Biodisponibilidad de compuestos bioactivos en alimentos

Autores/as

  • Mariane Lutz Universidad de Valparaíso

DOI:

https://doi.org/10.17533/udea.penh.19001

Palabras clave:

Compuestos bioactivos, fitoquímicos, biodisponibilidad biológica, metabolismo, xenobióticos, alimentos

Resumen

Antecedentes: en la actualidad ha cobrado gran relevancia el conocimiento de los compuestos bioactivos alimentarios beneficiosos para la salud. Estos deben acceder a los tejidos a través de la circulación sanguínea, y su biodisponibilidad depende de múltiples factores. Objetivo: describir algunos aspectos relevantes relacionados con la evaluación de la biodisponibilidad de compuestos bioactivos, que determina su capacidad para ejercer los efectos saludables. Metodología: se describen aspectos básicos relacionados con la medición de la biodisponibilidad de compuestos bioactivos ingeridos en la dieta, su significado y algunas claves para interpretar los resultados de su medición. Para ello se analiza bibliografía científica relevante en el tema en las bases de datos Thomson y Scielo, y libros con comité editorial. Resultados: la biodisponibilidad es una herramienta útil para conocer si los compuestos bioactivos alimentarios son capaces de llegar a los sistemas en los cuales ejercen sus efectos beneficiosos. Depende de factores propios del sujeto, otros propios de la matriz alimentaria que los contiene, e incluso son inherentes al tipo de microflora intestinal. Conclusión: los métodos tradicionales de medición de la biodisponibilidad, a partir de niveles plasmáticos y de excreción urinaria de las moléculas bioactivas presentes en los alimentos, deben considerar una amplia variedad de factores para lograr una interpretación adecuada de los resultados. 

|Resumen
= 1125 veces | PDF
= 414 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Mariane Lutz, Universidad de Valparaíso

Centro de Investigación y Desarrollo de Alimentos Funcionales, Facultad de Farmacia, Universidad de Valparaíso-Chile.

Citas

Hung HC, Joshipura KJ, Jiang R, Hu FB, Hunter D, Smith-Warner SA, et al. Fruit and vegetable intake and risk of major chronic disease. J Natl Cancer Inst. 2004;96:1577-84.

He FJ, Nowson CA, Lucas M, MacGregor GA. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: meta-analysis of cohort studies. J Hypertension. 2007;21:717-28.

Erdman JW, Balentine D, Arab L, Beecher G, Dwyer JT, Folts J, et al. Flavonoids and heart health. Proceedings of the ILSI North America Flavonoids Workshop 2005. J Nutr. 2007;137:718S-37S.

Crowe FL, Roddam AW, Key TJ, Appleby PN, Overad K, Jakobsen MU, et al. Fruit and vegetable intake and mortality from ischemic heart disease: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heart Study. Eur Heart J. 2011;32:1235-43.

Buttriss J. Phytonutrients. In: Salter A, Wiseman HJ, Tucker G, eds. New York: Blackwell Publishing Ltd; 2012.

Holst B, Williamson G. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol. 2008;19:73-82.

Epriliati I, Ginjom IR. Bioavailability of phytochemicals. In: Phytochemicals: a global perspective of their role in nutrition and health. Rijeka, Croatia: InTech; 2011; p. 401-28.

Williamson G. The use of flavonoid aglycones in in vitro systems to test biological activities: based on bioavailability data, is this a valid approach? Phytochem Rev. 2003;1:215-22.

Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr. 2005;81(suppl):243S-55S.

Hu M. Commentary: Bioavailability of flavonoids and polyphenols, call to arms. Molec Pharm. 2007;4:803-6.

Fernández-García E, Carvajal-Lérida I, Jarén-Galán M, Garrido-Fernández J, Pérez-Gálvez A, Hornero-Méndez D. Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Res Internat. 2012;46:438-50.

Deming DM, Erdman JW. Mammalian carotenoid absorption and metabolism. Pure Appl Chem. 1999;71:2213-33.

Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 1998;56:317-33.

Stevenson DE, Hurst RD. Polyphenolic phytochemicals – just antioxidants or much more? Cell Mol Life Sci. 2007;64:2900-16.

Parada J, Aguilera JM. Food microstructure affects the bioavailability of several nutrients. J Food Sci. 2007;72:R21-R32.

Scholz S, Williamson G. Interactions affecting the bioavailability of dietary polyphenols in vivo. Int J Vitam Nutr Res. 2007;77:224-35.

Yang M, Koo SI, Song WO, Chun OK. Food matrix affecting anthocyanin bioavailability: Review. Curr Med Chem. 2011;18:291-300.

Wang L, Bohn T. Health-promoting food ingredients and functional food processing. In: Nutrition, well-being and health. Rijeka, Croatia: InTech; 2012; p. 201-224.

Schramm DD, Karim M, Schrader HR, Holt RR, Kirkpatrick NJ, Polagruto JA, et al. Food effects on the absorption and pharmacokinetics of cocoa flavanols. Life Sci. 2003;73:857-69.

Neilson AP, Sapper TN, Janle EM, Rudolph R, Matusheski NV, Ferruzzi MG. Chocolate matrix factors modulate the pharmacokinetic behavior of cocoa flavan-3-ol phase II metabolites following oral consumption by Sprague-Dawley rats. J Agric Food Chem. 2010;58:6685-91.

Borges G, Mullen W, Mullan A, Lean MEJ, Roberts SA, Crozier A. Bioavailability of multiple components following acute ingestion of a polyphenols-rich juice drink. Mol Nutr Food Res. 2010;54:S268-77.

Palafox-Carlos H, Ayala-Zavala JF, González-Aguilar GA. The role of dietary fiber in the bioaccesibility and bioavailability of fruit and vegetable antioxidants. J Food Sci. 2011;76:R6-R15.

Lutz M. Lípidos de la dieta: participación en el metabolismo de xenobióticos. Anal Univer Chile. 2000;11:143-55.

Williamson G, Barron D, Shimoi K, Terao J. In vitro biological properties of flavonoid conjugates found in vivo. Free Radic Res. 2005;39:457-69.

Forester SC, Waterhouse AL. Metabolites are key to understanding health effects of wine polyphenolics. J Nutr. 2009;138:1824S-31S.

Day AJ, Cañada FJ, Díaz JC, Kroon PA, Mclaughlan R, Faulds CB, et al. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase-phlorizin-hydrolase. FEBS Lett. 2000;468:166-70.

Nemeth K, Plumb GW, Berrin JG, Juge R, Naim HY, Williamson G, et al. Deglycosylation by human intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur J Nutr. 2003;42:29-42.

Aura AM. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem Rev. 2008;7:407-29.

Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000;130:2073S-85S.

Lampe JW, Chang JL. Interindividual differences in phytochemical metabolism and disposition. Semin Cancer Biol. 2007;17:347-53.

Cerda B, Tomás Barberán FA, Espín JC. Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts, and oak-aged wine in humans: Identification of biomarkers and individual variability. J Agric Food Chem. 2005; 53:227-35.

Selma MV, Espín JC, Tomás-Barberán FA. Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem. 2009;57:6485-6501.

Xiao CW. Health effects of soy protein and isoflavones in humans. J Nutr. 2008;138:1244S-9S.

Setchell KD, Brown NM, Lydeking-Olsen E. The clinical importance of the metabolite equol: a clue to the effectiveness of soy and its isoflavones. J Nutr. 2002;132:3577-84.

Rafii F, Davis C, Park M, Heinze TM, Berger RD. Variations in metabolism of the soy isoflavonoid daidzein by human intestinal microfloras from different individuals. Arch Microbiol. 2003;180:11-6.

Lutz M. Soy isoflavones as bioactive ingredients of functional foods. In: Soybean and health. Rijeka, Croatia: InTech; 2011. p. 329-60.

Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81:230S-42S.

Del Rio D, Costa LG, Lean MEJ, Crozier A. Polyphenols and health: What compounds are involved?. Nutr Metab Cardiovasc Dis. 2010; 0:1-6.

Verzelloni E, Pellacani C, Tagliazucchi D, Tagliaferri S, Calani L, Costa LG, et al. Antiglycative and neuroprotective activity of colon derived polyphenol catabolites. Mol Nutr Food Res. 2011;55:S35-43.

Mastan S, Bhavya Latha T, Ajay S. The basic regulatory considerations and prospects for conducting bioavailability/bioequivalence (BA/BE) studies–an overview. Comp Effectiveness Res. 2011;1:1-25.

Mullen W, Edwards CA, Crozier A. Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br J Nutr. 2006;96:107-16.

Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Therap. 2002;96:67-202.

Larrosa M, Luceri C, Vivoli E, Pagliuca C, Lodovici M, Moneti G, et al. Polyphenol metabolites from colonic microbiota exert anti-inflammatory activity on different inflammation models. Mol Nutr Food Res. 2009;53:1044-54.

Crozier A, Burns J, Aziz AA, Stewart A, Rabiasz HS, Jenkins GI, et al. Antioxidant flavonols from fruits, vegetables and beverages: measurements and bioavailability. Biol Res. 2000;33:79-88.

Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2:270-78.

Aziz AA, Edwards CA, Lean MEJ, Crozier A. Absorption and excretion of conjugated flavonols, including quercetin-4’-Obeta-glucoside and isorhamnetin-4’-O-beta-glucoside by human volunteers after the consumption of onions. Free Radic Res.1998;29:257-69.

Hollman PCH, Vries JHM, Leeuwen SD, Mengelers MJB, Katan MB. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr. 1995;62:1276-82.

Hollman PCH. Absorption, bioavailability, and metabolism of flavonoids. Pharm Biol. 2004;42:74-83.

Stalmach A, Edwards CA, Wightman JD, Crozier A. Identification of (Poly)phenolic compounds in Concord grape juice and their metabolites in human plasma and urine after juice consumption. J Agric Food Chem. 2011;59:9512-22.

Lutz M, Jorquera K, Cancino B, Ruby R, Henríquez C. Phenolics and antioxidant capacity of table grape (Vitis vinifera L.) cultivars grown in Chile. J Food Sci. 2011;76:C1088-93.

Lutz M, Castro E, García L, Henríquez C. Bioavailability of phenolic compounds from grape juice cv Autumn Royal. J Food CyTA. 2013. doi: 10.1080/19476337.2013.793213.

Chandhuri S, Banerjee A, Basu K, Sengupta B, Sengupta PK. Interaction of flavonoids with red blood cell membrane lipids and proteins: antioxidant and antihemolitic effects. Int J Biol Macromol. 2007;41:42-48.

Biasutto L, Marotta E, Garbisa S, Zoratti M, Paradisi C. Determination of quercetin and resveratrol in whole blood–Implications for bioavailability studies. Molecules. 2010;15:6570-9.

Crews H, Alink G, Andersen R, Braesco V, Holst B, Maiani G, et al. A critical assessment of some biomarker approaches linked with dietary intake. Br J Nutr. 2001;86 (Suppl.1):S5-35.

Kussmann M, Affolter M, Nagy K, Holst B, Fay LB. Mass spectrometry in nutrition: understanding dietary health effects at the molecular level. Mass Spectrom Rev. 2007;26:727-50.

German JB, Hammock BD, Watkins SM. Metabolomics: building on a century of biochemistry to guide human health. Metabolomics.2005;1:3-8.

Descargas

Publicado

2014-03-31

Cómo citar

Lutz, M. (2014). Biodisponibilidad de compuestos bioactivos en alimentos. Perspectivas En Nutrición Humana, 15(2), 217–226. https://doi.org/10.17533/udea.penh.19001

Número

Sección

Artículos de Revisión