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Abstract

Tissue engineering-based endodontic therapies, designed to regenerate the dental pulp (DP) in the devitalised 
endodontic space, have been proposed to improve tooth longevity compared to conventional root-filling 
therapies. Their aim is to restore tooth vitality and major DP functions necessary to maintain tooth health 
such as immunosurveillance, sensitivity and healing/repair/regenerative capacities. Several formulations 
based on the use of fibrin, the main component of the blood clot matrix, recently gave valuable results in 
the regeneration of the human DP. This review describes recent fibrin-based scaffolds designed for that 
purpose. After having presented the various strategies for DP regeneration, the main fibrin-based scaffolds 
reported so far for clinical use in endodontics were reviewed. Particular emphasis was given to hydrogel 
devices that may be improved by incorporation of bioactive molecules that stimulate vascularisation and 
tissue neoformation or provide antibacterial properties. Data indicate that fibrin-based scaffolds constitute 
a highly favourable environment for mesenchymal stem cells, which is maintained upon functionalisation. 
Additional knowledge is needed to understand how fibrin and functionalising agents affect adhesion, survival, 
proliferation, migration and differentiation of cells incorporated in the scaffold or which will colonise it from 
neighbouring host tissues. This knowledge is needed to adapt the hydrogel formulation for various clinical 
conditions.

Keywords: Dental pulp, regeneration, fibrin, platelet-rich plasma (PRP), platelet-rich fibrin (PRF), tissue 
engineering, scaffold, hydrogel, mesenchymal stem cells (MSCs), nanotherapeutics.

*Address for correspondence: Dr Maxime Ducret, Institut de biologie et Chimie des Protéines, 7 Passage 
du Vercors, 69007 Lyon, France.
Email: maxime.ducret@ibcp.fr

Copyright policy: This article is distributed in accordance with Creative Commons Attribution Licence 
(http://creativecommons.org/licenses/by-sa/4.0/).

European Cells and Materials Vol. 41  2021 (pages 1-14)  DOI: 10.22203/eCM.v041a01                     ISSN 1473-2262

Fibrin-based scaffolds for dental pulp regeneration: 
from biology to nanotherapeutics

M. Ducret 1,2,3,*, A. Costantini 1,2,3, S. Gobert1,2, J-C. Farges 1,2,3 and M. Bekhouche 1,2

1 Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR5305 CNRS/Université Lyon 1, 
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Introduction

The DP is the loose connective tissue located in the 
endodontic space present in the centre of the tooth. 
It is responsible for tooth vitality, pain sensation, 
immune defence and repair/regeneration upon 
injury. In caries disease, degradation and invasion 
of enamel and dentine by oral bacteria trigger 
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inflammatory/immune mechanisms in the DP that 
are notably characterised by a large increase of 
the intrapulpal interstitial pressure. Blood-vessel 
compression eventually leads to blood-flow arrest, DP 
necrosis and endodontic space invasion by bacteria 

(Farges et al., 2015a; Farges et al., 2015b). Since, in the 
absence of blood flow, the infected DP is inaccessible 
to the host immune defence, the intervention of 
a dental practitioner is required, whose goal is 
to remove the necrotic tissue, disinfect and then 
fill the endodontic space with a tight biomaterial 
to prevent future microorganism contamination. 
However, several studies have shown that tooth 
longevity is much shorter due to the absence of DP 
immune and sensory systems and repair/regenerative 
abilities, which makes the tooth more susceptible to 
re-infection and/or fracture (Mao et al., 2012; Ng et 
al., 2010). For this reason, tissue engineering-based 
therapeutic strategies, based on the use of scaffolds 
possibly containing stem cells, have been proposed 
to regenerate a fully functional DP in the endodontic 
space (Hargreaves et al., 2014; Nygaard-Ostby and 
Hjortdal, 1971). However, none of these scaffolds 
was yet found to possess the ideal properties for DP 
regeneration, and designing innovative formulations 
is clearly required (Albuquerque et al., 2014; Ducret 
et al., 2017; Galler et al., 2018).
	 Recently, fibrin-based scaffolds – in particular 
in the form of hydrogels – were demonstrated to 
be highly suitable for DP regeneration since they 
clearly support DP-like tissue neoformation both in 
vitro and in vivo (Bekhouche et al., 2020; Ducret et al., 
2019; Galler, 2016a; Galler et al., 2018; Ruangsawasdi 
et al., 2014; Ruangsawasdi et al., 2017). The purpose 
of this review was to describe recent developments 
and future challenges of fibrin-based hydrogel 
formulations designed for DP regeneration. The first 
part exposes the current strategies considered for 

DP regeneration, the second one describes the main 
fibrin-based hydrogels that have been experimentally 
tested. The third part reports several promising 
strategies of functionalisation recently implemented 
to improve fibrin-based hydrogel properties, with 
the ultimate goal is to use these hydrogels in future 
endodontic nanotherapeutics.

