. J Chromatogr A 2017;1486:35–41.10.1016/j.chroma.2017.01.040Search in Google Scholar PubMed PubMed Central

52. Heap RE, Hope AG, Pearson L-A, Reyskens KM, McElroy SP, Hastie CJ, et al. Identifying inhibitors of inflammation: a novel high-throughput MALDI-TOF screening assay for salt-inducible kinases (SIKs). SLAS DISCOVERY: advancing Life Sciences R&D. 2017;22:1193–202.10.1177/2472555217717473Search in Google Scholar PubMed PubMed Central

53. Yang J, Zhang H, Jia J, Zhang X, Ma X, Zhong M, et al. Antireflection surfaces for biological analysis using laser desorption ionization mass spectrometry. Research 2018;2018:5439729.10.1155/2018/5439729Search in Google Scholar PubMed PubMed Central

54. Szájli E, Fehér T, Medzihradszky KF. Investigating the quantitative nature of MALDI-TOF MS. Mol Cell Proteomics 2008;7:2410–8.10.1074/mcp.M800108-MCP200Search in Google Scholar PubMed

55. Wu M-S, Collier S, Liu P-Y, Lee Y-T, Kuo S-C, Yang Y-S, et al. Sensitivity and specificity of matrix-associated laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS) in discrimination at species level for Acinetobacter bacteremia. J Microbiol Methods 2017;140:58–60.10.1016/j.mimet.2017.06.019Search in Google Scholar PubMed

56. de Noo ME, Mertens BJ, Özalp A, Bladergroen MR, van der Werff MP, van de Velde CJ, et al. Detection of colorectal cancer using MALDI-TOF serum protein profiling. Eur J Cancer 2006;42:1068–76.10.1016/j.ejca.2005.12.023Search in Google Scholar PubMed

57. Naubourg P, El Osta M, Rageot D, Grunewald O, Renom G, Ducoroy P, et al. A multicentre pilot study of a two-tier newborn sickle cell disease screening procedure with a first tier based on a fully automated MALDI-TOF MS platform. Int J Neonatal Screen 2019;5:10.10.3390/ijns5010010Search in Google Scholar PubMed PubMed Central

58. Shah B, Reid JD, Kuzyk MA, Parker CE, Borchers CH. Developing an iMALDI method. Methods Mol Biol 2013;1023:97–120.10.1007/978-1-4614-7209-4_6Search in Google Scholar PubMed

59. Urban PL, Amantonico A, Fagerer SR, Gehrig P, Zenobi R. Mass spectrometric method incorporating enzymatic amplification for attomole-level analysis of target metabolites in biological samples. Chem Commun 2010;46:2212–4.10.1039/b925433aSearch in Google Scholar PubMed

60. van Kampen JJ, Burgers PC, de Groot R, Gruters RA, Luider TM. Biomedical application of MALDI mass spectrometry for small-molecule analysis. Mass Spectrom Rev 2011;30:101–20.10.1002/mas.20268Search in Google Scholar PubMed

61. Dekker LJ, Burgers PC, Gűzel C, Luider TM. FTMS and TOF/TOF mass spectrometry in concert: identifying peptides with high reliability using matrix prespotted MALDI target plates. J Chromatogr B 2007;847:62–4.10.1016/j.jchromb.2006.08.031Search in Google Scholar PubMed

62. Duncan MW, Nedelkov D, Walsh R, Hattan SJ. Applications of MALDI mass spectrometry in clinical chemistry. Clin Chem 2016;62:134–43.10.1373/clinchem.2015.239491Search in Google Scholar PubMed

63. Haslam C, Hellicar J, Dunn A, Fuetterer A, Hardy N, Marshall P, et al. The evolution of MALDI-TOF mass spectrometry toward ultra-high-throughput screening: 1536-well format and beyond. J Biomol Screen 2016;21:176–86.10.1177/1087057115608605Search in Google Scholar