DP regeneration strategies

Revascularisation
Revascularisation was the first described strategy 
aimed at regenerating the DP in the devitalised 
endodontic space (Östby, 1961). It consists of inducing 
a bleeding from the periapical periodontal ligament, 
using an endodontic file, to form a blood clot in the 
endodontic space (Banchs and Trope, 2004) (Fig. 
1). The endodontic space thus becomes full of 
an autologous natural fibrin scaffold, containing 
PDGFs, that promote vascularisation and blood 
clot replacement with a neotissue formed from 
infiltrating periodontal MSCs. Bleeding also brings 
numerous molecular (complement components, 
immunoglobulins, chemotaxins and antibacterial 
peptides) and cellular (polynuclear leukocytes and 
macrophages) actors of the innate and adaptive 
immunity that protect the blood clot from infections 
(Saoud et al., 2016). Revascularisation presents the 
large benefit of not inducing a foreign-body immune 
response, since all players of the regeneration process 
originate from the patient (Dianat et al., 2017; Jadhav 
et al., 2012). Other advantages of this strategy are 
simplicity, rapidity, low cost, and clinical efficacy 
(Raddall et al., 2019). Revascularisation has been 
indicated, for several years by both the American 
and European Associations of Endodontists, for the 
treatment of immature permanent teeth (Galler et 

Fig. 1. Strategy of DP revascularisation. (a) Deep caries lesion (black) and DP with irreversible pulpitis (red). 
(b) Upon DP removal, the endodontic space is roughly cleaned, then an apical bleeding is triggered from the 
periapical periodontal ligament with an endodontic file, in order (c) to form a blood clot which completely 
fills the endodontic space. (d) The blood clot is replaced with a neotissue formed by incoming periodontal 
MSCs. The neotissue is a fibrous connective tissue more or less calcified, sometimes cementum-like, rather 
than true DP.
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al., 2016b; Schmalz and Smith, 2014). However, its 
major limitation is that the neo-formed tissue in the 
endodontic space is either fibrous connective tissue 
or cellular cementum, rather than a regular DP 
tissue (Albuquerque et al., 2014; Becerra et al., 2014; 
Nygaard-Ostby and Hjortdal, 1971). This is a real 
disadvantage since, in the absence of an odontoblast 
layer at the pulp-dentine interface, dentine cannot 
be deposited on the endodontic wall to increase 
the robustness of the tooth and physically protect 
the new DP from external irritants. The absence 
of odontoblasts with long cell processes in dentine 
tubules also prevents the early sensing of external 
injuries (Farges et al., 2015a; Farges et al., 2015b). 
Finally, a risk has been reported of tooth-colour 
change following the formation of the blood clot with 
this technique (Becerra et al., 2014; Nosrat et al., 2012).

Cell-free and cell-based regeneration
More recently, following the development of multiple 
kinds of natural and synthetic scaffolds for tissue 
engineering (Moussa and Aparicio, 2019) and the 
discovery of various populations of MSCs in the 
DP and the periapical area (Ducret et al., 2015a; 
Gronthos et al., 2000; Kerkis et al., 2006; Miura et al., 
2003; Sonoyama et al., 2008), two additional strategies, 
described as cell-based and cell-free, have been 
proposed for regenerating the DP.
	 The cell-based regeneration strategy, based on 
the tissue engineering original triad (scaffold, stem 

cells and growth factors) (Langer and Vacanti, 1993), 
consists of associating MSCs and a hydrogel-type 
biomaterial, possibly functionalised by bioactive 
molecules, to recreate a new DP tissue (Nakashima 
et al., 2019) (Fig. 2). This strategy recently gave 
promising results both in animal models and humans 
when DP-derived MSCs were used (Nakashima et 
al., 2017; Nakashima et al., 2019; Ruangsawasdi et al., 
2017). Clinical trials reported the re-establishment 
of tooth sensitivity and the increase of root length, 
confirming the relevance of this strategy (Iohara et 
al., 2018; Nakashima et al., 2019; Xuan et al., 2018). 
However, the standardisation of the protocols for 
human MSC isolation, characterisation, ex vivo 
amplification, storage and implantation in the host, 
in accordance with good manufacturing practices, 
is still a big challenge. This is before considering the 
cell-based regeneration approach (Ducret et al., 2015a; 
Ducret et al., 2017) for cell-based medicinal products 
by European authorities and the FDA (Ducret et al., 
2015b).
	 The cell-free regeneration strategy is characterised 
by the implantation of an uncellularised scaffold 
(Galler et al., 2014; Widbiller et al., 2018) into the 
endodontic space, functionalised with bioactive 
molecules such as growth factors that are released 
progressively. Passive diffusion through the root 
foramen will allow these factors to attract, into 
the hydrogel, host periodontal MSCs that will 
differentiate into DP cells (Conde et al., 2015; Langer 

Fig. 2. Cell-free and cell-based DP regeneration. Upon DP removal, the endodontic space is cleaned, 
disinfected and shaped (a). (c) A cell-free or cellularised scaffold formulation is then injected (b) to get a 3D 
environment able to promote cell survival and vascularisation (c). Progressive replacement of the scaffold 
leads to the formation of a vascularised and innervated neotissue expected to be a DP (d).
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and Vacanti, 1993) (Fig. 2). This strategy appears 
to be an easier way than the cell-based approach 
since it does not involve isolation and manipulation 
of autologous or allogenic MSCs in vitro before 
implantation. Therefore, it is considered a relevant 
concept that may offer rapid clinical translation to 
human in the future (Huang and Garcia-Godoy, 
2014; Yang et al., 2015). However, since the tissue 
formed in the endodontic space rarely possess the 
characteristics of the DP tissue, it is not clear whether 
periodontal MSCs can differentiate into DP cells 
(Huang et al., 2009).

Challenges for scaffold-based DP regeneration
Regenerative strategies are facing several challenges. 
One major difficulty is to obtain odontoblasts to 
produce dentine (Ducret et al., 2017). Moreover, most 
if not all of the scaffolds designed for DP regeneration 
lack antibacterial activity. This may constitute a major 
obstacle to clinical use, since animal model studies 
have demonstrated that microorganisms remaining 
in the endodontic space hinder DP regeneration (Redl 
et al., 1983; Verma et al., 2017). As stated above, other 
important factors to consider for future clinical use 
are the cost of the technique, the biological properties 
of the scaffold and its ease of handling and storage 
(Ducret et al., 2015a; Ducret et al., 2017),, making 
the scaffold a central player for the success of DP 
regeneration.
	 Biologically, an ideal scaffold must create a cell-
friendly environment able to promote adhesion, 
survival and differentiation of MSCs that will 
progressively replace it by an ECM characteristic of 
the DP (Ducret et al., 2017). Clinical requirements 
include low viscosity, allowing implantation into 
the small and anatomically complex endodontic 
space. Numerous kinds of scaffolds have been tested 
so far, including natural and synthetic polymers/
co-polymers, hydroxyapatite/tricalcium phosphate 
powders, self-assembling peptide systems, PRP 
derivatives and decellularised tissue matrices (Conde 
et al., 2015; Galler, 2016a; Huang and Garcia-Godoy, 
2014; Jazayeri et al., 2020; Nakashima et al., 2019; 
Palma et al., 2017; Proksch and Galler, 2018; Rosamma 
and Kavyashree, 2017). However, most of these 
scaffolds were found to regenerate a tissue lacking 
structural and functional properties of DP, which 
highlights the need to deeply investigate the initial 
cell-scaffold cross-talks regulating cell behaviour 
before considering clinical applications (Mangione et 
al., 2017; Moussa and Aparicio, 2019). In this context, 
fibrin-derived biomaterials, used for decades in tissue 
engineering-based therapeutic strategies, appear to 
be promising tools for DP regeneration (Galler et al., 
2018).
	 A major advantage of fibrin-based scaffolds 
comes from the regulatory aspect, because plasma-
rich fibrin, fibrin sealants and fibrin glues have 
been approved by the FDA and the EMA for 
use in humans. This will undoubtedly facilitate 
the clinical transfer of fibrin-based formulations 

designed for DP regeneration (Ducret et al., 2015b; 
Park and Woo, 2018). The recent development of 
nanobiotechnologies will, hopefully, help to provide 
fibrin with specific properties, including antibacterial 
ones, suitable for DP regeneration (Bekhouche et al., 
2020; Willyard, 2018).