64. Dikler S FJ, Hamester M, Anacleto J, Hill A. The Need for Speed: MALDI-TOF Breaks New Ground as a High-Throughput Screening Tool to Accelerate Drug Discovery: American Pharmaceutical Review; 2016 [Available from: https://www.americanpharmaceuticalreview.com/Featured-Articles/331677-The-Need-for-Speed-MALDI-TOF-Breaks-New-Ground-as-a-High-Throughput-Screening-Tool-to-Accelerate-Drug-Discovery/.]Search in Google Scholar

65. Croxatto A, Prod’hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 2012;36:380–407.10.1111/j.1574-6976.2011.00298.xSearch in Google Scholar

66. Patel R. MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem 2015;61:100–11.10.1373/clinchem.2014.221770Search in Google Scholar

67. Calderaro A, Arcangeletti M-C, Rodighiero I, Buttrini M, Gorrini C, Motta F, et al. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci Rep 2014;4:6803.10.1038/srep06803Search in Google Scholar

68. Iles RK, Sharara FI, Zmuidinaite R, Abdo G, Keshavarz S, Butler SA. Secretome profile selection of optimal IVF embryos by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Assist Reprod Genet 2019;36:1153–60.10.1007/s10815-019-01444-7Search in Google Scholar

69. Théberge R, Dikler S, Heckendorf C, Chui DH, Costello CE, McComb ME. MALDI-ISD mass spectrometry analysis of hemoglobin variants: a top-down approach to the characterization of hemoglobinopathies. J Am Soc Mass Spectrom 2015;26:1299–310.10.1007/s13361-015-1164-4Search in Google Scholar

70. Mills JR, Kohlhagen MC, Dasari S, Vanderboom PM, Kyle RA, Katzmann JA, et al. Comprehensive assessment of M-proteins using nanobody enrichment coupled to MALDI-TOF mass spectrometry. Clin Chem 2016;62:1334–44.10.1373/clinchem.2015.253740Search in Google Scholar

71. Fidler MJ, Fhied CL, Roder J, Basu S, Sayidine S, Fughhi I, et al. The serum-based VeriStrat® test is associated with proinflammatory reactants and clinical outcome in non-small cell lung cancer patients. BMC Cancer 2018;18:310.10.1186/s12885-018-4193-0Search in Google Scholar

72. Grossi F, Genova C, Rijavec E, Barletta G, Biello F, Dal Bello MG, et al. Prognostic role of the VeriStrat test in first line patients with non-small cell lung cancer treated with platinum-based chemotherapy. Lung Cancer 2018;117:64–9.10.1016/j.lungcan.2017.12.007Search in Google Scholar

73. Gregorc V, Novello S, Lazzari C, Barni S, Aieta M, Mencoboni M, et al. Predictive value of a proteomic signature in patients with non-small-cell lung cancer treated with second-line erlotinib or chemotherapy (PROSE): a biomarker-stratified, randomised phase 3 trial. Lancet Oncol 2014;15:713–21.10.1016/S1470-2045(14)70162-7Search in Google Scholar

74. Molina-Pinelo S, Pastor MD, Paz-Ares L. VeriStrat: a prognostic and/or predictive biomarker for advanced lung cancer patients? Expert Rev Respir Med 2014;8(1):1–4.10.1586/17476348.2014.861744Search in Google Scholar

75. Xia B, Asif G, Arthur L, Pervaiz MA, Li X, Liu R, et al. Oligosaccharide analysis in urine by MALDI-TOF mass spectrometry for the diagnosis of lysosomal storage diseases. Clin Chem 2013;59:1357–68.10.1373/clinchem.2012.201053Search in Google Scholar

76. Vogliardi S, Favretto D, Frison G, Maietti S, Viel G, Seraglia R, et al. Validation of a fast screening method for the detection of cocaine in hair by MALDI-MS. Anal Bioanal Chem 2010;396:2435–40.10.1007/s00216-009-3387-3Search in Google Scholar

77. Schräder J, Rothe M, Pragst F. Ethyl glucuronide concentrations in beard hair after a single alcohol dose: evidence for incorporation in hair root. Int J Legal Med 2012;126:791–9.10.1007/s00414-012-0729-zSearch in Google Scholar