From fibrin to fibrin-based scaffolds

Fibrin and blood clot formation
Fibrin is a plasma protein involved in the later 
stage of haemostasis and synthesised in the liver 
in the form of soluble fibrinogen (Woodson et al., 
2013). Briefly, when bleeding occurs, blood-stream 
exposure of the connective tissue surrounding blood 
vessel leads to the recruitment of platelets and the 
formation of the primary plug (Periayah et al., 2017; 
Swieringa et al., 2018). The so-called coagulation 
cascade is then triggered by the proteolytic activation 
of serine proteases, expressed by platelets and the 
endothelium or present in the plasma (Farges et al., 
2015b). Notably, the circulating thrombin cleaves the 
fibrinogen molecules into insoluble fibrin monomers 
which then self-associate to form a fibrin polymer 
(Fig. 3) (Periayah et al., 2017). The latter is stabilised by 
the transglutaminase factor XIII which catalyses the 
formation of amide bonds between fibrin side chains, 
leading to a final cross-linked blood clot (Jobe et al., 
2005; Periayah et al., 2017). During the wound healing 
process, the blood clot is progressively replaced with 
a neoformed tissue similar to the tissue of origin 
(Collen and Lijnen, 1991). Importantly, this process 
is mediated by cell activation through binding to 
fibrin. Cells of the blood clot interact with fibrin 
through a cell surface integrin-driven mechanism 
mediated by Arg-Gly-Asp (RGD) adhesive sequences 
(Mosesson, 2005). Fibrin binds to integrin αIIbβ3 
(present on platelets) (Höök et al., 2017), integrin 
αMβ2/Mac-1 (neutrophils, monocytes, macrophages 
and mast cells) (Gailit et al., 1997) and integrin αVβ3 
(fibroblasts, endothelial cells) (Flick et al., 2004; Gawaz 
et al., 1997),(Fig. 3). Cell binding leads to the activation 
of specific intracellular signalling pathways, which 
drive blood-clot formation and ECM remodelling, 
suggesting that cell adhesion to the fibrin matrix is a 
key step in the triggering of tissue regeneration. The 
interaction of DP-MSCs with fibrin and its cellular 
consequences remain totally unknown and should be 
investigated to clearly understand how DP neotissue 
formation is initiated, in order to be able to adapt the 
formulation of fibrin scaffolds to several pathological 
contexts.

Regulation of fibrin network formation
Polymerisation of fibrinogen molecules, during 
blood-clot formation, leads to the formation of a 
fibrillary network important for haemostasis and 
subsequent wound healing (Janmey et al., 2009). 
Major parameters governing this formation are 
the local concentrations of fibrinogen, calcium and 
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thrombin. In vitro, the structural and functional 
properties of the fibrin network can be modulated by 
varying these concentrations (Litvinov and Weisel, 
2017; Man et al., 2011). The modulation of fibrin 
scaffold properties, through adjusting the fibrinogen 
concentration, is probably the best example to 
illustrate how fibrin hydrogels could be fine-tuned. 
Highly-concentrated fibrinogen solutions (up to 
60  mg/mL) have been used as sealants to achieve 
haemostasis, by application to bleeding wounds. 
Conversely, low-fibrinogen concentrations, of around 
5-20  mg/mL, have been largely used to design 
scaffolds, sometimes in combination with other 
biomolecules, which promote the regeneration of 

various tissues including the DP (Ducret et al., 2017; 
Litvinov and Weisel, 2017). Interestingly, increasing 
the mechanical strength of the fibrin hydrogel by 
increasing fibrinogen concentration (9.5 to 141 mg/
mL) reduced dorsal root ganglia neurite outgrowth 
in a fibrinolysis-dependent manner (Man et al., 2011). 
This study demonstrated that a 10 mg/mL fibrinogen 
concentration confers to the scaffold physical and 
mechanical properties that enable the support of 
nerve-guidance conduits, an outstanding property 
toward a restoration of DP functionality. Fibrin 
hydrogels are sometimes stabilised by factor XIIIa, 
which increases crosslinking of fibrinogen molecules. 
However, factor XIIIa’s use strongly slows down 
hydrogel lysis. The addition of 10 U/mL of factor XIIIa 
thus decreases the lysis rate by approximately 45 % 
(Francis and Marder, 1988; Wolberg et al., 2012). A 
fine control of the lysis rate is crucial to allow proper 
tissue replacement in the context of DP regeneration. 
The degradation of the fibrin network should be 
synchronised with the development of a vascular 
system. A low degradation rate could potentially 
affect nutrient supply to stem cells and induce cell 
death, while fast degradation could create an empty 
environment that may constitute an ideal niche for 
bacterial expansion.

Fibrin-based scaffolds for DP regeneration
Fibrin-based scaffolds have been studied for decades 
in the field of tissue engineering (Noori et al., 2017; 
Park and Woo, 2018; Sakiyama et al., 1999; Schense 
et al, 2000). Their advantages include excellent 
cytocompatibility, physiological degradation 
kinetics, non-toxicity of degradation products, and 
replacement with an ECM produced by incorporated 
or infiltrating stem cells within a few days (Roura et 
al., 2017). Fibrin scaffolds possess excellent properties 
for tissue regeneration, as shown by preclinical and 
clinical studies (Borie et al., 2015; Kang et al., 2011; 
Miron et al., 2017). In the field of DP regeneration, 
autologous fibrin-rich platelet concentrates and fibrin 
hydrogels manufactured in vitro have been used 
with valuable results in animal models and humans 
(Bezgin et al., 2015; Chen et al., 2015; Ruangsawasdi 
et al., 2014; Ruangsawasdi et al., 2016). Beyond the 
intrinsic properties of fibrin, both offer the great 
advantage of being easily injectable into the mm-sized 
endodontic space using a fine needle (Bekhouche et 
al., 2020; Ducret et al., 2019).

PRP and PRF
PRP and PRF are platelet concentrates collected in 
vivo from the patient’s own blood by centrifugation. 
PRP is collected at high G force (above 300 ×g) and 
is composed of low-density fibrin and cells, whereas 
PRF is collected at low G force (below 300 ×g) and 
is composed of high-density fibrin rich in cells and 
growth factors (Mohan et al., 2019). Both PRP and 
PRF have been proposed for various therapeutic 
applications including DP regeneration, owing to 
the presence of large amounts of pro-angiogenic 

Fig. 3. Fibrin polymer formation from fibrinogen 
molecules. Plasma circulating fibrinogen is a dimeric 
molecule composed of α (green), β (blue) and γ (grey) 
chains forming D and E domains separated by a 
coiled-coil region implicated in fibrin elongation. The 
D domain is implicated in integrin-mediated binding 
of fibrin(ogen) onto fibroblasts, leukocytes and 
platelets. Cleavage of the N-terminal fibrinopeptides 
A (FpA) and B (FpB) by thrombin promotes the 
interaction between D and E domains which induces 
the lateral association of fibrin monomers as double 
stranded.
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growth factors and ease of handling (Bezgin et al., 
2015; Chow et al., 1983; Miron et al., 2017; Trevino et 
al., 2011). Practically, the patient’s blood is collected, 
mixed with anticoagulants and centrifuged. The 
PRP is then separated from the PPP to increase 
platelet concentration. On demand coagulation into 
the endodontic space is realised by the addition 
of autologous thrombin extracted from the PRF. 
Thrombin can be supplemented with calcium 
chloride and/or PPP to modulate the mechanical 
properties of the fibrin matrix. PRP is considered 
a valuable strategy for DP regeneration, mainly 
because it limits handling steps, and therefore the 
risk of pathogen transmission, and is cost effective 
(Raddall et al., 2019). Interestingly, PRF combination 
with cell-sheet fragments of DP-MSCs allowed the 
regeneration of a vascularised DP-like tissue and 
the deposition of dentine after post-orthotopic 
transplantation in pulpectomised canals of canine 
premolars (Chen et al., 2015). However, the ability of 
this DP-like tissue to harbour immune surveillance 
and nerve sensitivity is not known.

Fibrin-based hydrogels
In the last decade, fibrin purified from human plasma 
has been used to design hydrogels able to promote 
DP regeneration in a cell-free approach (Galler et al., 
2011; Galler et al., 2018; Ruangsawasdi et al., 2016). 
In a pioneer work, fibrin hydrogels were injected in 
the endodontic space of extracted human immature 
premolars implanted in rats. Results showed 
improved cell homing and cell-dentine interaction 
compared to empty root canals (Ruangsawasdi et al., 
2014). It was recently shown that a 10 mg/mL fibrin 

scaffold forms a well-vascularised tissue in vivo, in a 
model of human root dentine cylinders implanted 
in the back of nude mice (Fig. 4). These results were 
in agreement with those obtained using PRF (Chen 
et al., 2015).
	 Numerous studies have attempted to improve 
the structural and functional properties of the fibrin 
scaffolds by incorporating polymeric elements. 
These elements include PEG (Dikovsky et al., 2006), 
polyurethane, polyethylene oxide, polycaprolactone, 
heparin, PLA, PLGA, alginate, chitosan, hyaluronic 
acid and collagen (Brown and Barker, 2014; Litvinov 
and Weisel, 2017). Recently, Han et al. (2019) 
reported the development of a fibrin-based bio-ink 
incorporating gelatine, hyaluronic acid and glycerol 
for 3D co-printing. Current research also aims at 
providing the hydrogel with pro-regenerative, 
anti-inflammatory and anti-bacterial properties 
to overcome the challenges of DP regeneration 
described above.