78. Calandra E, Posocco B, Crotti S, Marangon E, Giodini L, Nitti D, et al. Cross-validation of a mass spectrometric-based method for the therapeutic drug monitoring of irinotecan: implementation of matrix-assisted laser desorption/ionization mass spectrometry in pharmacokinetic measurements. Anal Bioanal Chem 2016;408:5369–77.10.1007/s00216-016-9634-5Search in Google Scholar

79. Meesters RJ, van Kampen JJ, Reedijk ML, Scheuer RD, Dekker LJ, Burger DM, et al. Ultrafast and high-throughput mass spectrometric assay for therapeutic drug monitoring of antiretroviral drugs in pediatric HIV-1 infection applying dried blood spots. Anal Bioanal Chem 2010;398:319–28.10.1007/s00216-010-3952-9Search in Google Scholar

80. Israr MZ, Heaney LM, Ng LL, Suzuki T. B-type natriuretic peptide molecular forms for risk stratification and prediction of outcome after acute myocardial infarction. Am Heart J 2018;200:37–43.10.1016/j.ahj.2018.02.016Search in Google Scholar

81. Suzuki T, Israr MZ, Heaney LM, Takaoka M, Squire IB, Ng LL. Prognostic role of molecular forms of B-type natriuretic peptide in acute heart failure. Clin Chem 2017;63:880–6.10.1373/clinchem.2016.265140Search in Google Scholar

82. Lapolla A, Fedele D, Aronica R, Garbeglio M, D’Alpaos M, Plebani M, et al. A highly specific method for the characterization of glycation and glyco-oxidation products of globins. Rapid Commun Mass Spectrom 1997;11:613–7.10.1002/(SICI)1097-0231(199704)11:6<613::AID-RCM907>3.0.CO;2-2Search in Google Scholar

83. Biroccio A, Urbani A, Massoud R, Di Ilio C, Sacchetta P, Bernardini S, et al. A quantitative method for the analysis of glycated and glutathionylated hemoglobin by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Anal Biochem 2005;336:279–88.10.1016/j.ab.2004.10.002Search in Google Scholar

84. Hachani J, Duban-Deweer S, Pottiez G, Renom G, Flahaut C, Périni JM. MALDI-TOF MS profiling as the first-tier screen for sickle cell disease in neonates: matching throughput to objectives. Proteomics Clin Appl 2011;5:405–14.10.1002/prca.201000093Search in Google Scholar PubMed

85. Mateos J, Lourido L, Fernández-Puente P, Calamia V, Fernández-López C, Oreiro N, et al. Differential protein profiling of synovial fluid from rheumatoid arthritis and osteoarthritis patients using LC–MALDI TOF/TOF. J Proteomics 2012;75:2869–78.10.1016/j.jprot.2011.12.042Search in Google Scholar PubMed

86. Birner C, Dietl A, Deutzmann R, Schröder J, Schmid P, Jungbauer C, et al. Proteomic profiling implies mitochondrial dysfunction in tachycardia-induced heart failure. J Card Fail 2012;18:660–73.10.1016/j.cardfail.2012.06.418Search in Google Scholar PubMed

87. Ucal Y, Durer ZA, Atak H, Kadioglu E, Sahin B, Coskun A, et al. Clinical applications of MALDI imaging technologies in cancer and neurodegenerative diseases. Biochim Biophys Acta Proteins Proteom 2017;1865:795–816.10.1016/j.bbapap.2017.01.005Search in Google Scholar PubMed

88. Kakuda N, Miyasaka T, Iwasaki N, Nirasawa T, Wada-Kakuda S, Takahashi-Fujigasaki J, et al. Distinct deposition of amyloid-β species in brains with Alzheimer’s disease pathology visualized with MALDI imaging mass spectrometry. Acta Neuropathol Commun 2017;5:73.10.1186/s40478-017-0477-xSearch in Google Scholar PubMed PubMed Central