Strategies to improve fibrin-based scaffold 
properties

Pro-regenerative properties
DP regeneration requires the concerted action of 
growth factors and other bioactive molecules that 
must be provided to the cells responsible for tissue 
neoformation in the endodontic space. In particular, 
the scaffold injected within the endodontic space 
must guide the spatio-temporal cell recruitment 
and differentiation into the various DP cell lineages 
needed to recreate a functional DP (Gong et al., 2016).

Fig. 4. Vascularisation of a cellularised fibrin hydrogel upon implantation in vivo for 7 weeks. (a) Human 
root dentine cylinders. (b) Schematic representation of a cylinder containing the cellularised fibrin hydrogel. 
(c) Subcutaneous implantation of a dentine cylinder filled with a DP-MSC-cellularised fibrin hydrogel in 
the back of a nude mouse. (d) Low magnification of a well-vascularised regenerated tissue into the cylinder. 
Blood vessels are identified by type IV collagen immunostaining. FH: fibrin hydrogel remnant. (e) High 
magnification of type IV collagen staining.
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	 Several growth factors have been added to 
the fibrin scaffold to promote tissue regeneration, 
including pro-angiogenic factors such as VEGF, 
PDGF and FGF-2, factors inducing odontoblast 
differentiation such as BMP-2 and -4, nerve growth 
promoting factors such as the NGF and factors 
promoting MSC recruitment and growth such as 
SDF1α and SCF (Abou Neel et al., 2014; Ducret et al., 
2017; Kowalczewski and Saul, 2018; Ruangsawasdi 
et al., 2017; Trevino et al., 2011; Xia et al., 2018). 
Dentine matrix molecules could also be incorporated 
in the fibrin scaffold before polymerisation to 
increase chemotaxis and pulp-like tissue formation 
in the endodontic space (Widbiller et al., 2018). An 
alternative to the addition of exogenous molecules 
to promote DP regeneration is MSC preconditioning. 
DP-MSC pretreatment with FGF-2 thus enhanced 
angiogenesis within subcutaneously implanted 
hydrogels, mimicking DP regeneration, by increasing 
VEGF and hepatocyte growth factor release (Gorin 
et al., 2016). DP-MSC hypoxic preconditioning 
could also enhance angiogenesis by inducing VEGF 
expression (Aranha et al., 2010). Recently, exosomes 
isolated from human third molar DP cells, used 
as a delivery system for proteins, lipids, RNA and 
DNA, were proposed as another option to stimulate 
DP regeneration in a cell-free approach, since they 
stimulated the migration and proliferation of human 
bone marrow-derived MSCs in vitro in a fibrin 
hydrogel (Ivica et al., 2020).

Anti-inflammatory properties
Another limitation of the current biomaterials used 
for DP regeneration is the inflammatory response that 
can occur after implantation. Indeed, inflammation 
often causes tissue damage at the material/host tissue 
interface (Colombo et al., 2014; Farges et al., 2015b; 
Willyard, 2018). “Good” and “bad” inflammations 
have been defined according to macrophage 
polarisation in a M2 or a M1 profile, respectively. 
While pro-inflammatory M1 macrophages cause 
tissue damage, anti-inflammatory M2 macrophages 
promote tissue repair (Mills, 2012; Vannella et al., 
2017). The formation of an inflammatory plug with 
abundant M1 macrophages at the root apical tip was 
reported to impede cell homing into the endodontic 
space and to induce resorption of the apical dentine 
(Zaky et al., 2020). It is therefore important to 
control the M1/M2 balance to get adequate DP 
regeneration (Zaky et al., 2020). Recently, early 
inflammatory/immune response and M1/M2 
macrophage polarisation were investigated upon 
fibrin and fibrin-chitosan hydrogel implantation in 
pulpotomised rat incisors (Renard et al., 2020). This 
study showed similar accumulation of neutrophil 
granulocytes at the hydrogel/residual DP interface 
with an enrichment of M2 but not M1 macrophages, 
suggesting that fibrin could promote M2-driven 
tissue regeneration (Renard et al., 2020). This work 
is in agreement with a previous study suggesting 
that fibrin hydrogels, by promoting M2 polarisation 