89. Popp R, Basik M, Spatz A, Batist G, Zahedi R, Borchers C. How iMALDI can improve clinical diagnostics. Analyst 2018;143:2197–203.10.1039/C8AN00094HSearch in Google Scholar

90. Popp R, Li H, Borchers CH. Immuno-MALDI (iMALDI) mass spectrometry for the analysis of proteins in signaling pathways. Expert Rev Proteomics 2018;15:701–8.10.1080/14789450.2018.1516147Search in Google Scholar PubMed

91. Arafah K, Longuespée R, Desmons A, Kerdraon O, Fournier I, Salzet M. Lipidomics for clinical diagnosis: dye-assisted laser desorption/ionization (DALDI) method for lipids detection in MALDI mass spectrometry imaging. OMICS 2014;18:487–98.10.1089/omi.2013.0175Search in Google Scholar PubMed

92. Stein M, Tran V, Nichol KA, Lagacé-Wiens P, Pieroni P, Adam HJ, et al. Evaluation of three MALDI-TOF mass spectrometry libraries for the identification of filamentous fungi in three clinical microbiology laboratories in Manitoba, Canada. Mycoses 2018;61:743–53.10.1111/myc.12800Search in Google Scholar PubMed

93. Fox A. Mass spectrometry for species or strain identification after culture or without culture: past, present, and future. J Clin Microbiol 2006;44:2677–80.10.1128/JCM.00971-06Search in Google Scholar PubMed PubMed Central

94. Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P, et al. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol 2008;46:1946–54.10.1128/JCM.00157-08Search in Google Scholar PubMed PubMed Central

95. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E, Rolain JM, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009;49:543–51.10.1086/600885Search in Google Scholar PubMed

96. Buchan BW, Riebe KM, Ledeboer NA. Comparison of the MALDI Biotyper system using Sepsityper specimen processing to routine microbiological methods for identification of bacteria from positive blood culture bottles. J Clin Microbiol 2012;50:346–52.10.1128/JCM.05021-11Search in Google Scholar PubMed PubMed Central

97. Mellmann A, Bimet F, Bizet C, Borovskaya A, Drake R, Eigner U, et al. High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria. J Clin Microbiol 2009;47:3732–4.10.1128/JCM.00921-09Search in Google Scholar PubMed PubMed Central

98. Dubois D, Grare M, Prere M-F, Segonds C, Marty N, Oswald E. Performances of the Vitek MS matrix-assisted laser desorption ionization–time of flight mass spectrometry system for rapid identification of bacteria in routine clinical microbiology. J Clin Microbiol 2012;50:2568–76.10.1128/JCM.00343-12Search in Google Scholar PubMed PubMed Central

99. Patel R. MALDI-TOF mass spectrometry: transformative proteomics for clinical microbiology. Clin Chem 2013;59:340–2.10.1373/clinchem.2012.183558Search in Google Scholar PubMed

100. Deak E, Charlton CL, Bobenchik AM, Miller SA, Pollett S, McHardy IH, et al. Comparison of the Vitek MS and Bruker Microflex LT MALDI-TOF MS platforms for routine identification of commonly isolated bacteria and yeast in the clinical microbiology laboratory. Diagn Microbiol Infect Dis 2015;81:27–33.10.1016/j.diagmicrobio.2014.09.018Search in Google Scholar PubMed

101. Lee Y, Sung JY, Kim H, Yong D, Lee K. Comparison of a new matrix-assisted laser desorption/ionization time-of-flight mass spectrometry platform, ASTA MicroIDSys, with Bruker Biotyper for species identification. Annal Lab Med 2017;37:531–5.10.3343/alm.2017.37.6.531Search in Google Scholar PubMed PubMed Central

102. Ding C, Chiu RW, Lau TK, Leung TN, Chan LC, Chan AY, et al. MS analysis of single-nucleotide differences in circulating nucleic acids: application to noninvasive prenatal diagnosis. Proc Natl Acad Sci USA 2004;101:10762–7.10.1073/pnas.0403962101Search in Google Scholar PubMed PubMed Central

103. Zhong XY, Holzgreve W. MALDI-TOF MS in prenatal genomics. Transfus Med Hemother 2009;36:263–72.10.1159/000223098Search in Google Scholar PubMed PubMed Central

104. Tsui NB, Chiu RW, Ding C, El-Sheikhah A, Leung TN, Lau TK, et al. Detection of trisomy 21 by quantitative mass spectrometric analysis of single-nucleotide polymorphisms. Clin Chem 2005;51:2358–62.10.1373/clinchem.2005.056978Search in Google Scholar PubMed

105. Milani P, Murray DL, Barnidge DR, Kohlhagen MC, Mills JR, Merlini G, et al. The utility of MASS-FIX to detect and monitor monoclonal proteins in the clinic. Am J Hematol 2017;92:772–9.10.1002/ajh.24772Search in Google Scholar PubMed

106. Koomen JM, Li D, Xiao L-c, Liu TC, Coombes KR, Abbruzzese J, et al. Direct tandem mass spectrometry reveals limitations in protein profiling experiments for plasma biomarker discovery. J Proteome Res 2005;4:972–81.10.1021/pr050046xSearch in Google Scholar PubMed

107. Mehta A, Silva LP. MALDI-TOF MS profiling approach: how much can we get from it? Front Plant Sci 2015;6:184.10.3389/fpls.2015.00184Search in Google Scholar PubMed PubMed Central

108. Bonesso L, Piraud M, Caruba C, Van Obberghen E, Mengual R, Hinault C. Fast urinary screening of oligosaccharidoses by MALDI-TOF/TOF mass spectrometry. Orphanet J Rare Dis 2014;9:19.10.1186/1750-1172-9-19Search in Google Scholar PubMed PubMed Central

109. Hassall D, Brealey N, Wright W, Hughes S, West A, Ravindranath R, et al. Hair analysis to monitor adherence to prescribed chronic inhaler drug therapy in patients with asthma or COPD. Pulm Pharmacol Ther 2018;51:59–64.10.1016/j.pupt.2018.07.001Search in Google Scholar PubMed

110. Miller WL, Phelps MA, Wood CM, Schellenberger U, Van Le A, Perichon R, et al. Comparison of mass spectrometry and clinical assay measurements of circulating fragments of B-type natriuretic peptide in patients with chronic heart failure. Circ Heart Fail 2011;4:355–60.10.1161/CIRCHEARTFAILURE.110.960260Search in Google Scholar PubMed

111. Aichler M, Walch A. MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab Invest 2015;95:422.10.1038/labinvest.2014.156Search in Google Scholar PubMed

112. Angel PM, Schwamborn K, Comte-Walters S, Clift CL, Ball LE, Mehta AS, et al. Extracellular matrix imaging of breast tissue pathologies by MALDI–imaging mass spectrometry. Proteomics Clin Appl 2019;13:1700152.10.1002/prca.201700152Search in Google Scholar PubMed PubMed Central

113. Klein O, Kanter F, Kulbe H, Jank P, Denkert C, Nebrich G, et al. Front cover: MALDI-imaging for classification of epithelial ovarian cancer histotypes from a tissue microarray using machine learning methods. Proteomics Clin Appl 2019;13:1970011.10.1002/prca.201970011Search in Google Scholar

114. Spalding K, Board R, Dawson T, Jenkinson MD, Baker MJ. A review of novel analytical diagnostics for liquid biopsies: spectroscopic and spectrometric serum profiling of primary and secondary brain tumors. Brain Behav 2016;6:e00502.10.1002/brb3.502Search in Google Scholar

115. Smith A, L’Imperio V, Denti V, Mazza M, Ivanova M, Stella M, et al. High spatial resolution MALDI-MS imaging in the study of membranous nephropathy. Proteomics Clin Appl 2019;13:1800016.10.1002/prca.201800016Search in Google Scholar

116. Camenzind AG, van der Gugten JG, Popp R, Holmes DT, Borchers CH. Development and evaluation of an immuno-MALDI (iMALDI) assay for angiotensin I and the diagnosis of secondary hypertension. Clin Proteomics 2013;10:20.10.1186/1559-0275-10-20Search in Google Scholar