in cellulo, could have a favourable effect on DP 
regeneration (Hsieh et al., 2017). PRF extracts were 
reported to attenuate DP-MSC expression of the 
pro-inflammatory cytokines IL-1β, IL-6, and IL-8 
upon treatment with LPS, which is also in favour of 
a possible role of fibrin in preventing inflammation 
(Kim et al., 2017). The use of MSCs was also proposed 
to reduce inflammation during DP regeneration. 
Indeed, MSCs possess immunomodulatory properties 
through their inhibition of the T-cell response and 
their ability to modulate the M1/M2 ratio in favour 
of the M2 phenotype (Marei and El Backly, 2018). 
Altogether, data from the literature suggest that 
fibrin is a natural, biological biomaterial that limits 
inflammation and promote tissue regeneration.

Antibacterial properties
Recent studies have demonstrated that eradicating 
bacteria from the endodontic space with classical 
disinfectants (sodium hypochlorite or chlorhexidine) 
is very difficult because of the complex anatomy of 
the endodontic space, deep penetration of bacteria 
into dentine tubules, and bacterial organisation into 
biofilms (Vishwanat et al., 2017). Several studies 
performed in animal models have demonstrated that 
residual bacteria hinder DP regeneration (Redl et 
al., 1983), and the absence of antibacterial properties 
of the fibrin molecule or its degradation products 
may constitute an obstacle to the clinical use of 
hydrogel formulations made of fibrin alone. This 
obstacle could be overcome by incorporating drugs 
or molecules with antibacterial properties at the time 
of scaffold manufacture. Studies have been done in 
this context by incorporating metronidazole and/or 
ciprofloxacin into nanofibrous scaffolds (Kamocki 
et al., 2015; Tagelsir et al., 2016). If both drugs were 
shown to inhibit the growth of the endodontic 
bacteria Enterococcus fæcalis, Porphyromonas spp. 
and Fusobacterium nucleatum, they were not able to 
eradicate a 3-week-old biofilm (Kamocki et al., 2015; 
Tagelsir et al., 2016). Antibacterial activity against an 
E. faecalis biofilm was observed when ciprofloxacin 
was associated with fibrin (Chotitumnavee et 
al., 2019) . Recently, chitosan, an antibacterial 
glycosaminoglycan derived from shrimp shells, 
was associated with fibrin to provide a fibrin 
hydrogel with antibacterial properties (Ducret et 
al., 2019). Results showed that the fibrin-chitosan 
hydrogel strongly inhibited E. faecalis growth in vitro 
without affecting DP-MSC viability, morphology, 
proliferation rate and type I/III collagen production 
capacity (Ducret et al., 2019) (Fig. 5). Further studies 
are needed to deeply investigate the efficiency of such 
antibacterial scaffolds and notably on endodontic 
bacteria housed in the shelter of dentine tubules.

Nanotherapeutics
The recent development of nanobiotechnologies 
(Harilal et al., 2019; Sinjari et al., 2019; Zhao et al., 2020) 
offers great hope to deliver locally, in a spatially and 
temporarily controlled manner, antibacterial drugs in 
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Fig. 5. Antibacterial properties of fibrin-chitosan hydrogels (Ducret et al., 2019). (a) Photograph showing 
an example of fibrin hydrogel (opaque white) cast in a cylindrical-conical transparent plastic mould (white 
arrow) and covered with cell culture medium. SEM images showing the fibrin hydrogel network (b) and 
chitosan aggregates entrapped within the fibrin network (c). (d) Representative photographs of E. faecalis 
CFUs upon bacterial contact with fibrin or fibrin-chitosan hydrogels (far left: control, i.e. bacteria alone). (e) 
Bacterial concentrations determined by CFU counting. Reproduced from Ducret et al., 2019, with permission 
from Elsevier.