117. Ruiz-Romero C, Fernández-Puente P, Blanco FJ. Biomarkers in osteoarthritis: value of proteomics. In: Patel V, Preedy V, editors. Biomarkers in bone disease. Biomarkers in disease: methods, discoveries and applications. Dordrecht: Springer, 2017.10.1007/978-94-007-7693-7_44Search in Google Scholar

118. Wenschuh H, Halada P, Lamer S, Jungblut P, Krause E. The ease of peptide detection by matrix-assisted laser desorption/ionization mass spectrometry: the effect of secondary structure on signal intensity. Rapid Commun Mass Spectrom 1998;12:115–9.10.1002/(SICI)1097-0231(19980214)12:3<115::AID-RCM124>3.0.CO;2-5Search in Google Scholar

119. Kafka AP, Kleffmann T, Rades T, McDowell A. The application of MALDI TOF MS in biopharmaceutical research. Int J Pharm 2011;417:70–82.10.1016/j.ijpharm.2010.12.010Search in Google Scholar

120. Bailey D, Diamandis EP, Greub G, Poutanen SM, Christensen JJ, Kostrzew M. Use of MALDI-TOF for diagnosis of microbial infections. Clin Chem 2013;59:1435–41.10.1373/clinchem.2013.204644Search in Google Scholar

121. Tran A, Alby K, Kerr A, Jones M, Gilligan PH. Cost savings realized by implementation of routine microbiological identification by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 2015;53:2473–9.10.1128/JCM.00833-15Search in Google Scholar

122. Tan K, Ellis B, Lee R, Stamper P, Zhang SX, Carroll KC. Prospective evaluation of a matrix-assisted laser desorption ionization–time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol 2012;50:3301–8.10.1128/JCM.01405-12Search in Google Scholar

123. Dhiman N, Hall L, Wohlfiel SL, Buckwalter SP, Wengenack NL. Performance and cost analysis of matrix-assisted laser desorption ionization–time of flight mass spectrometry for routine identification of yeast. J Clin Microbiol 2011;49:1614–6.10.1128/JCM.02381-10Search in Google Scholar

124. Wild D. The immunoassay handbook: theory and applications of ligand binding, ELISA and related techniques: Newnes, 2013.Search in Google Scholar

125. Jannetto PJ, Fitzgerald RL. Effective use of mass spectrometry in the clinical laboratory. Clin Chem 2016;62:92–8.10.1373/clinchem.2015.248146Search in Google Scholar

126. Sparbier K, Wenzel T, Dihazi H, Blaschke S, Müller GA, Deelder A, et al. Immuno-MALDI-TOF MS: new perspectives for clinical applications of mass spectrometry. Proteomics 2009;9:1442–50.10.1002/pmic.200800616Search in Google Scholar PubMed

127. Flad T, Tolson J. Mass spectrometry meets medical sciences: making headway in molecular disease diagnostics. Anal Bioanal Chem 2005;381:24–7.10.1007/s00216-004-2893-6Search in Google Scholar PubMed

128. Cao TH, Jones DJ, Quinn PA, Chan DCS, Hafid N, Parry HM, et al. Using matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling in order to predict clinical outcomes of patients with heart failure. Clin Proteomics 2018;15:35.10.1186/s12014-018-9213-1Search in Google Scholar PubMed PubMed Central

129. Shima K. Simple and rapid identification of vegetable oils using a benchtop MALDI-TOF mass spectrometer and eMSTAT SolutionTM statistical analysis software. Application News, 2018 October. https://www.ssi.shimadzu.com/sites/ssi.shimadzu.com/files/Products/literature/Life_science/LAAN-A-TM-E055.pdf. Accessed: June 2019.Search in Google Scholar

Received: 2019-08-15
Accepted: 2020-02-21
Published Online: 2020-03-25
Published in Print: 2020-06-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.7.2024 from https://www.degruyter.com/document/doi/10.1515/cclm-2019-0868/html
Scroll to top button