Fig. 6. Nanocomposite fibrin-based hydrogel containing CLIN-loaded PLA-NPs. (a) Schematic representation 
of the 2-step synthesis of the nanocomposite hydrogel. (b) Representative SEM image of CLIN-loaded PLA-
NPs. Scale bar: 1 µm (bottom). (c) Representative pictures of agar diffusion assays in the presence of the 
fibrin-alone hydrogel (far left) or nanocomposite fibrin hydrogels containing PLA-NPs loaded with CLIN 
to get final concentrations of 50, 100 or 200 µg/mL CLIN. Scale bar is 10 mm. Reproduced from Bekhouche et 
al., 2020, with permission from the Royal Society of Chemistry.

a b
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small-sized tissues such as the endodontic space and 
in difficult to areas reach such as dentine tubules. In 
particular, NPs are effective antibiotic carriers since 
they protect the drug in its native structure, conserve 
its therapeutic properties, can deliver large amounts 
of drug at the site of infection and limit side effects, 
when compared to other drug carrier systems and free 
antibiotic diffusion (Wang et al., 2017). Interestingly, 
scaffolds incorporating antibacterial NPs such as 
CLIN-loaded hyperbranched NPs were developed for 
potential antibacterial applications (Wei et al., 2020). 
Among the various types of NPs, PLA-NPs received 
considerable attention over recent decades because of 
their highly biocompatible and biodegradable nature 
and their low levels of immunogenicity and toxicity 
(Tyler et al., 2016). A nanocomposite fibrin-based 
hydrogel containing CLIN-loaded PLA-NPs was 
recently designed for the purpose of safely bringing 
the antibiotic into contact with endodontic bacteria 
lining the dentine wall or residing within dentine 
tubules (Bekhouche et al., 2020). Results demonstrated 
that the incorporation of CLIN-loaded NPs into a 
fibrin hydrogel gave it antibacterial and antibiofilm 
properties against Enteroccocus fæcalis without 
affecting DP-MSC viability and function (Bekhouche 
et al., 2020) (Fig. 6). Nanotherapeutic strategies thus 
appear valuable for DP regeneration.

Conclusions

Together, these data indicate that fibrin is a valuable 
biopolymer for scaffold-based strategies of DP 
regeneration. Its properties could be tuned to adapt 
the hydrogel for various clinical conditions. A major 
challenge will be to elucidate the mechanisms by 
which DP-MSCs regulate hydrogel degradation and 
replacement, in order to obtain a well-differentiated 
DP with structural and functional properties similar 
to the tissue of origin (Fig. 7). Addition of bioactive 
molecules to the fibrin scaffold will help to provide 

a favourable environment for cell differentiation, 
promoting hydrogel replacement by a DP-like 
matrix, controlled inflammatory/immune response, 
and an aseptic environment. The controlled delivery 
of these active agents/molecules will benefit from 
the development of nanobiotechnologies and bring 
nanotherapeutics into the armamentarium of dental 
practitioners who aim at regenerating the human DP.
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Discussion with Reviewer

Franz Weber: The first clinical trials of pulp 
regeneration have been performed using a collagen-
derived scaffold which appears coherent since the 
pulp tissue is made of collagen. Collagen hydrogels 
can also be combined with various molecules to 
improve antibacterial and other properties presented 
here in the context of the fibrin-derived scaffolds. So, 
what makes the authors believe the fibrin-derived 
scaffolds would be better than the collagen ones?
Authors: We agree with the reviewer’s comment, 
collagen is the first material proposed for the 
regeneration of DP in clinical trials, based on its 
structural homology with DP tissue. However, like all 
other materials, none of the collagen-based scaffolds 
were found to possess the ideal properties as a 
biomaterial for DP regeneration. Indeed, the collagen 
origin, composition, methods of extraction and 
purification were reported to induce many different 
cellular responses, including inflammatory cellular 
reaction that is still poorly characterised (Barbeck et 
al., 2015; Herrera-Vizcaíno et al., 2020; Stratton et al., 
2016; Udeabor et al., 2020, additional references). In 
addition, collagen scaffolds lack mechanical strength, 
which requires their enhancement by physical or 
chemical methods, or by the development of multi-
layered scaffolds (Dong and Lv, 2016; Stratton et al., 
2016, additional references). These points could be a 
major obstacle to a wide acceptance of this technique 
among the community of practitioners.
	 Inversely, fibrin is a natural scaffold biologically 
designed to induce tissue repair/regeneration and 
to promote cell response toward this purpose. 
Fibrin degradation products promote angiogenesis, 
induce a controlled inflammation, and its mechanical 
properties could be easily finely tuned without 
the need of extra-chemical agents. There is good 
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evidence that it is a promising biomaterial to guide 
DP regeneration, either alone or in combination with 
other materials, growth factors or nanomedicinal 
products.
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